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Supporting Material for “Self-Organized Cell Motility from Motor-Filament 
Interactions” by XinXin Du, Konstantin Doubrovinski, and Miriam Osterfield. 
 
Dimensionless parameters 
 
 The dimensionless parameters used in the text can be translated to dimensionful 
ones using the following formulation: 
 

 
 

where the primed variables are dimensionless, and lis the length of a filament, d is the 
degradation rate of filaments, and  is the mobility of the boundary. 
 
 
Model Assumptions 
 

We make several model assumptions about the processivity of motors, the way 
filaments nucleate, the nature of motor-mediated attractive interactions between 
filaments, and the diffusion constants.  We will clarify some of these assumptions below. 
 
Processivity of motors 

We assume that a motor, when it comes off of a filament, does not travel very far 
before binding to another filament. Therefore, the only terms that we consider for motors 
are a current due to being carried by filaments and a term that accounts for local 
diffusion.  Quick unbinding and rebinding would locally lead to a proportional 
distribution of motors among differently oriented filaments populations.  These 
assumptions may best correspond to motor complexes with multiple heads that remain 
near the filament network, with individual motor heads rapidly switching between 
different nearby filaments.  
 
Filament nucleation  

We assume that a newly nucleated filament reaches some terminal length on a 
time-scale much shorter than the time-scale of the evolution of the density fields.  In a 
moving cell with little to no retrograde flow, such as keratocytes, the time it takes for a 
filament to reach terminal length is the speed of polymerization, roughly equal to the cell 
velocity, divided by the average length of the filament. The time scale of the evolution of 
the density fields is the time it takes the cell to crawl its own length. Therefore, in a cell 
in which the average filament length is substantially shorter than the cell length, this 
assumption is valid. Filament lengths are difficult to measure precisely in vivo because of 
the density of the network; although filaments extending the width of the lamellipodium 
are sometimes seen, the majority appears to be shorter (1).  
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In many cases, filaments are not nucleated uniformly in living cells.  For example, 
actin filaments are nucleated by Arp2/3 complexes that are themselves activated only 
near the cell boundaries, and the newly nucleated filaments’ orientations depend on the 
orientations of pre-existing filaments.  We use an approximation that ignores this effect 
and assumes that filaments of all orientations are nucleated at the same rate independent 
of the densities and orientations of pre-existing filaments.  Future versions of this model 
could explore the angle and density dependence of the nucleation terms.  However, the 
point illustrated in this paper is that attractive motor-mediated forces are sufficient to 
generate motility even in the absence of any special regulation of filament 
polymerization.   
 
Motor-mediated filament interactions 

The parameter  represents the strength of the attractive interaction between 
filaments, that is, the strength with which a motor pulls on a pair of filaments to 
aggregate them.  The parameter  may be related to the number of motors in a myosin 
mini-filament, or the fraction of myosin that is activated by phosphorylation of the 
regulatory light chain.  Changes in these motor properties lead to changes in  in some 
functionally complicated way, which could be explored experimentally.  In principle,  
may depend on the difference in orientations of two filaments that are coupled by the 
same motor.  However, for simplicity in the numerical solutions, we take  to be 
isotropic.  Additionally, in this model, motors do not affect the angles between filaments; 
this is reasonable given the highly entangled nature of the cytoskeleton.  
 
Diffusion 

In general, diffusion for the filaments is negligible because they are anchored to 
the substrate.  Motors, in general, would have larger diffusion constants.  For this reason, 
the parameter D may be made arbitrarily small; for the present numerical work, we have 
taken D to be 0.1 in non-dimensionalized units.  We have also performed simulations of 
cells in which D is taken to be ten times smaller, and this does not have much effect on 
the shapes of the cells or the qualitative nature of the phase diagram.  

 
 
Biological comparisons 
 

There are significant similarities between our model results and experimental 
observations in moving keratocytes, including in features like subcellular myosin 
localization, cell shape and velocity as a function of adhesion, and cell velocity as a 
function of myosin activity. However, living cells become rounder when myosin activity 
is increased while in the model, increasing myosin activity causes the cell to become 
more elongated (2).  One reason for the disagreement between model and experiments 
may be the presence of the nucleus.  In live cells, myosin is distributed at the back of the 
cell in two spots on either side of the nucleus.  Myosin is therefore closer to the sides of 
the cell, and increasing its activity may efficiently decrease the width of the cell.  In the 
model, myosin forms a single peak at the back of the cell, far from the sides.  In this case, 
increasing myosin activity would compress the rear of the cell, but leave the sides of the 
cell mostly unaffected; therefore the cell elongates. Another possible reason for the 
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disagreement between model and experiments is that our model exists in two-dimensions, 
so that area constraints rather than volume constraints are imposed; in live cells, myosin 
contraction may pull cytoskeleton off of the contact surface and thus round up the cell, 
but this is not possible in a two-dimensional model.  Therefore, more detailed 
comparisons to experiments may be difficult due to additional complications of real 
keratocytes.   

 
 
Boundary treatment 
 

The boundary in our model is treated as a movable object with realistic physical 
properties (3).  The boundary interacts with the filament populations through direct 
contact; specifically, we use a “smeared out” potential to simulate the confining effect of 
the cell boundary on filaments, similar to methods in references (4,5).  Using such a 
potential to replace formal boundary conditions greatly facilitates numerical treatment 
without affecting the results. 

 
The model captures the ratchet model of actin pushing the front of cells. In the 

model, all filament-boundary interactions are repulsive, and filaments of any orientation 
near a boundary push normally on the boundary due to pure contact forces. However, 
filaments treadmilling in a direction normal to the boundary will appear near the 
boundary with the greatest density, and due the directionality of treadmilling, push the 
most.  This is captured naturally in the model and most clearly illustrated in the inset 
filament profiles in Figure 4.   
 
 
Boundary treatments in related models 
 

There are other models of cell motility that capture the dynamics of the 
cytoskeleton and cell membrane. A popular set of models determine the time evolution of 
the cellular domain using phenomenological boundary conditions based on filament 
polymerization rates and velocities (6,7).  In contrast, a cellular Pott's Model (8) for 
motility has been described in which cell boundaries are time-evolved in a way that is 
similar to that in our model.   
 

In the Pott's Model, the simulation domain is discretized into many pixels where 
the pixel type depends on whether it is considered to be inside a cellular domain or 
outside of it.  In the Pott’s model approach, an energy functional determined by the 
boundary’s shape, that incorporates the length of the boundary, the area enclosed by it, 
and the presence and orientations of nearby filaments, is minimized to propagate the 
boundary dynamically.  In both models, there is a second order term related to area 
constraint for the overall area of the cell (the term proportional to P in the Helfrich energy 
and the term proportional to  in equation (22) of the Pott’s Model), and a linear term 
proportional to the total perimeter of the cell (the surface tension proportional to  in the 
Helfrich energy and the sum over JCM in the Pott's Model counting the number of pixels 
on the cell boundary).  An additional similarity is that in the description of reference (8), 
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the boundary Hamiltonian includes linear terms corresponding to pushing by barbed ends 
of filaments that occupy pixels within the cell; this is analogous to our filament-boundary 
interactions, where the interaction energy is also linear with the total number of filaments 
near the boundary.  The Helfrich energy includes an additional term energetically 
punishing regions of high boundary curvature that is not present in the model in reference 
(8).   
 
 
Supporting References 
 
1.  Svitkina, T., A. Verkhovsky, K. McQuade, and G. Borisy, 1997. Analysis of the actin-
myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J. 
Cell Biol. 139:397–415.  

2.  Barnhart, E. L., K.-C. Lee, K. Keren, A. Mogilner, and J. A. Theriot, 2011. An 
Adhesion-Dependent Switch between Mechanisms That Determine Motile Cell Shape. 
PLoS Biol. 9:e1001059.  

3.  Seifert, U., 1997. Configurations of fluid membranes and vesicles. Advances in 
Physics 46:13–137.  

4.  Shao, D., W.-J. Rappel, and H. Levine, 2010. Computational Model for �Cell 
Morphodynamics. Phys. Rev. Lett. 105:108104.  

5.  Doubrovinski, K., and K. Kruse, 2011. Cell motility resulting from spontaneous 
polymerization waves. Phys. Rev. Lett. 107:258103.  

6.  Wolgemuth, C. W., J. Stajic, and A. Mogilner, 2011. Redundant Mechanisms for 
Stable Cell Locomotion Revealed by Minimal Models. Biophysical Journal 101:545–
553.  

7.  Herant, M., and M. Dembo, 2010. Form and Function in Cell Motility: �From 
Fibroblasts to Keratocytes. Biophysical Journal 98:1408 – 1417.  

8.  Marée, A. F. M., A. Jilkine, A. Dawes, V. A. Grieneisen, and L. Edelstein-Keshet, 
2006. Polarization and Movement of Keratocytes: A Multiscale Modelling Approach. 
Bulletin of Math. Biol. 68:1169– 1211. 

 

 

 

 


