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1. Statistical Thermodynamical Background 

This section provides background information in a form that supports the present formulation of 

the theory of noncovalent binding. 

The free energy, F, provides a measure of the stability of a system at thermal equilibrium: 

the lower the free energy, the higher the stability.  Microscopically, low stability corresponds to 

a high probability of occupancy, or, equivalently, a large statistical weight, Q, which is also 

known as the partition function. The free energy is related to the partition function by the 

following expression 

 B lnF k T Q= −  (I.1) 

where kB is Boltzmann’s constant and T is absolute temperature. 

The partition function can be easily introduced for a quantized system, where the total 

energy takes discrete values corresponding to specific microstates of the system.  One such 

system is a harmonic oscillator when treated quantum mechanically.  Let the energies of the 

microstates j be Ej, j = 1, 2, …  Then 

 jE

j
Q e β−= ∑  (I.2) 

where β = (kBT)–1.  If the microstates are partitioned into two nonoverlapping macrostates A and 

B, then each macrostate is associated with a partition function, QA or QB, each given by a sum of 

the form of eq I.2 over its respective microstates, such that Q=QA+QB.  The probability, pA or pB, 

of each macrostate is then proportional to the corresponding partition function, so that 

A A /p Q Q=  and B B /p Q Q= . This is why the partition function is referred to as a statistical 

weight.  In the special case where a macrostate consists of a single microstate, say, j, its 

probability is exp(–βEj)/Q. 

Two remarks on eq I.2 are in order.  First, multiplying the expression for Q by an 

arbitrary constant does not alter the relative probabilities of macrostates subsumed by Q, such as 

A and B above. Put differently, multiplying Q by a constant shifts the free energy, F, but has no 

physical consequence because only differences in free energy between states are significant.  
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Second, the form of eq I.2 corresponds to the canonical ensemble, and the resulting free energy 

is therefore the Helmholtz free energy.  Under the condition of constant volume, the Helmholtz 

free energy is the thermodynamic potential and is minimized at thermal equilibrium.  The 

counterpart for constant pressure is the Gibbs free energy, G.  The two are related by G = F + 

PV, where P is pressure and V is volume.  Throughout this section, we assume that the volume of 

the system under consideration is constant and work with the Helmholtz free energy. 

The present formulation of binding thermodynamics relies primarily on classical 

statistical thermodynamics.  Classical statistical thermodynamics treats the energy as varying 

continuously, rather than in a quantized manner, and is an excellent approximation for many 

biomolecular applications, where the spacing of the relevant energy levels is small relative to 

thermal energy.  Consider a system with energy, E(x), that depends on a single, continuous 

coordinate x. At the risk of somewhat oversimplifying the relationship between quantum and 

classical statistical mechanics, one may identify a microstate of energy E(xj) with a narrow range 

of xj values, say between xj and xj + dx.1  Applying eq I.2, we find the partition function of the 

system to be 

 ( )jE x

j
Q e β−= ∑  (I.3a) 

As noted in the previous paragraph, Q may be multiplied by a constant at will, and we now 

multiply Q by a quantity N dx and thereby convert the sum to an integral: 

 ( )E xQ dxe β−= ∫N  (I.3b) 

Here the constant N has units reciprocal to those of x so that this integral form of Q remains 

unitless, but the value of N has no significance for the problems of interest here.  When x is a 

spatial coordinate, then the integral of the Boltzmann factor over x is known as a configurational 

integral. 

Generalizing to a system with more than one coordinate is straightforward.  If the 

coordinates are collectively denoted as x and the energy function is E(x), then 
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 ( )EQ d e β−= ∫ xxN  (I.3c) 

Similarly, although some of the derivations that follow are shown for systems of low 

dimensionality, they generalize readily to systems of arbitrary dimensionality. 

 

1.1 Average Energy and Entropy 

We now derive and elaborate expressions for the mean energy and entropy, <E> and S, for a 

one-dimensional system.  As discussed above, Eq I.3b can be viewed as specifying the statistical 

weight of the microstate located between x and x + dx as N exp[–βE(x)]dx.  The average energy 

is then 

 
( )( )

( ) ( )
E xdxE x e

E dxE x x
Q

β

ρ
−

= =∫ ∫
N

 (I.4) 

in which we have defined the equilibrium probability density in x as 

 
( ) ( )

( )( )
E x E x

E x

e ex
Q dxe

β β

βρ
− −

−= =
∫

N  (I.5) 

The entropy can be obtained from 

 
V

FS
T

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠
 (I.6) 

where the subscript “V” indicates that the derivative with respect to temperature otained at 

constant volume.  Using eq I.1 for F, we find 

 B
B ln

V

k T QS k Q
Q T

∂⎛ ⎞= + ⎜ ⎟∂⎝ ⎠
 

 ( )
B ln ( ) E xk Q dxE x e

TQ
β−= + ∫

N  

 
F E

T
− +

=  (I.7a) 

In this derivation it is assumed that the energy function is temperature-independent; temperature-

dependent energy functions are analyzed in Subsection I.3.  Another useful form of the entropy 

is given by the Gibbs/Shannon expression: 
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 B B( ) ln ( ) lnS k dx x x kρ ρ= − +∫ N  (I.7b) 

To prove the equivalence of eqs I.7a and I.7b, we use the expression of ρ(x) given by the first 

identity of eq I.5, which implies that lnρ(x) = lnN – lnQ – βE(x).  Inserting this result in eq I.7b, 

we have 

 B B( )[ ln ( ) ln ] lnS k dx x Q E x kρ β= − − − + +∫ N N  

Because the integrands –lnQ and lnN are independent of x and ( ) 1ρ =∫ dx x , these two quantities 

emerge from the integral as  -kBlnQ and -kBlnN. The former is equivalent to –F/T and the latter 

cancels the final term in the expression for S.  The integrand –βE(x) integrates to <E>/T via the 

second identity of eq I.4. Thus, this expression for S reduces to the result of eq I.7a. 

For a multidimensional system with coordinates denoted as x, the average energy is 

 ( ) ( )E d E ρ= ∫ x x x  (I.8) 

with the equilibrium probability density in x given by 

 
( )

( )( )
E

E

e
d e

β

βρ
−

−=
∫

x

xx
x

 (I.9) 

For the entropy eq I.7a continues to be valid, but eq I.7b now reads 

 B B( ) ln ( ) lnS k d kρ ρ= − +∫ x x x N  (I.10) 

 

1.2 Correlation and Entropy 

When the coordinates of a system are uncorrelated, the entropy is the sum of contributions from 

individual coordinates: 

 i
i

S S= ∑  (I.11a) 

where 

 B B( ) ln ( ) lni i i iS k dx x x kρ ρ= − +∫ iN  (I.12b) 

We now show that in the general case where coordinates may be correlated, 

 i
i

S S≤ ∑  (I.12c) 
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For simplicity, consider a system with two coordinates, x1 and x2. The entropy is 

 B 1 2 1 2 1 2 B( , ) ln ( , ) lnS k dx dx x x x x kρ ρ= − +∫ N  (I.13) 

The joint probability density, ρ(x1, x2), is related to the marginal probability densities, 

ρ(x1), ρ(x2), through conditional probability densities, ρ(x1|x2) and ρ(x2|x1) via the product law: 

 1 2 2 1 1 1 2 2( , ) ( | ) ( ) ( | ) ( )x x x x x x x xρ ρ ρ ρ ρ= =  (I.14) 

Using the first identity of eq I.14 in eq I.13, and recognizing that, for any value of x1, 

2 2 1( | ) 1dx x xρ =∫ , we rewrite the entropy as 

 B 1 1 1 B 1 1 2 2 1 2 1 B( ) ln ( ) ( ) ( | ) ln ( | ) lnS k dx x x k dx x dx x x x x kρ ρ ρ ρ ρ= − − +∫ ∫ ∫ N  (I.15) 

The first term is S1. The inequality of eq I.12c can be obtained as a result of Gibbs’ inequality, 

which reads 

 ( ) ln ( ) ( ) ln '( )dx x x dx x xρ ρ ρ ρ− ≤ −∫ ∫  (I.16) 

with the equality holding only if ρ(x) = ρ′(x). Here, we identify x, ρ(x), and ρ′(x) of eq I.16 with 

x2, ρ(x2|x1), and ρ(x2), respectively, resulting in 

 2 2 1 2 1 2 2 1 2( | ) ln ( | ) ( | ) ln ( )dx x x x x dx x x xρ ρ ρ ρ− ≤ −∫ ∫  (I.17) 

The condition for equation is ρ(x2|x1) = ρ(x2), i.e., x1 and x2 are uncorrelated. Applying eq I.17 to 

the second term in eq I.15, we find 

 B 1 1 1 B 1 1 2 2 1 2 B( ) ln ( ) ( ) ( | ) ln ( ) lnρ ρ ρ ρ ρ≤ − − +∫ ∫ ∫S k dx x x k dx x dx x x x k N  (I.18) 

To better connect the second term and S2, we rearrange as follows: 

B 1 1 2 2 1 2 B 1 2 1 2 2 B 2 2 2( ) ( | ) ln ( ) ( , ) ln ( ) ( ) ln ( )k dx x dx x x x k dx dx x x x k dx x xρ ρ ρ ρ ρ ρ ρ− − = −∫ ∫ ∫ ∫=  

Finally eq I.18 becomes 

 B 1 1 1 B 2 2 B 1 2( ) ln ( ) ( ) ln ( ) lnS k dx x x k dx x x k S Sρ ρ ρ ρ≤ − − + +∫ ∫ N =  

where the equality holds when the two coordinates are uncorrelated.  
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1.3 Temperature-Dependent Energy Function 

When the energy function is a potential of mean force, arising from averaging out a subset of the 

coordinates of the system, it becomes temperature-dependent.  Let us illustrate the situation on  

a system with two coordinates, x1 and x2.  The partition function is 

 1 2( , )
1 2

E x xQ dx dx e β−= ∫N  (I.19) 

Integrating over x2 defines a potential of mean force, W1(x1): 

 1 1 1 2( ) ( , )
2 2

W x E x xe dx eβ β− −∫= N  (I.20) 

Here N2 , the part of N associated with variable x2, makes the right-hand side as a whole unitless.  

It is clear that the potential of mean force depends on temperature.  The partition function can 

then be written as 

 1 1( )
1 1

W xQ dx e β−= ∫N  (I.21) 

where N1 = N/N2.  This result is formally identical to eq I.3b, the partition function for a single 

coordinate, except that the energy function is now replaced by the potential of mean force. 

When the energy function is a temperature-dependent potential of mean force, the 

entropy is 

 B
B ln

V

k T QS k Q
Q T

∂⎛ ⎞= + ⎜ ⎟∂⎝ ⎠
 

 1 1 1 1( ) ( )1 1 1 1
B 1 1 1 1

( )ln ( ) W x W x

V

W xk Q dx W x e dx e
TQ Q T

β β− −∂⎛ ⎞= + − ⎜ ⎟∂⎝ ⎠∫ ∫
N N  

 1 1

V

F W W
T T

− + ∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠
 (I.22) 

which generalizes eq I.7a by adding the second term for the temperature-dependence of the 

potential of mean force.  When x1 represents the solute degrees of freedom and x2 the solvent 

degrees of freedom, the two terms of eq I.22 are referred to as the configurational entropy and 

the solvation entropy, respectively.  We now show that these two terms correspond, respectively, 

to the first two terms of eq I.15. 
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The equivalence of the first terms of eqs I.22 and I.15 is demonstrated by the same steps 

used to demonstrate the equivalence of eqs I.7a and I.7b; we find that 

 1
B 1 1 1 B 1( ) ln ( ) ln

F W
k dx x x k

T
ρ ρ

− +
= − +∫ N  (I.23) 

To prove the equivalence of the second terms, we take the temperature derivative of both sides of 

eq I.20: 

 1 1 1 2( ) ( , )1 1 1 1 2
2 1 22 2

B B B

( ) 1 ( ) ( , )W x E x x

V

W x W x e dx E x x e
k T k T T k T

β β− −⎡ ⎤∂⎛ ⎞−⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦
∫

N
=  (I.24) 

Multiplying both sides by βN1/Q and integrating over x1, we find 

 1 1

V

W EW
T T T

∂⎛ ⎞− ⎜ ⎟∂⎝ ⎠
=  (I.25) 

Rearranging leads to 

 11

V

E WW
T T

− +∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

=  (I.26) 

Note that by substituting this result in eq I.22, one recovers the general result of eq I.7a for the 

entropy. 

We now work with the second term of eq I.15.  The marginal probability density ρ(x1) 

can be expressed as (cf. eq I.5) 

 
1 1( )

1
1 2 1 2( ) ( , )

W xex dx x x
Q

β

ρ ρ
−

≡ =∫
N  (I.27) 

and the conditional probability density ρ(x2|x1) can be expressed as 

 
1 2

1 2 1 1

1 1

( , )
[ ( , ) ( )]1 2

2 1 2( )
1 1

( , ) /( | )
( ) /

E x x
E x x W x

W x

x x e Qx x e
x e Q

β
β

β

ρρ
ρ

−
− −

−≡ = =
N

N
N

 (I.28) 

The second term of eq I.15 is now 

 B 1 1 2 2 1 2 1( ) ( | ) ln ( | )k dx x dx x x x xρ ρ ρ− ∫ ∫  

 B 1 2 1 2 1 2 1 1 2( , )[ ( , ) ( ) ln ]k dx dx x x E x x W xρ β β= − − + +∫ N  (I.29) 

 1
B 2ln

E W
k

T
−

= − N  (I.30) 
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 1
B 2ln

V

W k
T

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠
N  (I.31) 

Or, equivalently, 

 1
B 1 1 2 2 1 2 1 B 2( ) ( | ) ln ( | ) ln

V

W k dx x dx x x x x k
T

ρ ρ ρ∂⎛ ⎞ = − +⎜ ⎟∂⎝ ⎠ ∫ ∫ N  (I.32) 

Eqs I.23 and I.32 complete the proof that the two terms of eq I.22, respectively, correspond with 

the first two terms of eq I.15. 

 

1.4 System of Non-Interacting, Identical Molecules 

We wish to analyze the statistical thermodynamics of an ideal solution containing receptors, 

ligands and their complexes.  McMillan-Mayer solution theory2 shows that such a system has a 

close analogy to an ideal gas of these solutes, where their interaction potentials are replaced by 

solvent-modified potentials of mean force.  We therefore consider a system Nα non-interacting 

and identical molecules of type α, each with a classical molecular partition function Qα 

(Subsection 2.3.2 of the main text). The ideality of the solution (or gas) means that the molecules 

are non-interacting, so the total energy is additive, the motions of the various molecules are not 

correlated with each other, and the partition function of the system appears to be Qα
Nα.  However, 

the indistinguishability of the molecules means that swapping of their coordinates does not make 

a new contribution to the statistical weight of the system.  The overcounting is determined by 

recognizing that each unique set of coordinates can be assigned to the molecules in Nα! ways.  

The partition function of the system, after accounting for the indistinguishability of the 

molecules, is thus 

 
!

NQQ
N

α
α

α

=  (I.33) 

Correspondingly the free energy is 

 B Bln ln Q eF k T Q N k T
N

α
α

α

= − ≈ −  (I.34) 
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where we have used Stirling’s approximation lnN! ≈ NlnN – N, and e is the base of the natural 

logarithm. Applying eq I.6, the entropy is found to be 

 B B
lnln

V

Q e QS N k N k T
N T

α α
α α

α

∂⎛ ⎞= + ⎜ ⎟∂⎝ ⎠
 (I.35) 

If we now consider adding more types of molecule to the system, the assumption of non-

interaction means that each additional type makes its own additive contribution to F and S. 

 

2. Binding at Constant Pressure 

2.1 General Expressions 

We now address the binding of two molecules, A and B, to form a complex C under the typical 

experimental condition of constant pressure.  In the reactant state, our system has Nα α 

molecules, α = A, B, and C, at temperature T and pressure P, and the volume of the system is V.  

After binding, the numbers of A and B molecules are each decreased by 1 and the number of C 

molecules is increased by 1; the temperature remains at T.  The pressure remains at P, but the 

volume will likely be slightly different from the initial value V, due to the difference between the 

partial molar volumes of the reactants and product molecules. 

Under constant pressure, the Gibbs free energy is the thermodynamic potential.  Here we 

are interested in the change in Gibbs free energy upon binding. In general a change in Gibbs free 

energy is given by 

 dG SdT VdP dNα α
α

μ= − + + ∑  (II.1) 

where μα is the chemical potential of molecule α.  Upon binding under constant pressure, dP = 0, 

dT = 0, dNC = –dNA = –dNB = 1.  Therefore the change in Gibbs free energy upon binding under 

constant pressure is 

 b C A BG μ μ μΔ = − −  (II.2) 
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We now present explicit results for the binding free energy and its entropy and enthalpy 

components.  Our starting point is the expression for the Helmholtz free energy given by eq I.34, 

here generalized to three species of solute molecules: 

 B ln Q eF N k T
N

α
α

α α

= −∑  (II.3) 

The chemical potential of molecule α is 

 
'

B
, ,

ln
T V N

QF k T
N N

α α

α
α

α α

μ
≠

⎛ ⎞∂
= = −⎜ ⎟∂⎝ ⎠

 (II.4a) 

The partition function of each molecule is proportional to the volume (e.g., see eq 2.23 of the 

main text) so we may write 

 B B
/ /ln ln
/

Q V Q Vk T k T
N V C

α α
α

α α

μ
⎛ ⎞ ⎛ ⎞

= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (II.4b) 

to remove the volume dependence from the partition function; Cα is the concentration of 

molecule α.  Using eq II.4b in eq II.2, we find 

 CA B
b B

C A B

/ln
( / )( / )

Q VC CG k T
C Q V Q V

⎡ ⎤
Δ = − ⎢ ⎥

⎣ ⎦
 

 A B
B a

C

ln C Ck T K
C

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (II.5) 

where the binding constant Ka is given by eq 3.2 of the main text. 

The entropy component of the binding free energy is given by 

 b
b

,P N

GS
T

α

∂Δ⎛ ⎞Δ = −⎜ ⎟∂⎝ ⎠
 (II.6) 

where the subscripted quantities are held constant when calculating the derivative with respect to 

temperature.  Note that, under the condition of constant P and Nα, the concentrations can vary 

with temperature due to thermal expansion, so Cα should, in general, be viewed as a function of 

not only pressure but also temperature.  With this in mind, and using eq II.5, we find 

 A B a a A B
b B B B

C C ,

lnln ln
P P N

C C K K C CS k k T k T
C T T C

α

⎛ ⎞∂ ∂⎛ ⎞Δ = + + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (II.7) 
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where the last term results from the temperature dependence of the concentrations.  The 

combination of the three concentrations in this term contributes a single volume factor, so it can 

be rewritten as 

 A B B
B B B

C ,

1ln ln
P PP N

C C k T Vk T k T k T
T C T V V T

α

κ
⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= = − ≡ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

 (II.8) 

where κ is the thermal expansion if the solution.  The thermal expansion of aqueous solutions is 

very small around room temperature.  Pure water has κ ~ 2.6 × 10–4 K–1 at 25 °C, which would 

lead to a value of –0.08kB for the last term of eq II.7, and the result for a dilute solution will not 

be very different.  Therefore, for binding in solution, the last term of eq II.7 may be neglected. 

Substituting the standard concentration C° for CA, CB and CC, then, yields eq 4.1 in the main text 

for the standard entropy change on binding.  On the other hand, if the solute molecules had been 

treated as ideal gases, as done in the rigid rotor, harmonic oscillator (RRHO) approximation, 

rather than as solutes in a nearly incompressible solvent, then κ = 1/T and the last term would 

equal –kB.  This neglected term will surface again in an explicit calculation of binding entropy 

given below (eq II.13). 

The binding enthalpy can be obtained as 

 b b bH G T SΔ = Δ − Δ  (II.9a) 

Upon neglecting the last term of eq II.7, we find 

 2 a
b B

ln

P

KH k T
T

∂⎛ ⎞Δ = − ⎜ ⎟∂⎝ ⎠
 (II.9b) 

 

2.2 Example: Formation of a Diatomic Complex with a Harmonic Bond 

We now calculate the binding entropy for the model in Subsection 3.1 of the main text, in which 

two atoms bind to form a diatomic complex held together by a harmonic potential E(r) (eq 3.5) 

with equilibrium distance r0 and force constant k. 
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First we present the result from the RRHO approximateion, RRHOSΔ ๐ . The general 

treatment in Subsection 5.3.2 of the main text (eqs 5.3 and 5.4) is specialized to the binding of a 

monatomic receptor with a monatomic ligand, which is also discussed briefly in Subsection 3.1.1 
of the main text. RRHOSΔ ๐  consists of three contributions: RRHO, tSΔ ๐ , RRHO, rSΔ , and RRHO, vibSΔ  for 

the changes in translational, rotational, and vibrational entropies upon binding.  The translational 

contribution is 

 

53
22

o
RRHO, t B 2

2ln m eS k
h C

π
β

⎡ ⎤
⎛ ⎞⎢ ⎥Δ = − ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

°
 (II.10a) 

where m is the reduced mass of the diatomic complex.  The unbound atoms have no rotational 

degrees of freedom and the diatomic complex has two rotational degrees of freedom. The change 

in rotational entropy is 

 
2

RRHO, r B 2

8ln eS k
h

π
β

⎛ ⎞
Δ = ⎜ ⎟

⎝ ⎠

I  (II.10b) 

where I = mr0
2 is the moment of inertia of the diatomic complex.  Only the diatomic complex has 

a single vibrational degree of freedom.  The change in rotational entropy is 

 
1

2 2
RRHO, vib B(quant) 1 ln 1

2

h hhS k e e
β ω β ω

π πβ ω
π

−
−⎡ ⎤⎛ ⎞ ⎛ ⎞

⎢ ⎥Δ = − − −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (II.10c) 

where ω =(k/m)1/2 is the angular frequency of vibration, and “(quant)” indicates that this is a 

quantum statistical mechanical result.  The classical limit of this result can be obtained by taking 

the β → 0 limit, leading to 

 RRHO, vib B(class) 1 ln
2
hS k β ω
π

⎡ ⎤⎛ ⎞Δ = − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (II.10d) 

Adding up the results of eqs II.10a, II.10b, and II.10b, we find the classical limit of the RRHO 

binding entropy is 

 

1
22o B

RRHO B 0
2(class) ln 4

2
kS k r C

k
ππ

β

⎡ ⎤
⎛ ⎞⎢ ⎥Δ = −⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

°  (II.11) 
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The final result is independent of both mass and Planck’s constant. 

Next we calculate the binding entropy, bSΔ ๐ , by the flexible molecule (FM) approach.  

The expression for bSΔ ๐  is given by eq 4.4b of the main text, in which the potential of mean force 

W(r) is the harmonic energy function E(r).  Because of the temperature independence of E(r), 

bSΔ ๐  is identical to tSΔ ๐  of eq 4.5, which is our definition of the change in translational entropy 

upon binding.  Specializing that equation to the present case, we find 

 
2 ( )

t B a 2 ( )

4 ( )1ln( )
4

E r

E r

dr r E r e
S k C K

T dr r e

β

β

π
π

−

−Δ = + ∫
∫

๐ °  (II.12a) 

in which we have written, ( )E r , the average of E(r) in the bound state, in its explicit form in 

the second term.  As noted in Subsection 3.1.2, when the force constant k is great enough that r 

deviates minimally from r0, the exact result for Ka in eq 3.9 is well approximated by the 
expression of eq 3.7.  A similar approximation allows ( )E r , appearing in the second term of 

eq II.12a, to be written as E0 + kBT/2.  Consequently we have 

 

1
22 B

t B 0
2ln 4

2
kS k r C

k
ππ

β

⎡ ⎤
⎛ ⎞⎢ ⎥Δ = +⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

๐ °  (II.12b) 

These expressions for ( )E r  and tSΔ ๐  closely resemble those for a one-dimensional harmonic 

potential (eq 2.9 of the main text). 

Comparing eqs II.11 and II.12b, we find that the results for the binding entropy obtained 

from the two approaches differ by kB: 

 o o
RRHO t BS S kΔ = Δ −  (II.13) 

This discrepancy can be traced to the last term of eq II.7, which, as noted above, has been 

neglected in deriving the expression for bSΔ ๐ , and hence eq II.12a for tSΔ ๐ . 

The calculation for tSΔ ๐  presented here also provides an opportunity to illustrate Vb, the 

effective volume accessible to the ligand in the bound state for the case of a harmonic, rather 

than a square-well, potential.  Vb is obtained by identifying tSΔ ๐  with kBln(VbC°).  Neglecting the 

second, small term of eq  II.12b for tSΔ ๐ , we find 
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ππ

β
⎛ ⎞
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⎝ ⎠

 (II.14a) 

This expression appears as the pre-exponential factor of eq 3.7 of the main text.  To gain some 

physical insight into this result, we note that the (βk)–1/2 gives the root-mean-square deviation <(r 

– r0)2>1/2.  Therefore 

 
1

2 2 2
b 0 04 2 ( )V r r rπ π= −  (II.14b) 

As expected, Vb is determined by the extent of motions within the binding site, as measured by 

<(r – r0)2>1/2. 

 

3. General Expression for Ka 

Here we derive the expression for the binding constant given in eq 3.15 of the main text, for the 

case where both binding partners, A and B, are polyatomic molecules.  Following eq 3.10a of the 

main text, the partition functions of these molecules can be written as 

 ( )28 ( ) EQ V d J α αβ
α α α απ −= ∫ xx x  (III.1) 

where α = A or B.  The partition function of the complex is given by a similar expression, where 

the internal coordinates of C consist of xA, xB, and six additional coordinates, r and ω, that 

specify, respectively, the relative separation and orientation of the two molecules within the 

complex.  That is, xC = (xA, xB, r, ω).  For C, the integration of the partition function is restricted 

to the region in configurational space where the complex is deemed formed.  Inserting these 

partition functions into eq 3.2 of the main text, we obtain the binding constant as 
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 (III.2) 

As in eq 3.11 of the main text, the potential energy of the complex can be written as 

 C C A A B B C( ) ( ) ( ) ( )E E E w= + +x x x x  (III.3) 

where the third term represents the energy arising from interactions between the binding 

partners.  Following eq 3.13a of the main text, we define a potential of mean force W(r, ω) by3,4 
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The binding constant can now be written as 

 2 1 ( , )
a b

(8 ) ( ) WK d d J e βπ − −= ∫ rr ωω ω  (III.5) 

which is the desired result. 

One can further integrate over ω to define a potential of mean force in r only: 

 ( ) 2 1 ( , )(8 ) ( )W We d J eβ βπ− − −= ∫r r ωω ω  (III.6) 

Then 

 ( )
a b

WK d e β−= ∫ rr  (III.7) 

For a monatomic ligand, ( )W r  is simply the potential of mean force W(r), and eq III.7 reduces 

to eq 3.14a of the main text. 

 

4. Effective Concentration in Intramolecular Binding 

Here we present a complete formulation of the intramolecular binding constant Ki and then 

describe the approximation required for deriving the effective concentration.  As in the case of 

intermolecular binding, we assume that there are no new covalent bonds created upon 

intramolecular receptor-ligand binding.  The whole molecule consists of the receptor, the ligand, 

and the linker joining them.  The internal coordinates of the whole molecule are fully specified 

by xA, xB, ω, and xL, where xA  represents the internal coordinates of the receptor which is, for 

convenience, considered to be fixed translationally and rotationally in the lab frame of reference; 

xB represents the internal coordinates of the ligand; ω represents the external rotation of the 

ligand around its own origin of coordinates; and xL represents the position, orientation, and 

conformation of the linker (Figure 4A), and therefore implicitly specifies a vector r from the 

receptor to the ligand and which specifies the location of the ligand relative to the receptor. A 

basic premise of this derivation is that the bound state, in both intermolecular binding and 

intramolecular binding, occupies the same region in the space of receptor-ligand relative 
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translation (r) and rotation (ω).  The intramolecular binding constant is given by the ratio of the 

partition functions in the bound and unbound states.  If the potential energy of the whole 

molecule is E(xA, xB, ω, xL), then 
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 (IV.1) 

where the subscripts “b” and “u” signify that the integrations are restricted to the bound and 

unbound states, respectively. 

The potential energy of the whole molecule can be written as (cf. eq III.3) 

 A B L C A B L L A B L( , , , ) ( , , , ) ( ) ( , , , )E E E w= + +x x x x x r x x x xω ω ω  (IV.2) 

where EL is the potential energy of the linker and w is the linker’s noncovalent interaction energy 

with the receptor and ligand.  The approximation that allows Ki to be related to Ka is the neglect 

of the interaction energy w.  Then 
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where we have replaced EC in the unbound state by EA + EB on the consideration that the ligand 

and receptor have no direct interaction in this state.  To proceed further, we make the 

approximation that the linker does not influence the rotation of the ligand, ω, and introduce the 

intrinsic probability density for the linker’s end-to-end vector (r), 
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Introducing ( ),d δ −∫ r' r' r  which equals 1, into the numerator of eq IV.3, and using the above 

expression to replace the integration over xL, we find 
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 2 1 ( , )
Lb

(8 ) ( ) ( )Wd d J e βπ ρ− −= ∫ rr rωω ω  (IV.5b) 
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We now consider two extreme situations.  In the first, the linker is fully flexible.  The 

ligand is held in the binding site by the potential of mean force W(r, ω).  The integration of eq 

IV.5b is then dominated by a small region around the energy minimum at (r0, ω0), and ρL(r) can 

be replaced by its value at r0. Hence 

 2 1 ( , )
i L 0 a L 0b

(8 ) ( ) ( ) ( )WK d d J e Kβπ ρ ρ− −⎡ ⎤= =⎣ ⎦∫ rr r rωω ω  (IV.5c) 

which is eq 6.2b of the main text.  This probability density ρL(r) can be obtained by modeling 

the linker as a polymer chain.5,6 In the opposite extreme, the linker is rigid.  Such a linker can be 

modeled by a delta-function probability density:7 

 L 0( ) ( )ρ δ= −r r r  

where r0 is the end vector of the rigid linker relative to the receptor.  The unbound state in this 

case corresponds to a fictitious situation where the ligand is held at r0 but does not experience an 

interaction with the receptor.  Then 

 0 0( , ) ( )2 1
i (8 ) ( ) W WK d J e eβ βπ − −−= =∫ r rωω ω  (IV.5d) 

It should be recalled that, for a monatomic ligand, 0( )W r  is simply the potential of mean force 

W(r0). 
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