Generating Singlet Oxygen Bubbles: A New Mechanism for Gas-Liquid Oxidations in Water

Dorota Bartusik,¹ David Aebisher,¹ BiBi Ghafari,² Alan M. Lyons^{*,2} and Alexander Greer^{*,1}

¹Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210 ²Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314 E-mail: alan.lyons@csi.cuny.edu; agreer@brooklyn.cuny.edu

Supporting Information

Table of Contents

Page

1	Table of Contents
1	Table of Contents

- 2 Figure S1: Fluorescence spectrum of a thin sheet of Pc 1.
- 3 Figure S2: UV-VIS spectrum of the ${}^{1}O_{2}$ sensitizing glass Pc 1.
- 4 Figure S3: Hybrid ${}^{1}O_{2}$ sensitizing (phthalocyanine entrapped sol-gel) glass.
- 5 Figure S4: Loading of sensitizer particles into the chamber of a device.
- 6 Figure S5: Images of the SMA receptacle with oxygen inlet.
- 7 Figure S6: Photomicrographs of the polyethylene membranes.
- 8 Figure S7: Luminescence of singlet oxygen in D_2O and in air.
- 9 Figure S8: Image of the loss of singlet oxygen in bubbles that reach the air interface.
- 10 Table S1: Device dimensions and membrane characteristics.
- 11 Table S2: Calculated particle surface area based on loading.

Figure S1. Fluorescence spectrum ($\lambda_{ex} = 250$ up to 400 nm) of a sheet of Pc 1, ~0.5 mm in thickness.

Figure S2. UV-VIS spectrum of the ${}^{1}O_{2}$ sensitizing glass Pc 1. The red arrow shows where the 669 nm laser line of the diode laser overlaps the Q-band.

Pc 1 particles sized ~150 µm

Figure S3. Schematic of the synthetic approach used as well as photos showing the hybrid ${}^{1}O_{2}$ sensitizing (phthalocyanine entrapped sol-gel) glass, and the fine powder achieved after grinding.

Figure S4. These photos show (A) the loading of ~150 μ m Pc **1** sensitizer particles into the chamber of device 2 via a spatula, and (B) the three devices (without optical fiber) placed above a centimeter-scaled ruler.

Figure S5. Images of the SMA receptacle with oxygen inlet.

Figure S6. Photomicrographs of the polyethylene membranes: (A) micrometer calibration (1 unit =0.007368 mm =7.37 μ m); (B) 0.05 μ m pore size membrane; (C) 0.22 μ m pore size membrane; and (D) 0.44 μ m pore size membrane. The individual pores were too small to resolve and see under the low-power magnification.

Figure S7. Luminescence from singlet oxygen at 1270 nm were observed with 355-nm pulsed irradiation through 35 mg of sensitizer particles loaded into device 1 with flowing oxygen (60 mL/min). First-order decay kinetics were observed and fitted to the equation [luminescence₁₂₇₀ (t) = $A \times (\exp^{-(t/\tau)}]$, where $1/k_{obs} = \tau({}^{1}O_{2})$ lifetime. The lifetime of singlet oxygen in (a) 3 mL D₂O was 60±3 µs (average of 6 experiments), and (b) in air was ~1.1 ms (estimated from 3 experiments).

Figure S8. Loss of singlet oxygen in bubbles that reach the air interface from device 2 loaded with 35 mg sensitizer particles. The O_2 flow rate was 60 mL/min.

Device	Chamber	Chamber	Membrane	Membrane	Capillary
	Diameter	Height	Pore Size	Thickness	Pressure (PSI)
	(mm)	(mm)	(µm)	(µm)	
1	5.7	5.3	0.05	70	108
2	5.7	5.3	0.22	90	25
3	10	10	0.44	150	12

Table S1. Device Dimensions and Membrane Characteristics

Quantity of Pc 1	Total surface area of	Total number of	
loaded into devices	sensitizer particles 1	sensitizer particles	
(mg)	(mm²/mg)	1	
0	0	0	
1	30	420	
3	90	1260	
10	300	4200	
35	1050	14,700	
50	1500	21,000	
75	2250	31,500	

 Table S2. Calculated Particle Surface Area Based on Loading

^a 150±30 µm sensitizer particles.