
1

Supplementary Material:
The Probability of a Gene Tree Topology Within a Phylogenetic Network
With Applications to Hybridization Detection
Yun Yu1, James H. Degnan2, Luay Nakhleh1,∗

1 Computer Science, Rice University, Houston, Texas, USA
2 Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
∗ E-mail: nakhleh@cs.rice.edu

Contents
1 Phylogenetic networks 2

2 From a phylogenetic network to a Multilabeled (MUL) tree 3

3 Coalescent histories on phylogenetic networks and their MUL trees 5

4 The yeast data set 7

5 Simulating gene genealogies 10

6 Accuracy of inference 12

7 Identifiability 17

8 References 23



2

1 Phylogenetic networks
The term phylogenetic network has grown to become an umbrella term that encompasses any non-treelike model
[1]; therefore, it is important to explicitly describe the phylogenetic network model used. Since we are concerned
with hybridization and deep coalescence, we use the evolutionary, or hybridization, phylogenetic network model
given in [2], which we now briefly review.

Definition 1 A phylogenetic X -network, or X -network for short, W is an ordered pair (G, `), where G = (V,E)
is a directed, acyclic graph (DAG) with V = {r} ∪ VL ∪ VT ∪ VN , where

• indeg(r) = 0 (r is the root of W );

• ∀v ∈ VL, indeg(v) = 1 and outdeg(v) = 0 (VL are the external tree nodes, or leaves, of W );

• ∀v ∈ VT , indeg(v) = 1 and outdeg(v) ≥ 2 (VT are the internal tree nodes of W ); and,

• ∀v ∈ VN , indeg(v) = 2 and outdeg(v) = 1 (VN are the reticulation nodes of W ),

E ⊆ V ×V are the network’s edges (we distinguish between reticulation edges, edges whose heads are reticulation
nodes, and tree edges, edges whose heads are tree nodes), and ` : VL → X is the leaf-labeling function, which is
a bijection from VL to X .

We use V (W ) and E(W ) to denote the set of nodes and edges of phylogenetic network W . Fig. S1 shows an
example of a phylogenetic network based on Definition 1.
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Fig. S1. A phylogenetic network W , and its associated branch lengths and hybridization probabilities. The
network has 9 nodes (solid circles), which include the root r, one reticulation node, h, 4 leaves (bijectively
labeled by the set X = {A,B,C,D}), and 3 internal tree nodes. Shown also are the branch lengths (red) and
hybridization probabilities (blue).

In addition to the topology of a phylogenetic network W , we associate with each branch b = (u, v) in the
network a branch length, denoted by λb (equivalently, λ(u,v)), which reflects the time in coalescent units between
the two endpoints of the branch. To describe all branch lengths of a phylogenetic network, a vector λ with one
entry per branch is provided. In addition, for each reticulation node h, with two parent edges b1 = (u, h) and
b2 = (v, h), we associate hybridization probabilities γb1 (equivalently, γ(u,h)) and γb2 (equivalently, γ(v,h)), such
that γb1 + γb2 = 1. The parameter γ(x,h) is taken to denote the proportion of alleles in the population h that are
inherited from population x. To describe all hybridization probabilities associated with a phylogenetic network, a
vector γ with one entry per reticulation edge is provided.
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2 From a phylogenetic network to a Multilabeled (MUL) tree
Central to our formulation/algorithm for computing the probability of a gene tree given a phylogenetic network is
converting the phylogenetic network to a multilabeled tree, or MUL tree [3]. A MUL tree is not a true phylogenetic
tree, since its leaves are not uniquely labeled by a taxa set. However, we show in this work that the MUL tree rep-
resentation of a phylogenetic network allows us to extend coalescent-based calculations of gene tree probabilities
in a straightforward manner to cases where hybridization may be involved.

It is straightforward to convert a phylogenetic network into its corresponding MUL tree. The main idea is to
process the phylogenetic network in a bottom-up fashion, traversing its nodes from the leaves towards the root.
Every time a reticulation node h is encountered, two copies of the tree rooted at its child w are created, and each
of h’s two parents points to exactly one of the two copies. As the traversal operates in a bottom-up fashion, it
is guaranteed that when a reticulation node is encountered, there are no reticulation nodes remaining “under” it
(they would have been processed already). In addition to the topology, the conversion maps the branch lengths
and hybridization probabilities to the appropriate branches as well. Finally, as a single edge in a phylogenetic
networkW may give rise to multiple edges in the MUL tree T , Algorithm NetworkToMULTree returns a mapping
φ : E(T )→ E(W ) that keeps track of this information.

The MUL tree T that corresponds to the phylogenetic networkW of Fig. S1 is given in Fig. S2. In this example,
we have the following values of φ : E(T )→ E(W ):

• φ((u, i)) = (u, i), φ((v, l)) = (v, l), φ((r, u)) = (r, u), and φ((r, v)) = (r, v).

• φ((u,w)) = φ((v, w′)) = (h,w).

• φ((w, j1)) = φ((w′, j2)) = (w, j).

• φ((w, k1)) = φ((w′, k2)) = (w, k).
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Fig. S2. The MUL tree, branch lengths (red), and hybridization probabilities (blue), that correspond to the
phylogenetic network of Fig. S1, as generated by Algorithm 1. In the MUL tree, each branch has a hybridization
probability; values not shown here equal 1.

The conversion procedure is given formally in Algorithm 1 (NetworkToMULTree).
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Algorithm 1: NetworkToMULTree.
Input: Phylogenetic X -network W ; branch lengths λ; hybridization probabilities γ.
Output: MUL tree T ; branch lengths λ′; hybridization probabilities γ′; edge mapping φ : E(T )→ E(W ).
T ←W and set φ(e) = e′ where e ∈ E(T ) is a copy of e′ ∈ E(W );
λ′←λ;
foreach b ∈ E(T ) do

γ′
b ← 1;

while traversing the nodes of T bottom-up do
if node h has two parents, u and v, and child w then

Create a copy of Tw whose root is new node w′ and set φ(e) = e′ where e ∈ E(Tw′) is a copy of e′ ∈ E(Tw);
Add to T two new edges e1 = (u,w) and e2 = (v, w′);
φe1 ← (h,w); φe2 ← (h,w);
λ′

(u,w) ← λ(u,h) + λ(h,w); λ′
(v,w) ← λ(v,h) + λ(h,w);

γ′
(u,w) ← γ(u,h); γ′

(u,w) ← γ(u,h);
Delete from T node h and edges (u, h), (v, h), and (h,w);
Delete γ′

(u,h), γ
′
(v,h), λ

′
(u,h), λ

′
(v,h), λ

′
(h,w), φ(u,h), φ(v,h), φ(h,w);

return T ;

It is important to note that it is possible that two different phylogenetic network topologies give rise to the same
MUL-tree topology, and under certain settings of branch lengths and hybridization probabilities, the networks may
also give rise to identical MUL-tree topologies and branch parameters (which, by definition, would result in non-
identifiability of the topology and/or parameter values). However, if the parameter values differ between the two
networks, they may still be identifiable, even though the two networks give rise to the same MUL-tree topology.
This issue is illustrated in Fig. S3.
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Fig. S3. Two phylogenetic networks N1 and N2 that give rise to the same MUL-tree toplogy.

The phylogenetic network W1 involves a hybridization between A and B, a hybridization between C and D,
and a hybridization of the two hybrids. The phylogenetic network W2 involves a hybridization between A and C,
a hybridization between B and D, and a hybridization between the two hybrids. When the MUL-tree T is obtained
from W1, then we have

• h1 = αγ, h2 = (1− α)γ, h3 = β(1− γ), and h4 = (1− β)(1− γ).

When the MUL-tree T is obtained from W2, then we have

• h1 = αγ, h2 = β(1− γ), h3 = (1− α)γ, and h4 = (1− β)(1− γ).

Further, different lengths of the branches of the two networks would result in different branch lengths of the MUL-
trees produced from each of the networks.
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3 Coalescent histories on phylogenetic networks and their MUL trees
The notion of coalescent histories is central to computing gene tree probabilities [4]. Let V (t) denote the set of
nodes in a tree t, and let tu denote the subtree of tree t that is rooted at node u. Given gene tree g and species tree
T , a coalescent history is a function h : V (g)→ V (T ) such that the following conditions hold:

• if w is a leaf in g, then h(w) is the leaf in T with the same label (in the case of multiple alleles, h(w) is the
leaf in T with the label of the species from which the allele labeling leaf w in g is sampled); and,

• if w is a node in gv , then h(w) is a node in Th(v).

Given a species tree T and a gene tree g, HT (g) denotes the set of all coalescent histories; mathematical properties
and algorithms for computing HT (g) have been given [5, 6].

A similar notion of coalescent histories can be defined on phylogenetic networks. Let W be a phylogenetic
network and u be a node in V (W ). We denote by Wu the set of nodes in W that are under node u (that is, the set
of nodes that are reachable from the root of W via at least one path that goes through node u). We can now define
a coalescent history of a gene tree g and a species (phylogenetic) network W as a function h : V (g) → V (W )
such that the following conditions hold:

• if w is a leaf in g, then h(w) is the leaf in W with the same label (the same as above in the case of multiple
alleles); and,

• if w is a node in gv , then h(w) is a node in Wh(v).

The algorithm given in [6] for computing the set HT (g) does not apply to the case when the species phylogeny
is a network; that is, for computing HW (g). Further, a phylogenetic network is parameterized with hybridization
probabilities γ that must be associated properly with the coalescent histories to obtain the gene tree probability.

Let T be a MUL tree, g be a gene tree, and f be a valid allele mapping (see main text). Then, a coalescent
history is a function h : V (g)→ V (T ) such that the following conditions hold:

• if w is a leaf in g, then h(w) = f(a) where a is the allele that labels leaf w; and,

• if w is a node in gv , then h(w) is a node in Th(v).

We denote by HT,f (g) the set of all coalescent histories of gene tree g within the branches of MUL tree T given
the valid allele mapping f .

Table S1 lists all the coalescent histories of the gene tree and MUL tree in Fig. S4. The allele mappings are
given in Fig. 1 in the main text. Each row in the table gives the branches of the MUL tree on which the coalescent
events, represented by the gene tree internal nodes x, y and z, occur.
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Fig. S4. (Left) The MUL tree from Fig. S2 with its branches numbered, and (Right) a gene tree with a single
allele sampled from the three species A, C, and D, and two alleles sampled from species B.
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Table S1. The coalescent histories of the gene tree topology and the MUL tree T of Fig. S4 (the valid allele
mappings are given in Fig. 1 in the main text). x, y, and z are the internal nodes of the gene tree, and each number
corresponds to the branch in the MUL tree to which the internal node of the gene tree is mapped.

Allele mapping x y z

f1

3 2 7
3 3 7
3 7 7
7 2 7
7 3 7
7 7 7

f2
3 7 7
7 7 7

f3
3 7 7
7 7 7

f4

3 5 6
3 5 7
3 6 6
3 6 7
3 7 7
7 5 6
7 5 7
7 6 6
7 6 7
7 7 7

f5

7 2 7
7 3 7
7 7 7

f6 7 7 7
f7 7 7 7

f8

7 5 6
7 5 7
7 6 6
7 6 7
7 7 7
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4 The yeast data set
We reanalyzed the yeast data set of [7], which consists of 106 loci, each with a single allele sampled from seven
Saccharomyces species S. cerevisiae (Scer), S. paradoxus (Spar), S. mikatae (Smik), S. kudriavzevii (Skud), S.
bayanus (Sbay), S. castellii (Scas), S. kluyveri (Sklu), and the outgroup fungus Candida albicans (Calb). Given
that there is no indication of coalescences deeper than the MRCA of Scer, Spar, Smik, Skud, and Sbay [8], we
focused only on the evolutionary history of these five species.

For our analysis, we reconstructed gene trees on all loci using Bayesian inference in MrBayes [9] and maximum
parsimony in PAUP* [10].

For Bayesian inference, we used the GTR+Gamma+I model of sequence evolution, as well as the following
setting of MCMC analysis, in MrBayes:

mcmc ngen=1000000 mcmcdiagn=yes relburnin=yes
burninfrac=0.25 stoprule=no stopval=0.01

For maximum parsimony, we used the following commands in PAUP* (when multiple optimal trees were found
for a locus, we used the strict consensus of all of them):

set criterion=parsimony maxtrees=1000 increase=no;
outgroup Calb;
hs;

This step resulted in a set G of 106 gene trees, each of which was restricted to the five taxa under study (notice that
some of the trees are not fully resolved—a reflection of the use of strict consensus on multiple trees). When rec-
onciling a gene tree that is not fully resolved with a species phylogeny, we considered all possible full resolutions
of the gene tree, and considered the resolution that resulted in the best score.

To account for the model parameterization in the likelihood computation, we computed the values of three
information criteria, AIC by [11], AICc by [12] and BIC by [13] , in order to account for the number of
parameters and allow for model selection.

The AIC measure is defined as:
AIC = −2 lnL+ 2k, (1)

where lnL is the log likelihood score, and k is the number of parameters. In our case, the number of param-
eters equals the number of branch lengths being estimated plus the number of hybridization probabilities being
estimated.

The AICc measure corrects for finite sample size, and is defined as:

AICc = −2 lnL+ 2k +
2k(k + 1)

n− k − 1
, (2)

where lnL and k are as in the case of AIC, and n is the number of gene trees used to estimated the likelihood
score.

Finally, the BIC measure is defined as:

BIC = −2 lnL+ k lnn. (3)

The lower the values of these criteria, the better the fit of the model to the data.
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Table S2. The different topologies inferred by MrBayes and/or PAUP* along with their posterior probabilities
(for MrBayes analyses) and frequencies (for PAUP* analyses).

Topology Posterior Frequency

Fu
lly

re
so

lv
ed

(Sbay,(Skud,(Smik,(Scer,Spar)))); 56.511009 57
(Skud,(Sbay,(Smik,(Scer,Spar)))); 12.874292 2
(Smik,((Skud,Sbay),(Scer,Spar))); 11.280507 10
((Skud,Sbay),(Smik,(Scer,Spar))); 9.679648 13
(Scer,(Spar,(Smik,(Skud,Sbay)))); 5.588862 1
((Smik,(Skud,Sbay)),(Scer,Spar)); 5.130724 2
(Spar,(Scer,(Smik,(Skud,Sbay)))); 3.018667
(Sbay,((Smik,Skud),(Scer,Spar))); 0.412878 2
((Sbay,(Smik,(Skud,(Scer,Spar)))); 0.314893 1
(Skud,(Sbay,(Spar,(Scer,Smik)))); 0.241837
(Skud,((Smik,Sbay),(Scer,Spar))); 0.176712
(Skud,(Sbay,(Scer,(Spar,Smik)))); 0.142451
(Sbay,(Skud,(Spar,(Scer,Smik)))); 0.083523
(Sbay,(Skud,(Scer,(Spar,Smik)))); 0.062064
(Smik,(Scer,(Spar,(Skud,Sbay)))); 0.062064 1
((Skud,Sbay),(Spar,(Scer,Smik))); 0.058262
(Skud,(Smik,(Sbay,(Scer,Spar)))); 0.057062
(Scer,(Spar,(Skud,(Smik,Sbay)))); 0.053531
(Spar,((Skud,Sbay),(Scer,Smik))); 0.033732
((Skud,(Smik,Sbay)),(Scer,Spar)); 0.033399
((Skud,Sbay),(Scer,(Spar,Smik))); 0.0292
(Smik,(Spar,(Scer,(Skud,Sbay)))); 0.025603
(Smik,(Sbay,(Skud,(Scer,Spar)))); 0.023735
((Sbay,(Smik,Skud)),(Scer,Spar)); 0.017867
(Smik,(Skud,(Sbay,(Scer,Spar)))); 0.016869
(Scer,(Smik,(Spar,(Skud,Sbay)))); 0.013135
(Spar,(Scer,(Skud,(Smik,Sbay)))); 0.010198
(Spar,(Smik,(Scer,(Skud,Sbay)))); 0.009268
((Smik,Sbay),(Skud,(Scer,Spar))); 0.008334
(Scer,(Spar,(Sbay,(Smik,Skud)))); 0.006803
(Scer,((Spar,Smik),(Skud,Sbay))); 0.004468
((Spar,(Sbay,Skud)),(Scer,Smik)); 0.004334
((Smik,Skud),(Sbay,(Scer,Spar))); 0.002734
(Sbay,(Smik,(Spar,(Scer,Skud)))); 0.0026
(Spar,(Scer,(Sbay,(Skud,Smik)))); 0.002467
(Smik,(Sbay,(Spar,(Scer,Skud)))); 0.001267
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Table S3. Continuation of Table S2.

Fu
lly

re
so

lv
ed

Topology Posterior Frequency
(Skud,(Scer,(Spar,(Smik,Sbay)))); 0.001067
((Spar,Smik),(Scer,(Skud,Sbay))); 9.36E-4
((Smik,Sbay),(Spar,(Scer,Skud))); 6.67E-4
(Smik,(Skud,(Spar,(Scer,Sbay)))); 4.67E-4
(Skud,(Spar,(Scer,(Smik,Sbay)))); 4E-4
(Skud,(Spar,(Sbay,(Scer,Smik)))); 3.33E-4
(Sbay,(Scer,(Spar,(Smik,Skud)))); 2.0E-4
(Smik,(Spar,(Skud,(Scer,Sbay)))); 1.34E-4
((Smik,Skud),(Spar,(Scer,Sbay))); 1.33E-4
(Smik,(Sbay,(Scer,(Spar,Skud)))); 6.7E-5
((Spar,(Smik,Sbay)),(Scer,Skud)); 6.7E-5
(Scer,((Spar,Skud),(Smik,Sbay))); 6.7E-5
(Skud,((Smik,(Scer,Sbay)),Spar)); 6.7E-5
(Sbay,(Smik,(Scer,(Spar,Skud)))); 6.7E-5
((Spar,Sbay),(Skud,(Scer,Smik))); 1.33E-4
(Skud,((Spar,Sbay),(Scer,Smik))); 1.33E-4
(Sbay,(Spar,(Scer,(Smik,Skud)))); 6.7E-5
(Spar,((Smik,Skud),(Scer,Sbay))); 6.7E-5
(Sbay,(Scer,(Skud,(Spar,Smik)))); 6.7E-5

Pa
rt

ia
lly

re
so

lv
ed

((Scer,Spar),Smik,(Skud,Sbay)); 4
(((Scer,Spar),Smik),Skud,Sbay); 3
((Scer,Spar),Smik,Skud,Sbay); 3
(((Scer,Spar),Smik,Skud),Sbay); 2
(Scer,Spar,Smik,(Skud,Sbay)); 2
(((Scer,Spar),Skud,Sbay),Smik); 1
(Scer,Spar,(Smik,(Skud,Sbay))); 1
(Scer,Spar,Smik,Skud,Sbay); 1
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5 Simulating gene genealogies
We used the ms program [14] to generate synthetic data reflecting six different scenarios that combine hybridiza-
tion, divergence, and extinction in various ways; these scenarios are depicted by the phylogenetic networks
in Fig. S5. In our simulations, all horizontal branches in Fig. S5 had length 0. In all cases, we simulated
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Fig. S5. Phylogenetic networks depicting different hybridization/divergence/extinction scenarios. The α and β
parameters denote the proportions (or, probabilities) of alleles that are inherited from the “left” parents of the
reticulation nodes (1−α and 1− β denote the proportions of the alleles that are inherited from the “right” parents
of the nodes).

nloci ∈ {10, 25, 50, 100, 500, 1000, 2000} loci, for two time intervals: interval 1, which corresponds to t1 =
t2 = t3 = t4 = 1.0 coalescent units, and interval 2, which corresponds to t1 = t2 = t3 = t4 = 2.0 coalescent
units. It is important to note that the ms program measures time in 4Ne units, where Ne is the effective population
size. Since a coalescent unit equals 2Ne, we used values 0.5 and 1.0 for times in ms to reflect time intervals 1 and
2, respectively. For each setting of parameters, 100 data sets were generated, and averaged results over the 100
data sets were computed.

For scenario I, gene genealogies were generated using the command:
ms 6 nloci -T -I 6 1 1 1 1 1 1 -es t1 4 β -ej t1 4 3 -ej t1 7 5 -ej t1+t2 3 2 -ej
t1+t2 6 5 -es t1+t2+t3 2 α -ej t1+t2+t3 2 1 -ej t1+t2+t3 8 5 -ej t1+t2+t3+t4
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5 1
for (α, β) ∈ {(0.0, 0.5), (0.3, 0.3), (0.5, 0.0), (0.5, 0.5), (0.5, 1.0)}.

For scenario II, gene genealogies were generated using the command:
ms 3 100 -T -I 3 1 1 1 -es t1 2 β -ej t1 4 3 -es t1+t2 2 α -ej t1+t2 2 1 -ej
t1+t2 5 3 -ej t1+t2+t3 3 1
for (α, β) ∈ {(0.0, 0.5), (0.3, 0.3), (0.5, 0.0), (0.5, 0.5), (0.5, 1.0)}.

For scenario III, gene genealogies were generated using the command:
ms 3 100 -T -I 3 1 1 1 -ej t1 3 2 -es t1+t2 2 α -ej t1+t2+t3 4 2 -ej t1+t2+t3+t4
2 1
for α ∈ {0.0, 0.3, 0.5}.

For scenario IV, gene genealogies were generated using the command:
ms 6 100 -T -I 6 1 1 1 1 1 1 -es t1 2 α -ej t1 2 1 -ej t1 7 3 -ej t1+t2 3 1 -es
t1 5 β -ej t1 5 4 -ej t1 8 6 -ej t1+t2 6 4 -ej t1+t2+t3 1 4
for (α, β) ∈ {(0.0, 0.5), (0.3, 0.3), (0.5, 0.5)}.

For scenario V, gene genealogies were generated using the command:
ms 5 100 -T -I 5 1 1 1 1 1 -es t1 3 β -ej t1 3 2 -ej t1 6 4 -ej t1+t2 4 2 -es
t1+t2+t3 2 α -ej t1+t2+t3 2 1 -ej t1+t2+t3 7 5 -ej t1+t2+t3+t4 5 1
for (α, β) ∈ {(0.0, 0.5), (0.3, 0.3), (0.5, 0.5)}.

For scenario VI, gene genealogies were generated using the command:
ms 4 100 -T -I 4 1 1 1 1 -ej t1 3 2 -es t1+t2 2 α -ej t1+t2 2 1 -ej t1+t2 5 4
-ej t1+t2+t3 1 4
for α ∈ {0.0, 0.3, 0.5}.
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6 Accuracy of inference
For the four scenarios I, IV, V, and VI, the parameters (branch lengths and hybridization probabilities) are iden-
tifiable, and we focused on the accuracy of our method for inferring these parameters from samples of gene trees
that were simulated as discussed in the previous section. That is, given a sample G of gene tree topologies, and a
phylogenetic network topology W , we solved

(λ∗,γ∗)← argmax(λ,γ)PW,λ,γ(G), (4)

where PW,λ,γ(G) is computed based on Equation (2) in the main text.
To infer the hybridization probabilities, we used a grid search of values between 0 and 1 with step length of

0.01. For the branch lengths, we used a grid search of values between 0.1 and 4.0 with step length of 0.1.
The results are shown in Figs. S6—S9 below, and they show very good performance in terms of the accuracy

of the parameter values estimated (as compared to the true values used to generate the data).
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Fig. S6. Estimates of α and β on Scenario I. Rows from top to bottom correspond to true (α, β) values of
(0.0, 0.5), (0.3, 0.3), and (0.5, 1.0), respectively.
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Fig. S7. Estimates of α and β on Scenario IV. Rows from top to bottom correspond to true (α, β) values of
(0.0, 0.5), (0.3, 0.3), and (0.5, 0.5), respectively.
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Fig. S8. Estimates of α, β, t2, t3, and t4 on Scenario V. Rows from top to bottom correspond to true (α, β)
values of (0.0, 0.5), (0.3, 0.3), and (0.5, 0.5), respectively. All plots correspond to true values of
t1 = t2 = t3 = t4 = 1.0.
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Fig. S9. Estimates of α, t2, and t3 on Scenario VI. Rows from top to bottom correspond to true α values of 0.0,
0.3, and 0.5, respectively. All plots correspond to true values of t2 = t3 = 1.0.
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7 Identifiability
The results in Fig. S10 show that if we use the correct (true) values of branch lengths, the hybridization probabilities
are identifiable, and can be estimated with high accuracy as the number of gene trees sampled increases (the
inference procedure is identical to that described in the previous section).

However, if both branch lengths and hybridization probabilities are to be estimated, then issues of unidentifia-
bility arise, as we now show.

Consider the phylogenetic network depicted by Scenario II in Fig. S5. Let λ be the branch lengths vector with
λ1 ≡ t1 = s, λ2 ≡ t2 = p, and λ3 ≡ t3 = q, and let γ be the hybridization probabilities vector with γ1 ≡ α = a
and γ2 ≡ β = b. For a given set G of gene trees, we can obtain other vectors λ′ and γ′ such that

PW,λ,γ(G) = PW,λ′,γ′(G),

by setting the branch lengths arbitrarily to t1 = s′, t2 = p′, t3 = q′, and then setting the hybridization probabilities
as follows

α = − (ep
′ − 1)(eq − 1)abep+q

′

(eq′ − 1)(ep+q − bep+p′+q′ − ep′+q′ + bep′+q′)

and

β = − (ep+q − bep+p′+q′ − ep′+q′ + bep
′+q′)e−(p+q)

ep′ − 1
.

For example, if we use p = 2.0, q = 2.0, a = 0.5, b = 0.5, p′ = 1.7, q′ = 1.7, and then set α =
0.9088149157446168 and β = 0.29101947060819205 (based on the above two formulas), then we obtain the
same probability of any set of gene trees on the phylogenetic network of Scenario II in Fig. S5.

If we sample two alleles per species B (and a single or more alleles per each of the two species A and C), this
lack of identifiability case disappears, since now the number of gene tree topologies is greater than the number of
parameters being estimated. However, in practice, the value of t1 does affect the identifiability of the parameter
values, since the larger it is, the higher the probability that the two alleles sampled from B would coalesce and give
a signal similar to that provided by a single allele. This point is illustrated by the results shown in Fig. S11.

To produce these results, we parameterized the phylogenetic network of Scenario II above with two different
sets of values:

• network1: t2 = t3 = 2.0, α = β = 0.5.

• network2: t2 = t3 = 1.7, α = 0.9088149157446168 and β = 0.29101947060819205.

As discussed above, the probability of each of the three gene tree topologies ((A,B),C), ((A,C),B), and ((B,C),A),
is the same under both networks. However, we now consider the case where two alleles from B are sampled. In
this case, there are 15 different gene tree topologies, which can be grouped into 9 categories, where all gene tree
topologies within the same category have identical probabilities, regardless of the species phylogeny:

1. (B2,((B1,C),A)) and (B1,((B2,C),A))

2. (B1,(C,(B2,A))) and (B2,(C,(B1,A)))

3. (C,(B1,(B2,A))) and (C,(B2,(B1,A)))

4. ((B1,C),(B2,A)) and ((B2,C),(B1,A))

5. (A,(B2,(B1,C))) and (A,(B1,(B2,C)))

6. (A,(C,(B1,B2)))

7. (B1,(B2,(A,C))) and (B2,(B1,(A,C)))



18

8. (C,(A,(B1,B2)))

9. ((B1,B2),(A,C))

The probabilities of each of these 9 gene tree topologies (we choose one gene tree topology per category), as a
function of the value of t1 are shown in Fig. S11.

Clearly, the two networks exhibit the gene tree topologies with different probabilities, when t1 = 0.25. How-
ever, the gap between the probabilities starts closing as the value of t1 increases. When t1 = 4.0 or 8.0, the gaps
are too small to be even observed in any realistic data set (of a few thousand loci). At these branch lengths, the
three topologies with non-negligible probabilities are the ones of categories 6, 8, and 9, which have the two alleles
of B coalesce before either of them coalesce with alleles of the other two species.

In other words, while sampling two alleles from B help ameliorate the identifiability issue, a relatively large
sample (in terms of the number of loci) needs to be used, and the the time between hybridization and the subsequent
divergence must not be too large, for methods to uniquely identify the parameter values.

Furthermore, in the special case where α = 0.0, a phylogenetic tree, with appropriate branch lengths can
be found, to fit the data exactly with the same probability that the phylogenetic network would. Consider the
phylogenetic network N in Fig. S12(left), which reflects Scenario II in Fig. S5 in the case where α = 0.0.

Let λ be the branch lengths vector with λ1 ≡ t1, λ2 ≡ t2, and λ3 ≡ t3, and let γ be the hybridization
probabilities vector with γ1 ≡ β. Now, consider the phylogenetic tree T in Fig. S12(right). Then, if we set t as a
function of β, t2, and t3, as follows:

t(β, t2, t3) = − ln(βet2 + 1− β) + t2 + t3,

then,
PN,λ,γ(G) = PT,t(G)

for any set G of gene trees.
This result shows (as illustrated in Fig. 2 in the main text) that as t2 increases, the value of t becomes unaffected

by t2, and that increasing t proportionally to the increase in t3 always maintains identical probabilities of gene trees
under both phylogenies in Fig. S12, as reflected by the derivatives:

∂t

∂t2
= 1− βet2

βet2 + 1− β
= 1− 1

1 + 1−β
βet2

and
∂t

∂t3
= 1.

Clearly,

lim
t2→∞

∂t

∂t2
= 0.

Let us now consider the phylogenetic network of Scenario III in Fig. S5. In this case, both species involved
in the hybridization are extinct. Surprisingly, the results in Fig. S13 show that if we use the correct (true) values
of branch lengths, the hybridization probability α is identifiable, and can be estimated with high accuracy as the
number of gene trees sampled increases.

However, if both branch lengths and hybridization probability are to be estimated, then issues of non-identifiability
arise, as we now show. Let λ be the branch lengths vector with λ1 ≡ t1 = s, λ2 ≡ t2 = p, and λ3 ≡ t3 = q,
and let γ be the hybridization probabilities vector with γ1 ≡ α = a. For a given set G of gene trees, we can obtain
other vectors λ′ and γ′ such that

PW,λ,γ(G) = PW,λ′,γ′(G),
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by setting the hybridization probability arbitrarily to α = a′ and the branch lengths arbitrarily to t1 = s′, t3 = q′,
and

t2 = − ln
2a′ep+q(a′ − 1) + 2aep+q

′
(1− a) + 2aeq

′
(a− 1) + eq

′

eq′(2a′2 + 1− 2a′)
+ p+ q − q′.

For example, if we use p = 1.0, q = 2.0, a = 0.8, a′ = 0.1, q′ = 1.8, and then set p′ = 1.050498643 (based
on the above formula), then we obtain the same probability of any set of gene trees on the phylogenetic network of
Scenario III in Fig. S5.

Furthermore, a phylogenetic tree, with appropriate branch lengths can be found, to fit the data exactly with the
same probability that the phylogenetic network would. Let λ be the branch lengths vector with λ1 ≡ t1, λ2 ≡ t2,
and λ3 ≡ t3, and let γ be the hybridization probabilities vector with γ1 ≡ α. Now, consider the phylogenetic tree
T in Fig. S12(right). Then, if we set t as a function of α, t2, and t3, as follows:

t(α, t2, t3) = − ln(2α2 + 2αet2 − 2α2et2 + 1− 2α) + t2 + t3 (5)

then,
PN,λ,γ(G) = PT,t(G)

for any set G of gene trees. See Fig. S14 for values of t(α, t2, t3).
This result shows that as t2 increases, the value of t becomes unaffected by t2, and that increasing t proportion-

ally to the increase in t3 always maintains identical probabilities of gene trees under both the phylogenetic network
of Scenario III and the phylogenetic tree in Fig. S12, as reflected by the derivatives:

∂t

∂t2
= 1− 1

1 + 1
et2

(
1

2α(1−α) − 1
)

and
∂t

∂t3
= 1.

Clearly,

lim
t2→∞

∂t

∂t2
= 0.
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Fig. S10. Estimates of α and β on Scenario II. Rows from top to bottom correspond to true (α, β) values of
(0.0, 0.5), (0.3, 0.3), and (0.5, 1.0), respectively.
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Fig. S11. The probabilities of the 9 different gene tree topologies (when a single allele is sampled from each of
two species A and C, and two alleles are sampled from species B) on the two phylogenetic networks obtained by
parameterizing the values of α, β, t2 and t3 differently for Scenario II; see text. Left to right, top to bottom:
t1 = 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0, respectively.
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Fig. S12. (Left) A phylogenetic network with one of the parents of the hybrids being extinct. (Right) A
phylogenetic tree with divergence time t between the two speciation events.
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Fig. S13. Estimates of α on Scenario III. (Left) α = 0.0; (right) α = 0.3.
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Fig. S14. Values of t(α, t2, t3) based on Equation (5); from left to right: α = 0.1, 0.5, and 0.9, respectively.
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