Text S1. Note on model identifiability and on likelihood-based inference.

Conditionally to initial inoculation frequencies, the random vectors $N^p(t_p)$, $p = 1,...,40$ (8) plants x 5 sampling dates) of virus sequences obtained by HTS for each plant *p* at its specific time sampling *t^p* were independent and followed Dirichlet multinomial (DM) distributions. To write down the likelihood of our experiment, we first recall that the probability mass function

of a
$$
DM(\lambda, N_{tot}, \theta)
$$
 distribution has the form
\n
$$
Pr(N^p = y | \lambda, N_{tot}, \theta) = p(y | \lambda, N_{tot}, \theta) = \frac{N_{tot}!\Gamma(\theta)}{\Gamma(N_{tot} + \theta)} \prod_{i=1}^{4} \frac{\Gamma(y_i + \theta \lambda_i)}{y_i! \Gamma(\theta \lambda_i)}
$$

$$
\text{Pr}(N^p = y | \lambda, N_{\text{tot}}, \theta) = p(y | \lambda, N_{\text{tot}}, \theta) = \frac{N_{\text{tot}}! \Gamma(\theta)}{\Gamma(N_{\text{tot}} + \theta)} \prod_{i=1}^4 \frac{\Gamma(y_i + \theta \lambda_i)}{y_i! \Gamma(\theta \lambda_i)}
$$

where
$$
y = (y_1, ..., y_4)
$$
, $\lambda = (\lambda_1, ..., \lambda_4)$, and $N_{tot} = \sum_{i=1}^{4} y_i$.

Next, let us describe the set of parameters underlying our statistical model. Since we had five sampling dates, i.e. $t_p \in \{6, 10, 15, 24, 35\} = \{\tau_s ; s = 1, ..., 5\}$, the set of parameters amounted to $\theta^s = \theta(\tau_s)$, and $\lambda^s = \lambda(\tau_s) = (\lambda_1^s, ..., \lambda_4^s)$, $s = 1, ..., 5$. Therefore, as $\sum_{i=1}^4$. $\sum_{i=1}^{4} \lambda_i^s = 1, \ \ s = 1, ..., 5$ $\lambda_i^* = 1, s = 1, ..., 5,$ the full statistical model included 20 (=5+3x5) parameters. Actually, the 15 free parameters λ_i^s depended themselves on the $22 \left(=\frac{4+12+1+1+4}{\pi}\right)$ unknown parameters r_i $\beta_{i,j}$, $1 \le i \ne j \le 4$, K, μ (recall that $\mu_{i,j} = f_{i,j}(\mu)$) and initial conditions $V_i(0)$ of ODE System 1. Consequently, statistical identification of our statistical model would require at least 7 (=22-15) supplementary constraints on the set of parameters of ODE System 1.

Since we dealt only with virus variant frequencies, the time scale (*i.e.* derivatives could be defined up to a constant), the carrying capacity *K* and the number (or size) of virus variants were immaterial at the level of our observations and therefore could be "normalized". *K* was arbitrarily set to 10⁶ and $\sum_{i=1}^{4}$ $\sum_{i=1}^{4} r_i = 4$. The mutation rate μ was set to 10⁻⁵ and, for the initial

values $V(0) = V_{tot}^{inoc} \times (\lambda_1(0), ..., \lambda_4(0))$ of ODE System 1, V_{tot}^{inoc} was set 100 whereas $(\lambda_1(0),...,\lambda_4(0))$ = (0.32, 0.22, 0.22, 0.24) corresponded to the observed frequencies of virus variants in the inoculum.

Consequently, the remaining set of 20 parameters was now formally identifiable via the

following log-likelihood function (withdrawing the indices of
$$
\theta^s
$$
, r_i , and $\beta_{i,j}$)
\n
$$
l (N^p(t_p), p = 1, ..., 40 | \theta, r, \beta) = \sum_{p=1}^{40} \ln(p(N^p(t_p)) |\lambda(t_p| r, \beta), N^p_{tot}(t_p), \theta(t_p))
$$

Additionally, we investigated the sensitivity of the model best supported by the data (Table 1: $\mathfrak{M}_{D_1 \times C_2}$). We first analysed the model sensitivity to μ and V_{tot}^{inoc} . Sixteen cases, combining four values $(10^{-6}, 10^{-5}, 10^{-4}, 10^{-3})$ of μ with four values $(10, 100, 1000, 10^{4})$ of V_{tot}^{inoc} were analysed by iterating the same statistical procedure. The percentage of variations of the parameter estimates were all < 5%. We next investigated the model sensitivity to a 20% random fluctuation of the initial frequencies of the variants in the inoculum $(\lambda_1(0),...,\lambda_4(0)) = (0.32, 0.22, 0.22, 0.24)$. The percentage of variations of the parameter estimates were also < 5% except for θ^I which reached 15%.