												Chlor	otype									Mito	type			
Popu	lation	Lat. (N)	Long. (E)	Alt. (m)	N	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	$H_{\rm C}$	M1	M2	M3	M4	M5	M6	$H_{\rm M}$
P. sy	vestris var. mongolic	а																								
1#	Honghuaerji IM	48°05′	119°48′	904	12	11	0	0	0	0	0	1	0	0	0	0	0	0	0.17	12	0	0	0	0	0	0
2#	Hailaer IM	48°46′	119°43′	629	12	11	0	0	1	0	0	0	0	0	0	0	0	0	0.17	12	0	0	0	0	0	0
3#	Yakeshi IM	49°05′	121°10′	750	12	12	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0
4#	Eerguna IM	51°17′	120°53′	823	12	10	0	2	0	0	0	0	0	0	0	0	0	0	0.30	12	0	0	0	0	0	0
5	Jinhezhen IM	50°57′	121°51′	760	12	12	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0
6	Aokeliduishan IM	51°48′	121°59′	842	12	12	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0
7	Genhe IM	51°48′	121°24′	742	12	11	1	0	0	0	0	0	0	0	0	0	0	0	0.17	12	0	0	0	0	0	0
8	Manguizhen IM	52°00′	121°46′	642	12	10	2	0	0	0	0	0	0	0	0	0	0	0	0.30	12	0	0	0	0	0	0
9	I-H bianjie	52°22′	122°08′	862	12	12	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0
10	Chaohe HLJ	52°41′	122°39′	526	12	12	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0
11	Mohe HLJ	53°03′	122°22′	496	12	12	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0
12#	Amuerzhen HLJ	52°54′	123°07′	609	12	11	0	0	1	0	0	0	0	0	0	0	0	0	0.17	12	0	0	0	0	0	0
13	Tahe HLJ	52°42′	123°55′	424	12	12	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0
14	Yongqing HLJ	52°26′	125°15′	317	12	12	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0
15#	Xiushan HLJ	52°14′	124°41′	395	12	12	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0
16	Jiagedaqi HLJ	51°37′	123°60′	627	12	11	0	0	1	0	0	0	0	0	0	0	0	0	0.17	12	0	0	0	0	0	0
17	Ganhe IM	50°48′	123°10′	610	12	10	1	1	0	0	0	0	0	0	0	0	0	0	0.32	12	0	0	0	0	0	0
18#	Neijiang HLJ	49°11′	125°32′	368	12	12	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0
19	Heihe HLJ	50°15′	127°30′	133	10	10	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0
20	Jidong HLJ	45°06′	131°15′	180	8	7	0	0	0	0	1	0	0	0	0	0	0	0	0.25	8	0	0	0	0	0	0
21	Muling HLJ	44°54′	130°33′	277	8	7	0	0	0	0	1	0	0	0	0	0	0	0	0.25	8	0	0	0	0	0	0
22	Mulingzhen HLJ	44°31′	130°16′	373	5	5	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	1	0	0.40

Table S1 Locations of populations of four species sampled, number of each chlorotype and mitotype per population, and estimates of gene diversity for chlorotypes (H_c) and mitotypes (H_M) within populations.

22	Chaiha III I	110151	1200/11/	210	0	7	0	0	0	1	0	0	0	0	0	0	0	0	0.25	7	0	0	0	0	1	0.25
25	btotal	44 43	129 41	510	0 255	/ 241	4	2	2	1	0 2	1	0	0	0	0	0	0	0.23	7	0	0	0	1	1	0.23
 	ngifloug				235	241	4			1		1	0	0	0	0	0	0			0	0		1		
Р. ae	Idono III I	159061	1210151	190	0	0	1	0	0	0	0	0	7	0	0	0	0	0	0.25	0	0	0	0	0	0	0
24#	Maline III I	43'00	131113	180	0	0	1	0	0	0	0	0	/	1	1	0	0	0	0.25	0	0	0	0	0	0	0
25	Muling HLJ	44-54	130°33	277	8	1	0	0	0	0	0	0	2	1	1	0	0	0	0.64	0	0	8	0	0	0	0
26	Chailes III I	44-31	130°16	3/3	0	3	0	0	0	0	0	0	8	0	0	0	0	0	0.44	0	0	11	0	0	0	0
27		44-45	129-41	510	8	2	0	0	0	0	0	0	0	0	0	0	0	0	0.43	0	0	8	0	0	0	0
28	Helong JL	42°24′	128°45′	564	16	1	0	0	0	0	0	0	15	0	0	0	0	0	0.13	0	0	16	0	0	0	0
29#	Changbai JL	41°26′	128°11′	1024	8	0	0	0	0	1	0	0	7	0	0	0	0	0	0.25	0	1	0	7	0	0	0.25
30	Linjiang JL	41°48′	126°54′	349	7	0	0	0	0	0	0	0	6	1	0	0	0	0	0.29	0	7	0	0	0	0	0
31#	Tonghua JL	41°45′	125°59′	392	7	0	0	0	0	0	0	0	6	1	0	0	0	0	0.29	0	4	0	3	0	0	0.57
32	Huanren LN	41°14′	125°23′	400	8	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	8	0	0	0	0	0
33#	Huanren LN	41°22′	124°56′	512	8	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	8	0	0	0	0	0
34	Benxi LN	41°16′	123°47′	508	6	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	6	0	0	0	0	0
35#	Fengcheng LN	40°25′	124°04′	176	8	0	0	0	0	0	0	0	7	0	0	1	0	0	0.25	0	8	0	0	0	0	0
36	Dandong LN	40°08′	124°22′	40	5	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	5	0	0	0	0	0
37	Zhuanghe LN	39°41′	122°57′	15	8	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	8	0	0	0	0	0
38	Dalian LN	38°47′	121°09′	29	8	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	8	0	0	0	0	0
39#	Yantai SD	37°17′	121°44′	104	11	0	0	0	0	0	0	0	9	2	0	0	0	0	0.33	0	11	0	0	0	0	0
40	Qingdao SD	36°07′	120°37′	16	5	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	5	0	0	0	0	0
41#	Lianyungang JS	34°38′	119°15′	126	8	0	0	0	0	0	0	0	7	1	0	0	0	0	0.25	0	8	0	0	0	0	0
Su	btotal				148	7	1	0	0	1	0	0	131	6	1	1	0	0		0	87	51	10	0	0	
P. fu	nebris																									
42#	Erdao JL	42°26′	128°07′	703	22	17	0	0	0	0	0	0	5	0	0	0	0	0	0.37	0	0	0	22	0	0	0
43#	Baihe JL	42°27′	128°08′	693	15	5	2	0	2	0	0	0	4	0	0	0	2	0	0.82	0	5	0	10	0	0	0.48
Su	btotal				37	22	2	0	2	0	0	0	9	0	0	0	2	0		0	5	0	32	0	0	
P. tal	ahasii																									
44#	Xingkaihu HLJ	45°18′	132°43′	72	17	11	0	0	0	0	0	0	6	0	0	0	0	0	0.49	0	1	16	0	0	0	0.12

45#	Xingkaihu HLJ	45°20′	132°23′	76	16	10	0	0	0	0	0	0	6	0	0	0	0	0	0.50	0	0	16	0	0	0	0
46	Mishan HLJ	45°30′	132°2′	152	8	1	0	0	0	0	0	0	5	1	0	0	0	1	0.68	0	0	8	0	0	0	0
47	Mishan HLJ	45°28′	131°42′	156	8	4	0	1	0	0	0	0	3	0	0	0	0	0	0.64	0	0	8	0	0	0	0
Su	btotal				49	26	0	1	0	0	0	0	20	1	0	0	0	1		0	1	48	0	0	0	
Tota	[489	296	7	4	5	2	2	1	160	7	1	1	2	1		253	92	99	43	1	1	

Abbreviations after localities indicate provinces as follows: IM, Inner Mongolica; HLJ, Hei longjiang; JL, Jilin; LN, Liaoning; SD,Shandong; JS, Jiangsu. #, the populations which were also investigated by nuclear loci.

Locus	Putative function	PCR primers (5'-3')	AT	Reference
a3ip2	ABI3-interacting	F: AATGCCAGGTTGGTGTTA	60	Wachowiak et al.,
	protein 2	R: CAGCCTCAATTTGCTTTCC		2009
ccoaomt	Lignin biosynthesis	F: GCAGCAGAAGTGAAGGCTCAGA	58	Gonzalez-Martinez et
		R: TCTTTCCATCATCGGGCAATG		al., 2006
pod	Peroxidase	F: CCGATGCTGACTCTTCTAAC	55	Ma et al., 2006
		R: AGCGAATTTGGAGGATGA		
c3h-1	Coumarate	F: AGCGAATTTGGAGGATGA	60	Brown et al., 2004
	3-hydroxylase	R: TGGGTCCTTCCATACAGC		
CesA2	Cellulose synthase	F: AGATCTTGCTCAATGCCTCG	58	Brown et al., 2004
		R: CCAAACTTCACTGTCACATCG		
dhn l	Dehydrin 1 protein	F: TCACCGCACCCACAGTTC	60	Wachowiak et al.,
		R: TCCGTCGGCTCACATTCA		2009
erd3	Early responsive to	F: GAACGGGTCCGTACATTTTCTG	60	Eveno et al., 2008
	dehydration 3	R: TGCCAGATTGATTGGCATAGAA		,
aqua-MIP	Putative aquaporin	F: TGTCACTGCCCAGAGCTATTC	60	Gonzalez-Martinez et
		R: ATCACAGCCGCTCCAAAAC		al., 2006

Table S2 Descriptions of the investigated eight nuclear loci.

AT, Annealing temperature.

Reference:

Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004). Nucleotide diversity and linkage disequilibrium in loblolly pine. *Proc Natl Acad Sci USA* **101**: 15255–15260.

- Eveno E, Collada C, Guevara MA, Léger V, Soto A, Díaz L *et al.* (2008). Contrasting patterns of selection at *Pinus pinaster* Ait. drought stress candidate genes as revealed by genetic differentiation analyses. *Mol Biol Evol* **25**: 417–437.
- Gonzalez-Martinez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006). DNA sequence variation and selection of tag single nucleotide polymorphisms at candidate genes for drought stress response in *Pinus taeda* L. Genetics **72**:1915–1926.
- Ma XF, Szmidt, A.E., Wang XR. (2006). Genetic structure and evolutionary history of a diploid hybrid pine *Pinus densata* inferred from the nucleotide variation at seven gene loci. *Mol Biol Evol* 23: 807-816.
- Wachowiak W, Balk PA, Savolainen O (2009). Search for nucleotide diversity patterns of local adaptation in dehydrins and other cold-related candidate genes in Scots pine (Pinus sylvestris L). *Trees Genet Genomes* 5: 117–132.

										Nucl	eotid	e varia	ble pos	sitior	ns										
						1	rpl	16			_		trn	S-tri	nG				_			rbcL			
														_		_				_	_	_	1		1
					1			1		6			2	2		2	5			7	7	7	1		3
Chlorot		•			4			6 5		6 2		1	())		3	1	,		0	3	6 5	9		1
Cillolot	.ур	e			9			5		Z		2)		4	/			9	1	3	9		5
C1					-			*		G		§	I	A		A	C	2		А	Т	Т	Т		Т
C2					-			*		Т		§	I	A		A	C	2		А	Т	Т	Т		Т
C3					-			*		G		§	(Ĵ		A	C	2		А	Т	Т	Т		Т
C4					-			*		G		§	I	A		С	C	2		A	Т	Т	Т		Т
C5					-			*		G		-	I	A		A	C	2		А	Т	Т	Т		Т
C6					-			*		G		§	I	A		A	C	2		G	Т	Т	Т		G
C7					-			*		G		ş	I	A		A	C	2		А	Т	G	Т		Т
C8					-			*		G		ş	I	A		A	C	2		G	C	Т	С		Т
С9					-			*		G		-	I	A		A	C	2		G	C	Т	С		Т
C10)				-			*		G		ş	I	A		A	Т	7		G	C	Т	C		Т
C11					#			*		G		ş	I	A		A	C	2		G	С	Т	С		Т
G1 2								*		T							C				т	т	т		т
C12 C13					-			-		I G		ş	1	4		A A	0	2		A G	I C	T T	C		T T
										Nuc	leotic	le varia	ıble po	sitio	ons										
				i	nad5						nad	4/3-4				nad	d1 ez	xon.	B/C			n	ad7 ii	ntror	1 <i>I</i>
																				1	1				
	1	2		2	3		3	4	5	1	2	2		7	8	8	8	8	9	1	2	5	5	6	8
	9	6		7	4		4	6	9	6	8	8	3	8	2	2	8	9	1	1	8	4	4	7	5
Mitotype	2	9		3	0		4	2	5	4	0	4	Ļ	1	2	5	6	4	9	1	7	6	9	5	0
M1 4	G		_					٨	٨						C	0	C	G	C		-	C		-	C

Table S3 The variable sites in aligned cpDNA and mtDNA sequences which gave rise to thirteen chlorotypes and six mitotypes recorded across the four pine species.

M2	-	ATGGC	TGGGT	С	С	TGCTC	-	А	•	-	-	С	▼	-	А		С
M3	-	ATGGC	TGGGT	С	С	TGCTC	-	Α	•	-	-	С	▼	-	А		А
M4	-	ATGGC	TGGGT	С	С	TGCTC	-	А	•	-	-	А	▼	-	А		С
M5	G	-	-	А	А	-	-	А	•	-	-	С	▼	-	С	-	С
M6	G	-	-	А	А	-	-	А	•	-	-	А	▼	-	С	-	С

Dashes indicate missing nucleotides. # ATATTTTGATCTAATG, * ATAT, § CAG

▲ ATTGGGTGGGGGGGGCTTATGGT

CTTTTTTACTTACTTTAGAGGATGCGTAAGCACGCTCGACTGTTAAGGAGAGGGGGCAAATAA GTCAAAAAAGGGT

• GGCCTCC

 $\circ \ TTTTACTTACTTAGAGGATGCGTAAGCACGCTCGACTGTTAAGGAGAGGGGG$

▼ GGGGGGTCGAGCGTT

TCTTCGCGTTCCTCTTTTGGGGCCCCTCCCCAAAAGAGAGTTGTTCGTCTCCTCACA GGGTGGCCCCTCTC

TTTTTTTACTTATTTGGGGGGATGCGTAAGCAGGCTCGACTGTTAAGGAGAGGGGC CCGGAGGGCTTGCGCTTCTGAGGGCAAGGT

GATGGCGGCCCTCTCCTTAACAGTCGAGTACCTAAAGGTCCTTATGGTCGAGTACCTAAAGG T

 $\blacksquare CTCCTCTCCCTTGGGGTCGAGTACCTAAAGGTCCTTATCAGTCGAGCCCCCTAAAGGGTCCT$

Table S4 Estimates of average genetic diversity within populations (H_S), total genetic diversity (H_T), interpopulation differentiation (G_{ST}), and the number of substitution types (N_{ST}) (mean ± SE in parentheses) for haplotypes (*P. funebris*: not estimated due to less than three populations).

Regions	$H_{\rm S}$	H_{T}	$G_{ m ST}$	$N_{ m ST}$
Chlorotype				
Four species	0.199 (0.031)	0.562 (0.025)	0.645 (0.050)	$0.745~{(0.048)}^{*}$
P. sylvestris var. mongolica	0.109 (0.026)	0.109 (0.025)	-0.000 (NC)	0.014(NC)
P. densiflora	0.196 (0.045)	0.201 (0.045)	0.024 (NC)	0.032 (NC)
P. takahasii	0.535 (0.073)	0.607 (0.082)	0.119 (0.019)	$0.226 (0.150)^{*}$
P. funebris	_	_	_	_
Mitotype				
Four species	0.045 (0.019)	0.668 (0.044)	0.933 (0.028)	$0.976~{(0.015)}^{*}$
P. sylvestris var. mongolica	0.028 (0.020)	0.028 (0.020)	-0.004 (NC)	-0.006 (NC)
P. densiflora	0.046 (0.034)	0.522 (0.090)	0.913 (0.062)	0.919 (0.055)
P. takahasii	0.029 (0.029)	0.029 (0.029)	-0.000 (NC)	0.000 (NC)
P. funebris	_	_	_	_

Table S5 Analysis of molecular variance (AMOVA) of cpDNA and mtDNA variation in four species.

Source of variation	d. F.	SS	VC	Variation (%)	Fixation index
Chlorotype					
Among all species	3	249.86	0.820	77.08	$F_{\rm CT} = 0.771^{***}$
Among populations within species	43	12.90	0.006	0.58	$F_{\rm SC} = 0.025^*$
Within populations	442	105.02	0.238	22.34	$F_{\rm ST} = 0.777^{***}$
Total	488	367.78	1.064		
Among populations within <i>P. sylvestris</i> var. mongolica	22	1.70	0.001	2.39	$F_{\rm ST} = 0.024^*$
Within populations	232	14.13	0.061	97.61	
Total	254	15.83	0.063		
Among populations within P. densiflora	17	4.67	0.005	2.13	$F_{\rm ST} = 0.021$
Within populations	130	30.33	0.233	97.87	
Total	147	35.00	0.238		
Between P. sylvestris var. mongolica and P. densiflora	1	246.67	1.316	91.20	$F_{\rm CT} = 0.912^{***}$
Among populations within species	39	6.38	0.004	0.29	$F_{\rm SC} = 0.033$
Within populations	342	44.46	0.123	8.51	$F_{\rm ST} = 0.915^{***}$
Total	402	297.51	1.443		
Mitotype					
Among all species	3	2112.60	6.947	97.55	$F_{\rm CT} = 0.976^{***}$
Among populations within species	43	45.49	0.097	1.36	$F_{\rm SC} = 0.555^{***}$
Within populations	442	34.34	0.078	1.09	$F_{\rm ST} = 0.989^{***}$
Total	488	2192.43	7.122		
Among populations within <i>P. sylvestris</i> var. mongolica	22	2.29	0.005	7.62	$F_{\rm ST} = 0.076^*$
Within populations	232	12.60	0.054	92.38	
Total	254	14.89	0.059		

					ىك بك تك
Among populations within P. densiflora	17	42.17	0.287	68.10	$F_{\rm ST} = 0.681^{***}$
Within populations	130	17.46	0.134	31.90	
Total	147	59.64	0.421		
Between P. sylvestris var. mongolica and P. densiflora	1	1571.90	8.387	97.78	$F_{\rm CT} = 0.978^{***}$
Among populations within species	39	44.46	0.108	1.26	$F_{\rm SC} = 0.565^{***}$
Within populations	362	30.06	0.083	0.97	$F_{\rm ST} = 0.990^{***}$
Total	402	1646.42	8.578		

d.f., degrees of freedom; SS, sum of squares; VC, variance components; *P<0.05, **P<0.01 and ***P<0.001, 1000 permutations.

 $F_{\rm CT}$, differentiation among groups within four species;

 $F_{\rm SC}$, differentiation among populations within species;

 $F_{\rm ST}$, differentiation among populations within four species

					Total				N	Jonsyn	onymous s	ites		Sile	nt sites	
Species	Locus	n	L	$N_{\rm h}$ (Indels)	S	θ_{wt}	πt	R _m	L	S	θ_{wa}	π_{a}	L	S	θ_{ws}	$\pi_{\rm s}$
	a3ip2	26	948	7	10	0.00283	0.00325	0	143.5	0	0	0	780.5	10	0.00336	0.00386
	ccoaomt	26	502	2	5	0.00261	0.00091	0	197	0	0	0	305	5	0.0043	0.00149
	pod	24	365	6	10	0.00738	0.0093	0	88.69	0	0	0	274.31	10	0.00976	0.01231
	c3h-1	27	676	5	8	0.0031	0.00287	0	245.44	1	0.00106	0.00146	422.56	7	0.0043	0.0037
0	CesA2	21	516	2	7	0.00377	0.00129	0	286.33	0	0	0	229.67	7	0.00847	0.0029
a	dhn l	23	1076	13	53	0.01632	0.01536	5	393.44	NA	NA	0.00556	516.56	NA	NA	0.02212
	erd3	24	774	7	8	0.00277	0.00272	1	428.28	3	0.00188	0.0018	342.72	5	0.00391	0.00364
	aqua-MIP	13	560	3	11	0.00633	0.00568	0	148.67	0	0	0	411.33	11	0.00862	0.00773
	Total	_	5417	45	112	_	_	6	1931.35	4	_	_	3282.65	44	_	_
	Average	23	677.13	5.625	14	0.00627	0.00579	0.75	241.42	0.57	0.00069	0.00172	410.33	7.8571	0.00552	0.00759
	a3ip2	22	948	3	0	0	0	NA	143.5	0	0	0	710.5	0	0	0
	ccoaomt	23	502	9	7	0.00379	0.0021	0	197	1	0.00138	0.00044	304	6	0.00535	0.00317
	pod	17	365	8	18	0.01471	0.01334	2	88.67	1	0.00334	0.00133	274.33	18	0.01948	0.01724
	c3h-1	25	676	9	14	0.00558	0.00358	2	245.74	1	0.00108	0.00155	417.26	13	0.00825	0.00479
h	CesA2	26	516	6	5	0.00254	0.00265	0	286.32	0	0	0	229.68	5	0.0057	0.00595
U	dhn l	18	1117	13	47	0.0149	0.01572	7	400.81	NA	NA	0.00788	516.19	NA	NA	0.02182
	erd3	27	774	8	7	0.00235	0.00169	1	428.4	2	0.00121	0.00145	342.6	5	0.00379	0.00201
	aqua-MIP	20	560	13	15	0.00755	0.00695	4	148.67	0	0	0	411.33	15	0.01028	0.00947
	Total	_	5458	61	113	_	_	16	1939.11	5	_	_	3205.89	47	_	_
	Average	22.25	682.25	8.625	14.13	0.00642	0.00595	2.29	242.39	0.63	0.00088	0.00225	400.74	8.86	0.00641	0.00777
	a3ip2	10	948	5	10	0.00404	0.00432	0	143.5	0	0	0	728.5	10	0.00485	0.00519
c	ccoaomt	11	502	6	9	0.00613	0.00581	0	197	0	0	0	304	9	0.01011	0.00957
	pod	9	365	3	10	0.01014	0.01377	0	88.67	0	0	0	274.33	10	0.01341	0.01823

Table S6 Nucleotide variation at eight nuclear loci in (a) P. slvestris var. mongolica, (b) P. densiflora, (c) P. funebris and (d) P. takahasii.

	c3h-1	12	676	5	9	0.00449	0.00541	0	245.42	1	0.00135	0.00123	417.58	8	0.00634	0.00787
	CesA2	11	516	6	4	0.00265	0.00324	1	286.21	0	0	0	229.79	4	0.00594	0.00728
	dhn l	7	1069	5	37	0.01643	0.01383	4	400.45	NA	NA	0.0063	518.55	NA	NA	0.01965
	erd3	11	774	4	8	0.00353	0.00366	0	428.38	4	0.00319	0.00246	342.62	4	0.00399	0.0052
	aqua-MIP	11	560	8	17	0.01036	0.01026	2	148.67	0	0	0	411.33	17	0.01411	0.01397
	Total	_	5410	42	104	_	_	7	1938.3	5	_	_	3226.7	45	_	_
	Average	10.25	676.25	5.25	13	0.007598	0.00753	0.88	242.29	0.71	0.0011	0.002001	403.34	8.86	0.00793	0.01065
	a3ip2	8	948	3	11	0.00485	0.00499	0	143.5	0	0	0	728.5	11	0.00582	0.00598
	ccoaomt	9	502	6	8	0.00588	0.0061	0	197	0	0	0	304	8	0.00968	0.01005
	pod	8	365	7	11	0.01169	0.01328	2	88.67	1	0.00435	0.00604	274.33	10	0.01406	0.01562
	c3h-1	8	676	5	10	0.00581	0.00737	2	245.58	1	0.00157	0.00233	417.42	9	0.00832	0.01035
d	CesA2	9	516	3	3	0.00214	0.00258	0	286.33	0	0	0	229.67	3	0.00481	0.00581
u	dhn l	7	1085	4	32	0.01375	0.01519	3	400.98	9	0.00916	0.00962	549.02	25	0.01859	0.01925
	erd3	10	774	6	8	0.00365	0.00388	0	428.27	4	0.0033	0.00311	342.73	4	0.00413	0.00486
	aqua-MIP	7	560	6	15	0.01093	0.00969	2	148.67	0	0	0	411.33	15	0.01488	0.0132
	Total	_	5426	40	98	_	_	9	1939	15	_	_	3257	85	_	_
	Average	8.25	678.25	5	12.25	0.007503	0.00808	1.13	242.38	1.88	0.00302	0.003245	407.13	10.63	0.01024	0.01075

n, sample size; *L*, length in base pairs; *S*, number of segregating sites; π , nucleotide diversity; θ_w , Watterson's parameter; R_m , the minimum number of recombinant events; NA: failed to be computed for lack of enough variation. The average values of all θ_w and π here are weighted average values. N_h (Indels), number of haplotypes with indels included.

Migration rates (M)	P. sylvestris var. mongolica	P. densiflora	P. funebris	P. takahasii
>P. sylvestris var. mongolica	-	321	473	257
>P. densiflora	158	-	354	352
>P. funebris	378	619	-	273
>P. takahasii	269	573	482	-

 Table S7 Migration rates among the four species implemented in Lamarc 2.1.5.

>, migrate into the species.

Table S8 The prior distributions of parameters used for description of the scenarios analysed in DIYABC v1.0.4.39 (Cornuet et al. 2010).

As the prior distributions of parameters often overlapped, several conditions were considered. They were t4 > t1, $t3 \ge t2$ and t2 > t1.

Parameter	Origin of <i>P. funebris</i>			Origin	Origin of <i>P. takahasii</i>		
	Distribution	Min.	Max.	Distribution	Min.	Max.	
Effective population size							
N1(P. sylvestris var. mongolica)	uniform	10	1000000	uniform	10	1000000	
N2(P. densiflora)	uniform	10	1000000	uniform	10	1000000	
N3(P. funebris)	uniform	10	500000	_	_	_	
N4(P. takahasii)	_	_	_	uniform	10	500000	
Nm(P. sylvestris var. mongolica)	uniform	10	300000	uniform	10	300000	
Nd(P. densiflora)	uniform	10	300000	uniform	10	300000	
NA	uniform	10	500000	uniform	10	500000	
Time of events							
t1	uniform	1	3000	uniform	1	3000	
t2	uniform	1	10000	uniform	1	10000	
t3	uniform	1	10000	uniform	1	10000	
t4	uniform	1	100000	uniform	1	200000	
Admixture rate							
r1/r2	uniform	0.001	0.999	uniform	0.001	0.999	
Mean mutation rate	uniform	10-7	10 ⁻⁹	uniform	10-7	10 ⁻⁹	

Table S9 Estimations of the posterior distributions of parameters revealed from the Approximate Bayesian Computation for the best scenario for origin of *P. funebris* (scenario 1.1 in Table 6). The estimation is based on 1% of the closest simulated datasets and the logit transformation of parameters was used.

Parameter	mean	median	mode	95% CI
N1	530000	519000	293000	109000-977000
N2	574000	596000	973000	84600-982000
N3	239000	229000	123000	21800-486000
Nm	86400	68300	40900	10600-260000
Nd	116000	99800	57700	14600-279000
NA	128000	98100	49600	14200-408000
tl(kya)	35	33	9	2-73
t2(kya)	114	110	90	23-220
t3(kya)	180	190	247	68-248
t4(kya)	1740	1850	2438	445-2470
r1	0.345	0.318	0.267	0.0313-0.831

kya, thousand years ago.

Table S10 Estimations of the posterior distributions of parameters revealed from the Approximate Bayesian Computation for the best scenario for origin of *P. takahasii* (scenario 2.1 in Table 6). The estimation is based on 1% of the closest simulated datasets and the logit transformation of parameters was used.

Parameter	mean	median	mode	95% CI
1 drumeter	mean	median	mode	7570 CI
N1	522000	506000	389000	106000-971000
N2	563000	582000	993000	74800-984000
N4	254000	250000	111000	29300-488000
Nm	95200	79100	62300	13600-266000
Nd	112000	96000	59900	17100-275000
NA	124000	98100	67900	12800-390000
tl(kya)	36	35	12	2-73
t2(kya)	115	112	92	23-220
t3(kya)	179	189	245	64-247
t4(kya)	1735	1845	2353	443-2470
r2	0.202	0.169	0.155	0.0221-0.600

kya, thousand years ago.

Figure S1 Schemes of the same six scenarios for origin of *P. funebris* and *P. takahasii*. Effective population sizes are marked in different colours and in the left, times of events (not to scale) are in the right. For the parameter codes see Table **S7**.

Figure S2 Structure analysis of (a) *P. slvestris* var. *mongolica*, (b) *P. funebris*, (c) *P. takahasii* and (d) *P. densiflora* when $K \neq 2-6$ clusters are assumed. For each *K* value, results of the run with the highest value of LnPD were used.

Figure S3 Comparison of the relative posterior probabilities for scenarios separately for either of two origins. They are computed via the logistic regression in DIYABC v1.0.4.39 on 1% of simulated datasets closest to the observed data.

Figure S4 Illustration explaining the scenario of the homoploid hybrid speciation as a result of range shifts. (a) Range contract to different refugia, (b) range expansion and secondary contact of *P. sylvestris* var. *mongolica* and *P. densiflora* which were indicated by the dark and light gray, respectively, (c) hybridizations between *P. sylvestris* var. *mongolica* and two different refugia of *P. densiflora*, and subsequent formation of two hybrid species, *P. funebris* and *P. takahasii*(oval area).

