SUPPLEMENTAL DATA

Construct	Registry title	Registry number
$P_{y} = Ubc, Gal4 = 0, P_{x} = none (Fig. 2)$	Ubc-CFP	BBa_J176093
$P_{y} = Ubc, Gal4 = 0, P_{x} = Ubc (Fig. 2)$	Test miR-luc sensor 1	BBa_J176142
$P_{y} = Ubc, Gal4 = 0, P_{x} = HPK (Fig. 2)$	Test miR-luc sensor 2	BBa_J176143
$P_{y} = Ubc, Gal4 = 0, P_{x} = CMV (Fig. 2)$	Test miR-luc sensor 3	BBa_J176144
P_y = Ubc, Gal4 = 5, P_x = none (Fig. 2)	Ubc-5xGal4-CFP	BBa_J176095
P_y = Ubc, Gal4 = 5, P_x = Ubc (Fig. 2)	Test miR-luc sensor 4	BBa_J176145
$P_{y} = Ubc, Gal4 = 5, P_{x} = HPK (Fig. 2)$	Test miR-luc sensor 5	BBa_J176146
P_y = Ubc, Gal4 = 5, P_x = CMV (Fig. 2), Circuit 2 (Fig. 3B)	Test miR-luc sensor 6	BBa_J176147
$P_{y} = Ubc, Gal4 = 10, P_{x} = none (Fig. 2)$	Ubc-10xGal4-CFP	BBa_J176098
$P_{y} = Ubc, Gal4 = 10, P_{x} = Ubc (Fig. 2)$	Test miR-luc sensor 7	BBa_J176148
P _y = Ubc, Gal4 = 10, P _x = HPK (Fig. 2)	Test miR-luc sensor 8	BBa_J176149
$P_y = Ubc, Gal4 = 10, P_x = CMV (Fig. 2)$	Test miR-luc sensor 9	BBa_J176150
$P_y = HPK$, Gal4 = 0, $P_x = none$ (Fig. 2)	НРК-СГР	BBa_J176092
$P_{y} = HPK, Gal4 = 0, P_{x} = Ubc (Fig. 2)$	Test miR-luc sensor 10	BBa_J176151
$P_y = HPK, Gal4 = 0, P_x = HPK (Fig. 2)$	Test miR-luc sensor 11	BBa_J176152
$P_y = HPK, Gal4 = 0, P_x = CMV (Fig. 2)$	Test miR-luc sensor 12	BBa_J176153
$P_y = HPK, Gal4 = 5, P_x = none (Fig. 2)$	HPK-5xGal4-CFP	BBa_J176096
$P_y = HPK, Gal4 = 5, P_x = Ubc (Fig. 2)$	Test miR-luc sensor 13	BBa_J176154
P _y = HPK, Gal4 = 5, P _x = HPK (Fig. 2)	Test miR-luc sensor 14	BBa_J176155

$P_y = HPK$, Gal4 = 5, $P_x = CMV$ (Fig. 2)	Test miR-luc sensor 15	BBa_J176156
P _y = HPK, Gal4 = 10, P _x = none (Fig. 2)	HPK-10xGal4-CFP	BBa_J176091
P _y = HPK, Gal4 = 10, P _x = Ubc (Fig. 2)	Test miR-luc sensor 16	BBa_J176157
P _y = HPK, Gal4 = 10, P _x = HPK (Fig. 2), Circuit 1 (Fig. 3B), luc control circuit (Fig. 4A)	Test miR-luc sensor 17	BBa_J176158
$P_y = HPK$, Gal4 = 10, $P_x = CMV$ (Fig. 2)	Test miR-luc sensor 18	BBa_J176159
$P_y = CMV$, Gal4 = 0, $P_x = none$ (Fig. 2)	CMV-CFP	BBa_J176094
$P_y = CMV$, Gal4 = 0, $P_x = Ubc$ (Fig. 2)	Test miR-luc sensor 19	BBa_J176160
$P_y = CMV$, Gal4 = 0, $P_x = HPK$ (Fig. 2)	Test miR-luc sensor 20	BBa_J176161
$P_y = CMV, Gal4 = 0, P_x = CMV (Fig. 2)$	Test miR-luc sensor 21	BBa_J176162
$P_y = CMV$, Gal4 = 5, $P_x = none$ (Fig. 2)	CMV-5xGal4-CFP	BBa_J176097
$P_y = CMV, Gal4 = 5, P_x = Ubc (Fig. 2)$	Test miR-luc sensor 22	BBa_J176163
$P_y = CMV$, Gal4 = 5, $P_x = HPK$ (Fig. 2)	Test miR-luc sensor 23	BBa_J176164
$P_y = CMV, Gal4 = 5, P_x = CMV (Fig. 2)$	Test miR-luc sensor 24	BBa_J176165
$P_y = CMV, Gal4 = 10, P_x = none (Fig. 2)$	CMV-10xGal4-CFP	BBa_J176099
$P_y = CMV, Gal4 = 10, P_x = Ubc (Fig. 2)$	Test miR-luc sensor 25	BBa_J176166
P _y = CMV, Gal4 = 10, P _x = HPK (Fig. 2)	Test miR-luc sensor 26	BBa_J176167
$P_y = CMV, Gal4 = 10, P_x = CMV (Fig. 2)$	Test miR-luc sensor 27	BBa_J176168
miR-34 sensor + BCL2 target sites (data not shown)	miR-34 BCL2 sensor	BBa_J176139
miR-34 sensor + CCND1 target sites (Fig. 4A)	miR-34 CCND1 sensor	BBa_J176140
miR-34 sensor + CDK6 target sites (Fig. 4A)	miR-34 CDK6 sensor	BBa_J176141
miR-34 sensor + luc target sites + CFP-PEST (Fig. 4B)	miR-luc sensor 2PEST	BBa_J176169

miR-34 sensor + CDK6 target sites + CFP-PEST (Fig. 4B)	miR-34 CDK6 sensor 2.0	BBa_J176170
MV8 (zeocin resistance vector)	pcDNA3.1+zeo	BBa_J176124

Table S1. Constructs and vectors. See the MIT Registry of Standard Biological Parts(http://partsregistry.org) for annotated sequences.

Figure S1. Regression curves for data shown in Figure 4A. Fourth degree polynomial best-fit curves for CFP output (top row, blue traces) were generated using MATLAB. The bottom row (black traces) are plots of the first derivative of the equations from the best fit curves. Line patterns correspond to the samples represented in Figure 4A. The first column of graphs, "CFP (no repressor)," were generated from averages of CFP expression from 5 individual cells, as a reference for the behavior of un-repressed CFP over time.

Figure S2. Free energies of miR-34/target site duplexes suggest significant differences in RNAi behavior. miR/target duplexes were predicted using RNAhybrid software. The duplexes with the lowest binding free energies are shown. The table lists average binding free energies ($\Delta G^{\circ\prime}$, kcal/mol) of all miR/target duplexes with $\Delta G^{\circ\prime} \leq 20$ kcal/mol, or the three most stable miR/target duplexes.

SUPPLEMENTAL MATERIALS AND METHODS

RNA hybridization analysis. miR-34/target duplex structures and corresponding binding free energies were predicted using the online software RNAhybrid (freely available at http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/welcome.html).¹ This software was chosen for its speed, favorable reviews, and demonstrated predictive power in identifying physiological miR/target interactions.² Mature sequences of human miR-34a, miR-34b, and miR-34c were derived from miRBase (http://www.mirbase.org/), and were submitted to RNAhybrid for hybridization analysis against each target sequence used in the miR-34 sensor device. No userdefined structural or energetic constraints were used to limit the search space of potential interactions. Only miR-34/target duplexes with predicted binding free energies of $\Delta G^{\circ\prime} \leq 20$ kcal/mol³⁻⁵ were used to calculate average binding free energies.

SUPPLEMENTAL REFERENCES

- (1) Rehmsmeier, M.; Steffen, P.; Hochsmann, M.; Giegerich, R. Fast and effective prediction of microRNA/target duplexes. *RNA* **2004**, *10*, 1507–1517.
- (2) Krüger, J.; Rehmsmeier, M. RNAhybrid: microRNA target prediction easy, fast and flexible. *Nucleic Acids Research* **2006**, *34*, W451–4.
- (3) John, B.; Enright, A. J.; Aravin, A.; Tuschl, T.; Sander, C.; Marks, D. S. Human MicroRNA Targets. *PLoS Biol* **2004**, *2*, e363.
- (4) Samols, M. A.; Skalsky, R. L.; Maldonado, A. M.; Riva, A.; Lopez, M. C.; Baker, H. V.; Renne, R. Identification of cellular genes targeted by KSHV-encoded microRNAs. *PLoS Pathog.* 2007, *3*, e65.
- (5) Ritchie, W.; Rajasekhar, M.; Flamant, S.; Rasko, J. E. J. Conserved expression patterns predict microRNA targets. *PLoS Comput. Biol.* **2009**, *5*, e1000513