Supporting Online Material

Nematode-specific tRNAs that decode an alternative genetic code for leucine

Kiyofumi Hamashima^{1,2}, Kosuke Fujishima¹, Takeshi Masuda¹, Junichi Sugahara¹, Masaru Tomita^{1,2,3} and Akio Kanai^{1,2,3},

¹Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan ²Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-8520, Japan ³Faculty of Environment and Information Studies, Keio University, Fujisawa 252-8520, Japan

Table S1. List of oligonucleotides used in this study

Туре	Anticodon	Length	Sequence - 5' to 3'
Control	Gly(GCC)	36	CCCGGGCCGCCGCGTGGCAGGCGAGCATTCTACCA
	lle(UAU)	38	TATAAGTACCACGCGCTAACCGACTGCGCCAATGGGGC
nev-tRNA	Gly(CCC)	35	CTCTGTTACCAGAATAGGATCGGGAGTCCTACGCC
	Gly(CCC)	35	TCGAACCCGCGCTCTGTTACCAGAATAGGATCGGG
	*Gly(CCC)	83	TGCGGTGGACGGGATTCGAACCCGCGCTCTGTTACCAGAATAGGATCGGGAGTC CTACGCCTTCACCGCTCGGCCACCACCGC
	lle(UAU)	36	ACTGGTTTAACCCAATGAGATCATAAGTCTCACGCC
	lle(UAU)	36	TCGAACCCGCGACTGGTTTAACCCAATGAGATCATA
	Lys(CUU)	36	TCGGTTAGAACCGTTTGAGATCAAGTGTCTCATGCC

A. For northern blot analyses:

* for acid-urea/northern blot analysis (Figure 5)

B. For RT–PCR analyses:

Туре	Anticodon	Strand	Sequence - 5' to 3'
Control	Gly(GCC)	sense	GCATCGGTGGTTCAGTGGTAGA
	Gly(GCC)	antisense	TGCATCGACCGGGAATCGAACC
	lle(UAU)	sense	GCCCCATTGGCGCAGTCGGTTAGC
	lle(UAU)	antisense	TGCCCCATGCCAGGCTCGAACTG
nev-tRNA	Gly(CCC)	sense	GCGGTGGTGGCCGAGCGGTC
	Gly(CCC)	antisense	TGCGGTGGACGGGATTCGAACC
	lle(UAU)	sense	GCCCCGGTGGCCGAGCGGTCGAAG
	lle(UAU)	antisense	TGCCCCGGGCGGGATTCGAACCC
	Lys(CUU)	sense	GACACGGTGGCCGAGTGGTTT
	Lys(CUU)	antisense	TGACACGGGCAGGATTCGAACC

C. For molecular cloning:

Gene Name	Providing Restriction Enzyme	Strand	Sequence - 5' to 3'
GlyRS	Nde I	sense	TAA <u>CATATG</u> GCTACTCCGGAAATTGA
	Not I	antisense	TAA <u>GCGGCCGC</u> TTCAGTTGCGCTCGCTTC
lleRS	Nhe I	sense	TAAGCTAGCAGCGGCCTTTCGACCGT
	Xho I	antisense	TAACTCGAGTCGTACGAGTTGAAGAGTCT
LeuRS	Nde I	sense	TAA <u>CATATG</u> TCGAAAATCAATAAGGA
	Not I	antisense	TAA <u>GCGGCCGC</u> GTTTTCTGGGACGTTAGC
SerRS	Nhe I	sense	TAAGCTAGCGTTCTCGACATTGACAT
	Xho I	antisense	TAA <u>CTCGAG</u> TTTCTTTCCTGTCGCCTTTT
PF1549	Sgf I	sense	TAA <u>GCGATCGC</u> CATGATAATAATAGACGGAAG
	Pme I	antisense	TAA <u>GTTTAAAC</u> TTAGTGGTGGTGGTGGTGGTGCCAGGCTTTCCTAACTACTC
luciferase	Sgf I	sense	TAA <u>GCGATCGC</u> CATGGAAGACGCCAAAAACAT
	Pme I	antisense	TAA <u>GTTTAAAC</u> TTAGTGGTGGTGGTGGTGGAACCAATTTGGACTTTCCGC

Table S2. Identification of aberrant residues in *in vitro*-translated luciferase. Luciferase was translated *in vitro* in the presence of tRNA^{Leu} (AAG) or nev-tRNA^{Gly} (CCC). The peptide sequences containing amino acid residues (red) arising from the decoding of the GGG codon are listed. Regions of nev-tRNA-dependent peptide sequences and their Mascot scores are shaded. The highest Mascot score was based on four independent experiments.

		Mascot Score (n = 4)		
Sequence (Luciferase)	Modification	tRNA ^{Leu} (Control)	nev-tRNA ^{Gly}	
EVGEAVAK		25.7	29.1	
RFHLP <mark>G</mark> IR		39.3	43.5	
STLIDKYDLSNLHEIAS <mark>G</mark> GAPLSK		110.2	113.4	
TIALIMNSSGSTGLPK	Oxidation@M:6	122.0	121.6	
VVDLDT <mark>G</mark> K		40.6	37.0	
EVLEAVAK		-	25.9	
RFHLPLIR		-	25.4	
STLIDKYDLSNLHEIAS <mark>L</mark> GAPLSK		-	71.6	
TIALIMNSSGSTLLPK		-	91.6	
VVDLDTLK		-	47.3	

Figure S1. Phylogeny of all tRNAs in the three nematode species. A neibor-joining tree of all mature tRNA sequences in *C. elegans*, *C. brenneri*, and *P. pacificus* was constructed using ClustalX (20) and visualized with iTOL (21). The phylogeny includes nev-tRNAs (red), tRNA^{Leu} and tRNA^{Ser} (yellow), tRNAs with anticodons synonymous to those of nev-tRNAs (blue) and other tRNAs (black). Copy numbers are indicated for each nev-tRNA. Black dots indicate bootstrap values above 80. *C. brenneri* encodes two types of tRNA^{Leu} (UAA): the one with strong similarity to nev-tRNA^{Arg} (CCU) is categorized as nev-tRNA (asterisk).

Figure S2. RT–PCR analysis of the predicted nev-tRNAs of *C. elegans.* Levels of expression of the three nev-tRNA genes and their synonymous tRNA genes (controls) were determined by RT–PCR. Samples without reverse transcriptase were used as the negative controls (RT–) to ensure that only RNA transcripts were amplified (RT+). The expected sizes are shown as red dots. Both the precursor and mature tRNAs were detected for the intron-containing tRNA^{IIe} (UAU).

Figure S3. Purified recombinant aminoacyl-tRNA synthetases from *C. elegans.* His-tagged recombinant aminoacyl-tRNA synthetase (aaRS) enzymes were purified to near homogeneity using Ni²⁺ agarose resin spin columns followed by gel filtration (see Materials and Methods). The samples were analyzed by SDS/PAGE on a 10%–20% gradient gel and stained with Coomassie Brilliant Blue. Red dots indicate the positions of the purified recombinant aaRS proteins.

Figure S4. SDS/PAGE analysis of purified *in vitro*-translated proteins. His-tagged recombinant proteins synthesized in cell-free systems were purified with a magnetic separator (see Materials and Methods). The samples were analyzed by SDS/PAGE on a 10%-20% gradient gel and stained with Coomassie Brilliant Blue. Lanes 1–2, *in vitro*-translated PF1549 protein (37 kDa); lanes 3–4, *in vitro*-translated firefly luciferase (61 kDa). The tRNA types used in the translation reactions were: lanes 1 and 3, tRNA^{Leu} (AAG); lanes 2 and 4, nev-tRNA^{Gly} (CCC). Red dots indicate the positions of the purified recombinant proteins.

Figure S5. Comparison of the MS/MS spectra of peptides with amino acid residues arising from the decoding of GGG codons. Peptides with the sequence STLIDKYDLSNLHEIAS(G/L)GAPLSK from luciferase synthesized in cell-free systems containing tRNA^{Leu} (AAG) or nev-tRNA^{Gly} (CCC) were compared. Fragmented ions detected in this analysis are shown, with the top 15 ions annotated in the spectra. Amino acid residues arising from the decoding of the GGG codons are indicated in red.

	Second base of codon						
		т	С	Α	G		
		Phe (TTT)	Ser (TCT)	Tyr (TAT)	Cys (TGT)		
		2.28	1.68	1.75	1.11	'	
	т	Phe (TTC)	TC) Ser (TCC) Tyr (TAC) Cys (TGC)		Cys (TGC)	c	
		2.36	1.06	1.37	0.90	Ŭ	
		Leu (TTA)	TA) Ser (TCA) End (TAA) End (TGA)		End (TGA)	A	
		0.97	2.07	0.11	0.08		
		Leu (TTG)	Ser (TCG)	End (TAG)	Trp (TGG)	G	
	-	2.00	1.23	0.04	1.09		
		Leu (CTT)	Pro (CCT)	His (CAT)	Arg (CGT)	т	
		2.11	0.90	1.40	1.11	1	
		Leu (CTC)	Pro (CCC)	His (CAC)	Arg (CGC)	C	
	С	1.46	1.46 0.44		0.50		-
c	Ŭ	Leu (CTA)	Leu (CTA) Pro (CCA) Gln (CAA)		Arg (CGA)	Δ	
8		0.79	2.63	2.74	1.21		hir
ğ		Leu (CTG)	Pro (CCG)	Gln (CAG)	Arg (CGG)	G	d ba
fo		1.21	0.98	1.44	0.47		
0 0	A	lle (ATT)	Thr (ACT)	Asn (AAT)	Ser (AGT)	т	se
as		3.24	1.92	3.03	1.22	'	of
t b		lle (ATC)	Ile (ATC) Thr (ACC) Asn (AAC) Ser (AGC) 1.88 1.03 1.82 0.83		0	S	
ĽS.		1.88			0.83		odon
ΪĒ		lle (ATA)	Ile (ATA) Thr (ACA) Lys (AAA) Arg (AGA) 0.94 2.03 3.74 1.53		Arg (AGA)		
		0.94			1.53	~	
		i/eMet (ATG)	Thr (ACG)	Lys (AAG)	Arg (AGG)	<u> </u>	
		2.61	0.89	2.58	0.38	Ğ	
	G	Val (GTT)	Ala (GCT)	Asn (GAT)	Gly (GGT)		
		2.43	$\frac{1}{3} \qquad 226 \qquad 364 \qquad 109$		1.09	Т	
		1 35			0.67	C	
		Val (GTA)	Val (GTA) Ala (GCA) Glu (GAA) Gly 0.00 0.00 4.14 0.00				
						A	
			$\frac{10}{10} 2.02 4.14 5.10$		3.10		
		Val (GTG) Ala (GCG)		GIU (GAG)	Gly (GGG)	G	
		1.45	0.83	2.47	0.44		

Figure S6. Codon usage of *C. elegans*. The percentage usage of all sense codons is shown. Codons corresponding to the conserved nev-tRNAs in nematodes, Gly(GGG), Ile(ATA), Pro(CCC), and Arg(AGG), are shown in red. The five rarest codons, except the stop codons, are indicated in blue boxes.

Dataset S1. List of the predicted nev-tRNAs in nematode genomes

This table is uploaded separately, as one Excel file.

Dataset S2. Peptides of PF1549 and luciferase identified in the insect cell-free protein expression system

This table is uploaded separately, as one Excel file.