Supplementary Figure legends

Supplementary Figure S1. Structures of the luciferase expression vectors used in this study. (A) Structure of the *firefly* luciferase expression plasmid vector, pTK4.12. (B) Structure of the *Renilla* luciferase reporter without insertion; pGL4.74. (C) Structure of the *Renilla* luciferase reporter pGL4.74-miR21T harbouring a 22bp insert which is fully complementary to the mature miR-21 just downstream of the *Renilla* luciferase gene. (D) Structure of the *Renilla* luciferase reporter pGL4.74-miR200cT containing a 23bp insert, which is fully complementary to mature miR-200c, just downstream of the *Renilla* luciferase gene. (E) Structure of the *Renilla* luciferase reporter pGL4.74-miR16T with a 22bp insert just downstream of the *Renilla* luciferase gene which is fully complementary to mature miR-16. (F) Structure of the *Renilla* luciferase month of the *Renilla* luciferase reporter pGL4.74-miR106bT containing a 21bp insert just downstream of the *Renilla* luciferase gene which is fully complementary to the mature miR-106b.

Supplementary Figure S2. Inhibitory effects of 2'-O-methylated RNA and PNA AMOs. 2'-O-methylated RNA oligonucleotide-based antisense or PNA oligonucleotide-based antisense molecules were transfected into HCT-116 cells together with the *Renilla* luciferase miR-21 reporter (miR-21-RL) or the untargeted control

Renilla luciferase reporter (UT-RL), as well as the *Firefly* luciferase reporter (FL) as a transfection control. After performing a dual luciferase assay, the ratios of miR-21-RL/FL to UT-RL/FL expression were determined and are represented by the mean \pm s.d (n = 3). These expression levels were normalized to the ratio of miR-21-RL/FL to UT-RL/FL in 2'-OMe-NC transfected HCT-116 cells and are represented by the mean \pm s.d (n = 3).

Supplementary Figure S3. Sequence and structure of S-TuD for miR-21, miR-200c, miR-16 and miR-106b. MBS is the miRNA binding site, which is fully or partially complementary to the target miRNA (left). G-U pairs are indicated by a dot. A 4 nt insertion and 1 nt mismatch in the MBS regions of S-TuD molecules are represented by red and blue characters, respectively.

Supplementary Figure S4. Effects of the Stem I length on miRNA inhibiting activity of S-TuD molecules. (A) Structures and sequences of S-TuD-miR21, S-TuD-miR21-14bp and S-TuD-miR21-10bp. A 1 nt mismatch in the MBS regions within S-TuD is represented by blue characters. (B) The miR-21 inhibiting activity of the three types of S-TuD-miR21s was assessed by luciferase activity. HCT-116 cells

were co-transfected with the *Renilla* luciferase miR-21 reporter (miR-21-RL; open bars) or the untargeted control *Renilla* luciferase reporter (UT-RL; black bars) as well as the *Firefly* luciferase reporter (FL) as a transfection control. After performing a dual luciferase assay, the expression levels were normalized to the ratio of the activity of miR-21-RL to that of FL in 1 nM S-TuD-NC transfected HCT-116 cells and are represented by the mean \pm s.d (n = 3). (C) Normalized UV melting curves for 1.5 μ M of S-TuDs, S-TuD-miR21-10mut, S-TuD-miR21-10mut-stemI-14bp and S-TuD-miR21-10mut-stemI-10bp, in buffers of 10 mM sodium phosphate (pH 7.0) containing 10 mM NaCl. Melting was assessed by UV absorbance at 260 nm and a melting rate of 0.5 °C/min. Vertical black bars indicate T_m points.

Supplementary Figure S5. The levels of free miR-106b detected in RNA from HCT-116 cells transfected with miRNA inhibitors at concentrations of 0.05 nM by quantitative real time RT-PCR. The miR-106b expression levels were normalized to those of HCT-116 cells transfected with S-TuD-NC and are represented by the mean \pm s.d (n = 3). U6 snRNA was served as an endogenous control.

Supplementary Figure S6. (A) The expression levels of miR-200b/200c/429 family in HCT-116 cells. The expression levels of miRNAs were determined by miRNA-microarray (Agilent). (B) Sequence and structure (predicted by CentroidFold) of S-TuD-miR200c-pf and S-TuD-miR429-pf. (C) The expression levels of miR-15a/15b/16/195/424/497 family in HCT-116 cells. The expression levels of miRNAs were determined by miRNA-microarray (Agilent). (D) Sequence and structure (predicted by CentroidFold) of S-TuD-miR16-pf, S-TuD-miR195-pf and S-TuD-miR497-pf.

Supplementary Figure S7. The miRNA inhibitory effects and 5-FAM levels of 5-FAM labeled S-TuD and sorting of 5-FAM positive cells. (A) Comparison of the miRNA inhibitory effects of non-labeled and 5-FAM-labeled S-TuD.

S-TuD-miR200c-pf, S-TuD-NC, 5-FAM-S-TuD-miR200c-pf or 5-FAM-S-TuD-NC were transiently transfected into HCT-116 cells together with the *Renilla* luciferase miR-200c reporter (miR-200c-RL; open bars) or the untargeted control *Renilla* luciferase reporter (UT-RL; black bars). In all cases, the *Firefly* luciferase reporter (FL) was co-transfected as a transfection control. After performing a dual luciferase assay, the expression levels were normalized to the ratio of the activity of miR-200c-RL to that of FL in 0.03 nM S-TuD-NC transfected HCT-116 cells and are represented by the mean \pm s.d (n = 3). Two days after the transfection FACS analysis of the 5-FAM levels in MOCK-treated HCT-116 cells (**B**), 10 nM 5-FAM-S-TuD-NC transfected HCT-116 cells (**C**) or 10 nM 5-FAM-S-TuD-miR200c-pf transfected HCT-116 cells (**D**) was performed. M1 markers represent the gates used for sorting.

Supplementary Figure S8. TuD-miR200c-expression lentivirus vector. (A) Structure of a HIV-based self-inactivating TuD RNA expression vector, pLSP. The provirus structure of pLSP is shown. Δ U3, U3 sequence in which the major enhancer sequences were deleted; R, lentiviral R sequence; U5, lentiviral U5 sequence; ψ , lentiviral packaging signal. (B) A TuD RNA expression lentivirus vector was transduced into HCT-116 cells with an MOI of three followed by selection with puromycin. These cells were transfected with the *Renilla* luciferase miR-200c reporter (miR-200c-RL; open bars) or the untargeted control *Renilla* luciferase reporter (UT-RL; black bars) as well as the *Firefly* luciferase reporter (FL) as a transfection control at 13 days after transduction. A dual luciferase assay was performed at 15 days after transduction, after which the expression levels were normalized to the ratio of the activity of miR-200c-RL to that of FL in TuD-NC vector-transduced HCT-116 cells. These values are represented by the mean \pm s.d (n = 3).

miR-106b Target

10 nM 5-FAM-S-TuD-miR200c-pf

15 days after transduction

Supplementary Table S1. The 2'-O-methylated RNA oligo pairs for S-TuD preparation.

Primers		Sequence
S-TuD-miR21-pf	s^+	5'- GACGGCGCUAGGAUCAUCAACUCAACAUCAGUCUGAUAAGCUACAAGUAUUCUGGU -3'
S-TuD-miR21-pf	a^+	5'- ACCAGAAUACAACUCAACAUCAGUCUGAUAAGCUACAAGAUGAUCCUAGCGCCGUC -3'
S-TuD-miR21-4ntin	S	5'- GACGGCGCUAGGAUCAUCAACUCAACAUCAGUCAAUGUGAUAAGCUACAAGUAUUCUGGU -3'
S-TuD-miR21-4ntin	a	5'- ACCAGAAUACAACUCAACAUCAGUCAAUGUGAUAAGCUACAAGAUGAUCCUAGCGCCGUC -3'
S-TuD-miR21-10mut	S	5'- GACGGCGCUAGGAUCAUCAACUCAACAUCAGUCCGAUAAGCUACAAGUAUUCUGGU -3'
S-TuD-miR21-10mut	a	5'- ACCAGAAUACAACUCAACAUCAGUCCGAUAAGCUACAAGAUGAUCCUAGCGCCGUC -3'
S-TuD-miR21-10mut-stemI-10bp	s	5'- UAGGAUCAUCAACUCAACAUCAGUCCGAUAAGCUACAAGUAUUCUGGU -3'
S-TuD-miR21-10mut-stemI-10bp	а	5'- ACCAGAAUACAACUCAACAUCAGUCCGAUAAGCUACAAGAUGAUCCUA -3'
S-TuD-miR21-10mut-stemI-14bp	s	5'- GCGCUAGGAUCAUCAACUCAACAUCAGUCCGAUAAGCUACAAGUAUUCUGGU -3'
S-TuD-miR21-10mut-stemI-14bp	а	5'- ACCAGAAUACAACUCAACAUCAGUCCGAUAAGCUACAAGAUGAUCCUAGCGC -3'
S-TuD-miR200c-pf	S	5'- GACGGCGCUAGGAUCAUCAACUCCAUCAUUACCCGGCAGUAUUACAAGUAUUCUGGU -3'
S-TuD-miR200c-pf	а	5'- ACCAGAAUACAACUCCAUCAUUACCCGGCAGUAUUACAAGAUGAUCCUAGCGCCGUC -3'
S-TuD-miR200c-4ntin	S	5'- GACGGCGCUAGGAUCAUCAACUCCAUCAUUACCCCACUGGCAGUAUUACAAGUAUUCUGGU -3'
S-TuD-miR200c-4ntin	а	5'- ACCAGAAUACAACUCCAUCAUUACCCCACUGGCAGUAUUACAAGAUGAUCCUAGCGCCGUC -3'
S-TuD-miR200c-10mut	S	5'- GACGGCGCUAGGAUCAUCAACUCCAUCAUUACCCAGCAGUAUUACAAGUAUUCUGGU -3'
S-TuD-miR200c-10mut	a	5'- ACCAGAAUACAACUCCAUCAUUACCCAGCAGUAUUACAAGAUGAUCCUAGCGCCGUC -3'
S-TuD-miR16-pf	S	5'- GACGGCGCUAGGAUCAUCAACCGCCAAUAUUUACGUGCUGCUACAAGUAUUCUGGU -3'
S-TuD-miR16-pf	a	5'- ACCAGAAUACAACCGCCAAUAUUUACGUGCUGCUACAAGAUGAUCCUAGCGCCGUC -3'
S-TuD-miR16-4ntin	S	5'- GACGGCGCUAGGAUCAUCAACCGCCAAUAUUUAGUUCCGUGCUGCUACAAGUAUUCUGGU -3'
S-TuD-miR16-4ntin	a	5'- ACCAGAAUACAACCGCCAAUAUUUAGUUCCGUGCUGCUACAAGAUGAUCCUAGCGCCGUC -3'
S-TuD-miR16-10mut	S	5'- GACGGCGCUAGGAUCAUCAACCGCCAAUAUUUAUGUGCUGCUACAAGUAUUCUGGU -3'
S-TuD-miR16-10mut	a	5'- ACCAGAAUACAACCGCCAAUAUUUAUGUGCUGCUACAAGAUGAUCCUAGCGCCGUC -3'
S-TuD-miR106b-pf	s	5'- GACGGCGCUAGGAUCAUCAACAUCUGCACUGUCAGCACUUUACAAGUAUUCUGGU -3'
S-TuD-miR106b-pf	a	5'- ACCAGAAUACAACAUCUGCACUGUCAGCACUUUACAAGAUGAUCCUAGCGCCGUC -3'
S-TuD-miR195-pf	s	5'- GACGGCGCUAGGAUCAUCAACGCCAAUAUUUCUGUGCUGCUACAAGUAUUCUGGU -3'
S-TuD-miR195-pf	a	5'- ACCAGAAUACAACGCCAAUAUUUCUGUGCUGCUACAAGAUGAUCCUAGCGCCGUC -3'
S-TuD-miR497-pf	s	5'- GACGGCGCUAGGAUCAUCAACACAAACCACAGUGUGCUGCUGCAAGUAUUCUGGU -3'
S-TuD-miR497-pf	а	5'- ACCAGAAUACAACACAAACCACAGUGUGCUGCUGCAAGAUGAUCCUAGCGCCGUC -3'
S-TuD-miR429-pf	s	5'- GACGGCGCUAGGAUCAUCAACACGGUUUUACCAGACAGUAUUACAAGUAUUCUGGU -3'
S-TuD-miR429-pf	a	5'- ACCAGAAUACAACACGGUUUUACCAGACAGUAUUACAAGAUGAUCCUAGCGCCGUC -3'
S-TuD-NC	s	5'- GACGGCGCUAGGAUCAUCAACUAUCGCGAGUAUCGACGUCGAGGCCCAAGUAUUCUGGU -3'
S-TuD-NC	a	5'- ACCAGAAUACAACUAUCGCGAGUAUCGACGUCGAGGCCCAAGAUGAUCCUAGCGCCGUC -3'

s⁺; sense strand

Supplementary Table S2. Information of purchased miRNA inhibitors.

miRNA inhibitors	Product name	Product code	Supplier	Characteristics
hairpin-miR21 hairpin-miR106b	miRIDIAN microRNA Hairpin Inhibitors	IH-300492-05 IH-300649-07	Thermo Scientific	The entire oligoribonucleotides are 2' -O-methylated and miRIDIAN microRNA Hairpin Inhibitors might contain some other modifications. In miRIDIAN microRNA Hairpin Inhibitor, a single antisense strand of the miRNA are flanked by oligonucleotides at the 5' and 3' ends, both of which are designed to form hairpin structure with a 8 base-pair stem.
LNA-miR200c LNA-miR106b	miRCURY LNA [™] microRNA Inhibitor	410126-00 426648-00	Exiqon	The sequence of miRCURY LNA [™] microRNA inhibitors are completely complementary to the corresponding miRNA and spiked by LNA.
antisense-miR106b	Anti-miR [™] miRNA Inhibitor	AM10067	Life Technologies	Anti-miR [™] miRNA Inhibitor is 2' −0-methylated oligoribonucleotides that is fully complementary to the corresponding miRNA.

Supplementary Table S3. Sequences of 2'-O-methyl antisense oligos and LNA/DNA antisense oligos.

Primers	Sequence
2'OMe-miR21*	5'- GUCAACAUCAGUCUGAUAAGCUA -3'
2'OMe-NC*	5'- AAGGCAAGCUGACCCUGAAGU -3'
LNA-NC**	5'- CATTAAT <u>GTCGGACA</u> ACTCAAT -3'

* : All of bases are 2'-O-methylated RNA.
** : LNAs are indicated by underline and other bases are DNA.

Supplementary Table S4. Primer pairs used for luciferase reporter vectors.

Primers		Sequence
pGL4.74-T21	s^+	5'- CTAGACCGGAATTCTCAACATCAGTCTGATAAGCTACTCGAGCGGAGGCCGG-3'
pGL4.74-T21	a^+	5'- CCTCCGCTCGAGTAGCTTATCAGACTGATGTTGAGAATTCCGGT-3'
pGL4.74-T200c	S	5'- CTAGACCGGAATTCTCCATCATTACCCGGCAGTATTACTCGAGCGGAGGCCGG-3'
pGL4.74-T200c	a	5'- CCTCCGCTCGAGTAATACTGCCGGGTAATGATGGAGAATTCCGGT-3'
pGL4.74-T16	S	5'- CTAGACCGGAATTCCGCCAATATTTACGTGCTGCTACTCGAGCGGAGGCCGG-3'
pGL4.74-T16	a	5'- CCTCCGCTCGAGTAGCAGCACGTAAATATTGGCGGAATTCCGGT-3'
pGL4.74-T106b	S	5'- CTAGACCGGAATTCATCTGCACTGTCAGCACTTTACTCGAGCGGAGGCCGG-3'
pGL4.74-T106b	a	5'- CCTCCGCTCGAGTAAAGTGCTGACAGTGCAGATGAATTCCGGT-3'

s⁺; sense strand

Supplementary Table S5. Primer pairs used for the construction of h7SK promoter TuD RNA shuttle vectors.

Primers		Sequence
h7SK promoter PCR	F^+	5'- GGATCCTGCAGTATTTAGCATGCCCCA -3'
h7SK promoter PCR	R^+	5'- GAATTCAAAAAAGGATGTGAGGGCGTCATCGAGACGGTACCGTCTCCGATGACGCCCTCACATCCGAGGTACCCAGGCGGCGCACAAGC -3'
h7SK TuD RNA shuttle	s^+	5'- CTCGGATGTGAGGGCGTCATCGGAGACGACGACCATCCACAGCCAGC
h7SK TuD RNA shuttle	a^+	5'- AGCTTGAATTCAAAAAAGGATGTGAGGGCGTCATCGAGACGCTGGCTG
<u></u>		

F⁺; Forward primer

R⁺; Reverse primer

s⁺; sense strand

Supplementary Table S6. Primer pairs used for TuD RNA expression vectors.

Primers		Sequence
TuD RNA-miR200c	s ⁺	5'- CATCAACTCCATCATTACCCATTAGGCAGTATTACAAGTATTCTGGTCACAGAATACAACTCCATCATTACCCATTAGGCAGTATTACAAG -3'
TuD RNA-miR200c	a^+	5'- TCATCTTGTAATACTGCCTAATGGGTAATGATGGAGTTGTATTCTGTGACCAGAATACTTGTAATACTGCCTAATGGGTAATGATGGAGTT -3'
TuD RNA-NC	s	5'- CATCAACTATCGCGAGTATCGACGTCGAGGCCCAAGTATTCTGGTCACAGAATACAACTATCGCGAGTATCGACGTCGAGGCCCAAG -3'
TuD RNA-NC	a	5'- TCATCTTGGGCCTCGACGTCGATACTCGCGATAGTTGTATTCTGTGACCAGAATACTTGGGCCTCGACGTCGATACTCGCGATAGTT -3'

s⁺; sense strand

Supplementary Table S7. Primer pairs used for the detection of interferon response.

Primers		Sequence
OAS1	\mathbf{F}^{+}	5'- AGGTGGTAAAGGGTGGCTCC -3'
OAS1	R^+	5'- ACAACCAGGTCAGCGTCAGAT -3'
OAS2	F	5'- ATCTGGATTTTGTGCCTAGTTC -3'
OAS2	R	5'- AACCACATGCTTGGTCTTTC -3'
MX1	F	5'- TCAGATGCACATGAGCTGG -3'
MX1	R	5'- GCACTCATGCTCCTAAAACAC -3'
IRF9	F	5'- GACTTGGTCAGGTACTTTCAGG -3'
IRF9	R	5'- TCTACACCAGGGACAGAATG -3'
IFITM1	F	5'- CCAAAGCCAGAAGATGCAC -3'
IFITM1	R	5'- GCTATGAAGCCCAGACAGC -3'
GAPDH	F	5'- ACTTTGTCAAGCTCATTTCCTG -3'
GAPDH	R	5'- CTCTCTTCCTCTTGTGCTCTTG -3'

F⁺; Forward primer

R⁺; Reverse primer