

Supporting Information © Wiley-VCH 2012

69451 Weinheim, Germany

Brønsted Acid-Catalyzed Asymmetric Propargylation of Aldehydes**

Pankaj Jain, Hao Wang, Kendall N. Houk,* and Jon C. Antilla*

anie_201107407_sm_miscellaneous_information.pdf

Supporting Information

Contents:

General considerations	S2
General procedure	
Experimental	S3-S34
Computational data	
References	

General Considerations: All reactions were carried out in flame-dried screw-cap test tubes and were allowed to proceed under a dry argon atmosphere with magnetic stirring. Toluene was purified by passing through a column of activated alumina under a dry argon atmosphere. Aldehydes were purchased from commercial sources and were distilled prior to use. TRIP catalyst was prepared from chiral BINOL according to the known literature procedure. Thin layer chromatography was performed on Merck TLC plates (silica gel 60 F_{254}). Visualization was accomplished UV light (256 nm), with the combination of ceric ammonium molybdate or potassium permanganate as indicator. Flash column chromatography was performed with Merck silica gel (230-400 mesh). Enantiomeric excess (ee) was determined using a Varian Prostar HPLC with a 210 binary pump and a 335 diode array detector. Optical rotations were performed on a Rudolph Research Analytical Autopol IV polarimeter (λ 589) using a 700-µL cell with a path length of 1-dm. ¹H NMR and ¹³C NMR were recorded on a Varian Inova-400 spectrometer with chemical shifts reported relative to tetramethylsilane (TMS). All the compounds were known compounds and were characterized by comparing their ¹H NMR and ¹³C NMR values to the reported values.

General procedure for the propargylation of aldehydes: A screw-cap reaction tube loaded with a stir bar and 4 Å MS (100 mg) was evacuated, flame-dried, and back-filled with argon. To this tube was added the (*R*)-TRIP-PA catalyst **PA5** (20 mol %), freshly distilled aldehyde (0.20 mmol) and 1.5 ml of dry toluene. The reaction mixture was then cooled to -20 °C followed by the addition of allenylboronic acid pinacol ester **2** (0.30 mmol), slowly over 30 seconds. The mixture was stirred for 96 hours at this temperature and then directly loaded on to a silica gel column and was purified by flash chromatography using ethyl acetate and hexanes (1 : 9).

(*R*)-1-Phenyl-but-3-yn-1-ol (3a): Following the general procedure for the propargylation of aldehydes in 2 mmol scale (benzaldhyde), the title compound was obtained in 95 % yield with spectral properties reported in literature.^[1] (94% yield, 91% ee was obtained when the reaction was run at 0.2 mmol scale following the general procedure for propargylation). Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/iPrOH = 95/5, 1.0 mL/min), $t_{major} = 10.49$ min, t_{minor} 12.81 min; ee = 95%. $[\alpha]^{25}_{D} = +10.10$ (c = 0.9, MeOH). The reported value¹ for the *R*-enantiomer (98% ee) is $[\alpha]^{24}_{D} = +12.9$ (c = 1.55, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.21 (m, 5H), 4.86 (td, *J* = 6.5, 2.6 Hz, 1H), 2.69 – 2.55 (m, 2H), 2.36 (s, 1H), 2.06 (t, *J* = 2.8 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 142.39, 128.45, 127.96, 125.70, 80.62, 72.30, 70.94, 29.42.

]

Peak results :

pankaj2	-144od	h951.DA	TA [Prostar 3	35 Absorband	ce Analog	Channel 1 EL06029028
Index	Time	Height	Width USP	Area	Area %	
000000000000000000000000000000000000000	[Min]	[mAU]	[Min]	[mAU Min]	[%]	

	IVIIII	IIIAU	livini	[IIIAO.IVIIII]	70
1	10.73	15.0	0.48	4.6	50.617
2	12.81	12.3	0.58	4.5	49.383
Total		27.3		9.2	100.000

pankaj2-150.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	10.49	131.1	0.65	52.6	97.538
2	12.81	3.3	0.65	1.3	2.462
Total		134.4		53.9	100.000

CI

(*R*)-1-(4-Chloro-phenyl)-but-3-yn-1-ol (3b): Following the general procedure for the propargylation of aldehydes, the title compound was obtained in 95 % yield with spectral properties reported in literature.^[2,3] Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/iPrOH = 98/2, 1.0 mL/min), $t_{major} = 18.56$ min, $t_{minor} = 20.32$ min; ee = 93%. $[\alpha]^{25}{}_{D} = +21.50$ (c = 2.7, CHCl₃). The reported value³ for the *S*-enantiomer (88% ee) is $[\alpha]^{20}{}_{D} = -35.9$ (c = 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (s, 4H), 4.83 (td, *J* = 6.5, 3.1 Hz, 1H), 2.69 – 2.51 (m, 2H), 2.40 (d, *J* = 3.3 Hz, 1H), 2.06 (t, *J* = 2.6 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 141.08, 133.91, 128.84, 127.38, 80.39, 71.85, 71.56, 29.70.

1

Peak results :

pankaj2-72odh981.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	[Min]	[mAU]	[Min]	[mAU.Min]	Area %
1	18.65	26.4	0.99	16.5	50.121
2	20.65	23.7	1.11	16.4	49.879
Total		50.0		33.0	100.000

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	18.56	47.9	1.17	34.8	96.283
2	20.32	1.9	1.12	1.3	3.717
Total		49.8		36.1	100 000

(*R*)-1-(4-Bromo-phenyl)-but-3-yn-1-ol (3c): Following the general procedure for the propargylation of aldehydes, the title compound was obtained in 93 % yield with spectral properties reported in literature.^[4] Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/iPrOH = 98/2, 1.0 mL/min), $t_{major} = 20.00$ min, $t_{minor} = 22.15$ min; ee = 93%. $[\alpha]^{25}_{D} = +19.52$ (c = 2.15, CHCl₃). The reported value⁴ for the *S*-enantiomer (81% ee) is $[\alpha]_{D} = -28.4$ (c = 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.36 (m, 2H), 7.29-7.15 (m, 2H), 4.85-4.72 (m, 1H), 2.66-2.50 (m, 2H), 2.37 (br s, 1H), 2.07-1.97 (m, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 141.59, 131.78, 127.71, 122.03, 80.34, 71.87, 71.58, 29.64.

Peak results :

pankaj2-74-odh981.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	[Min]	[mAU]	[Min]	Area [mAU.Min]	Area % [%]
1	19.77	34.0	1.13	24.1	49.766
2	21.73	30.7	1.26	24.4	50.234
Total		64.7		48.5	100.000

pankaj2-83.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	20.00	104.5	1.25	79.5	96.440
2	22.15	3.9	1.19	2.9	3.560
Total		108.4		82.5	100.000

(*R*)-1-(4-Nitro-phenyl)-but-3-yn-1-ol (3d): Following the general procedure for the propargylation of aldehydes, the title compound was obtained in 96 % yield with spectral properties reported in literature.^[5] Enantiomeric excess was determined by HPLC with a chiralcel OJ-H column (hexane/iPrOH = 90/10, 1.0 mL/min), $t_{minor} = 29.81$ min, $t_{major} = 32.92$ min; ee = 93%. [α]²⁵_D = +3.48 (c = 0.37, CHCl₃). The absolute configuration was determined by analogy. ¹H NMR (400 MHz, CDCl₃) δ 8.32 – 8.09 (m, 2H), 7.68 – 7.45 (m, 2H), 5.02-4.95 (m, 1H), 2.75-2.56 (m, 3H), 2.10 (td, *J* = 2.6, 0.6 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 149.64, 147.79, 126.87, 123.88, 79.57, 72.18, 71.50, 29.70.

]

Peak results :

pankaj2-76ojh901.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	[Min]	[mAU]	[Min]	[mAU.Min]	Area % [%]
1	29.32	752.4	2.02	1056.8	47.010
2	32.80	663.0	2.44	1191.3	52.990
Total		1415.4		2248.1	100.000

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]	
1	29.81	24.1	1.85	30.8	3.579	
2	32.92	496.6	2.26	829.6	96.421	
Total		520.6		860.4	100.000	

. 140

(*R*)-1-(4-Methoxy-phenyl)-but-3-yn-1-ol (3e): Following the general procedure for the propargylation of aldehydes, the title compound was obtained in 87 % yield with spectral properties reported in literature.^[3,4] Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/iPrOH = 90/10, 1.0 mL/min), $t_{major} = 8.64$ min, $t_{minor} = 10.53$ min; ee = 92%. $[\alpha]^{25}{}_{D} = +33.60$ (c = 1.45, CHCl₃). The reported value³ for the *S*-enantiomer (89 % ee) is $[\alpha]^{28}{}_{D} = -36.2$ (c = 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.29 (m, 2H), 6.92 – 6.86 (m, 2H), 4.84 (t, *J* = 6.4 Hz, 1H), 3.81 (s, 3H), 2.66-2.60 (m, 2H), 2.30 (br s, 1H), 2.07 (t, *J* = 2.6 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 159.56, 134.87, 127.23, 114.08, 81.03, 72.21, 71.08, 55.51, 29.61.

Peak results :

pankaj2-85odh901.DATA [Prostar 335 Absorbance Analog Channel 2 EL06029028]

Index	Name	[Min]	[% Area]	[mAU]	[mAU.Min]	Area %
1	UNKNOWN	8.60	49.57	195.4	104.4	49.567
2	UNKNOWN	10.32	50.43	180.7	106.2	50.433
Total			100.00	376.0	210.7	100.000

pankaj2-86.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	8.64	552.8	0.90	313.2	95.840
2	10.53	23.3	0.94	13.6	4.160
Total		576.1		326.8	100.000

(*R*)-1-(3-Methoxy-phenyl)-but-3-yn-1-ol (3f): Following the general procedure for the propargylation of aldehydes, the title compound was obtained in 92 % yield with spectral properties reported in literature.^[6] Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/iPrOH = 98/2, 1.0 mL/min), $t_{major} = 34.28$ min, $t_{minor} = 39.96$ min; ee = 96%. $[\alpha]^{25}{}_{D} = +7.09$ (c = 0.34, CHCl₃). The absolute configuration was determined by analogy. ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.21 (m, 1H), 6.97 – 6.90 (m, 2H), 6.82 (ddd, *J* = 8.2, 2.4, 1.1 Hz, 1H), 4.83 (td, *J* = 6.4, 3.4 Hz, 1H), 3.80 (s, 3H), 2.64 – 2.59 (m, 2H), 2.38 (d, *J* = 3.5 Hz, 1H), 2.06 (t, *J* = 2.6 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 159.95, 144.35, 129.74, 118.22, 113.68, 111.49, 80.86, 72.46, 71.21, 55.45, 29.65.

1

Peak results :

pi2-87odh981.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	31.96	42.2	2.87	77.0	49.355
2	36.39	37.6	3.28	79.0	50.645
Total		79.8		156.0	100 000

pankaj2-88.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	34.28	49.5	2.79	87.9	97.997
2	39.96	1.1	1.82	1.8	2.003
Total	19.000 1	50.6		89.7	100 000

OH

(*R*)-1-*o*-Tolyl-but-3-yn-1-ol (3g): Following the general procedure for the propargylation of aldehydes, the title compound was obtained in 91 % yield with spectral properties reported in literature.^[4] Enantiomeric excess was determined by HPLC with a chiralcel AD-H column (hexane/iPrOH = 98/2, 1.0 mL/min), t_{major} = 16.61 min, t_{minor} = 21.21 min; ee = 92%. $[\alpha]^{25}_{D}$ = +35.57 (c = 1.96, CHCl₃). The reported value⁴ for the *S*-enantiomer (89 % ee) is $[\alpha]^{25}_{D}$ = -63.2 (c = 0.58, CHCl₃).¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 7.4 Hz, 1H), 7.26-7.20 (m, 3H), 5.10 (dd, *J* = 7.3, 5.4 Hz, 1H), 2.62 – 2.57 (m, 2H), 2.35 (s, 3H), 2.32 (br s, 1H), 2.07 (td, *J* = 2.6, 0.8 Hz, 1H).¹³C NMR (100.6 MHz, CDCl₃) δ 140.69, 134.80, 130.66, 127.96, 126.55, 125.27, 81.13, 70.97, 69.10, 28.48, 19.27.

1

Peak results :

pankaj2-89adh981.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	16.63	42.8	1.78	51.2	49.591
2	21.28	41.8	1.86	52.0	50.409
Total		84.6		103.2	100.000

pankaj2-90.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028

Index	[Min]	[mAU]	[Min]	Area [mAU.Min]	Area % [%]
2	16.61	172.5	1.74	203.0	95.766
1	21.21	7.6	1.73	9.0	4.234
Total		180.1		212.0	100.000

(*R*)-Methyl 4-(1-hydroxybut-3ynyl)benzoate (3h): Following the general procedure for the propargylation of aldehydes, the title compound was obtained in 94 % yield with spectral properties reported in literature.^[7] Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/iPrOH = 90/10, 1.0 mL/min), $t_{major} = 11.67$ min, $t_{minor} = 16.43$ min; ee = 91%. $[\alpha]^{25}_{D} = +33.33$ (c = 2.04, CHCl₃). The absolute configuration was determined by analogy. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.1 Hz, 2H), 7.45 (d, *J* = 8.3 Hz, 2H), 4.97 – 4.86 (m, 1H), 3.90 (d, *J* = 0.7 Hz, 3H), 2.76 – 2.50 (m, 3H), 2.07 (td, *J* = 2.6, 0.7 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 167.06, 147.63, 129.96, 129.88, 125.94, 80.24, 72.03, 71.60, 52.34, 29.60.

]

1

Peak results :

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]	
1	12.57	398.0	1.16	286.6	49.826	
2	16.63	320.7	1.47	288.6	50.174	
Total		718.7		575.3	100.000	

pankaj2-92.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	11.67	1834.5	1.61	1872.0	95.568
2	16.43	94.4	1.47	86.8	4.432
Total		1928.9		1958.8	100.000

(*R*)-1-(Benzo[d][1,3]dioxol-5-yl)but-3-yn-1-ol (3i): Following the general procedure for the propargylation of aldehydes, the title compound was obtained in 92 % yield with spectral properties reported in literature.^[8] Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/iPrOH = 95/5, 1.0 mL/min), $t_{major} = 15.99$ min, $t_{minor} = 21.40$ min; ee = 94%. [α]²⁵_D = +3.91 (c = 1.70, CHCl₃). The absolute configuration was determined by analogy. ¹H NMR (400 MHz, CDCl₃) δ 6.96 – 6.72 (m, 3H), 5.95 (s, 2H), 4.79 (td, *J* = 6.4, 3.0 Hz, 1H), 2.60 (dd, *J* = 6.6, 2.6 Hz, 2H), 2.33 (d, *J* = 3.2 Hz, 1H), 2.08 (t, *J* = 2.6 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 148.07, 147.56, 136.82, 119.54, 108.40, 106.58, 101.36, 80.90, 72.50, 71.30, 29.79.

1

1

Peak results :

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]	
1	16.53	61.8	0.85	33.0	49.412	
2	21.61	47.9	1.11	33.8	50.588	
Total		109.7		66.8	100.000	8

pankaj2-79.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	15.99	418.9	1.23	324.8	97.100
2	21.40	12.0	1.30	9.7	2.900
Total		430.8		334.5	100.000

(*R*)-1-(Naphthalen-1-yl)but-3-yn-1-ol (3j): Following the general procedure for the propargylation of aldehydes, the title compound was obtained in 93 % yield with spectral properties reported in literature.^[3,9] Enantiomeric excess was determined by HPLC with a chiralcel OJ-H column (hexane/iPrOH = 90/10, 1.0 mL/min), $t_{minor} = 19.52$ min, $t_{major} = 24.85$ min; ee = 91%. [α]²⁵_D = +60.64 (c = 1.96, PhH). The reported value³ for the *S*-enantiomer (84 % ee) is [α]²⁸_D = -53.2 (c = 1, PhH). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.3 Hz, 1H), 7.92 – 7.78 (m, 2H), 7.72 (d, *J* = 7.1 Hz, 1H), 7.58 – 7.45 (m, 3H), 5.67 (dd, *J* = 8.1, 4.0 Hz, 1H), 2.95-2.85 (m, 1H), 2.81-2.71 (m, 1H), 2.56 (br s, 1H), 2.15 (t, *J* = 2.4 Hz, 1H).¹³C NMR (100.6 MHz, CDCl₃) δ 138.00, 133.99, 130.39, 129.25, 128.70, 126.50, 125.85, 125.61, 123.17, 122.97, 81.17, 71.46, 69.51, 28.90.

1

1

Peak results :

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]	
1	19.20	398.5	1.34	333.1	50.236	
2	24.85	308.8	1.69	330.0	49.764	
Total		707.3		663.0	100.000	

pankaj2-118.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	19.52	59.0	1.00	37.5	4.387
2	24.23	637.3	2.11	818.4	95.613
Total		696.3		855.9	100.000

(*R*)-1-Phenylpent-4-yn-2-ol (3k): Following the general procedure for the propargylation of aldehydes, the title compound was obtained in 90 % yield with spectral properties reported in literature.^[8] Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/iPrOH = 99/1, 1.0 mL/min), $t_{minor} = 20.80$ min, $t_{major} = 23.85$ min; ee = 79%. [α]²⁵_D = +0.53 (c = 0.55, CHCl₃). The absolute configuration was determined by analogy. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.13 (m, 5H), 4.06 – 3.88 (m, 1H), 2.95-2.78 (m, 2H), 2.49 – 2.30 (m, 2H), 2.09 (t, *J* = 2.7 Hz, 1H), 1.95 (d, *J* = 4.4 Hz, 1H).¹³C NMR (100.6 MHz, CDCl₃) δ 137.87, 129.61, 128.83, 126.90, 80.82, 71.33, 71.03, 42.70, 26.64.

Peak results :

pankaj2-98odh991.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	[Min]	[mAU]	[Min]	[mAU.Min]	Area %
1	20.87	6.9	1.23	5.3	50.579
2	24.19	5.9	1.39	5.2	49.421
Total		12.8		10.6	100.000

pankaj2-117old.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	20.80	2.1	1.23	1.5	10.640
2	23.85	14.1	1.42	12.5	89.360
Total		16.1		13.9	100.000

OH

(*S*)-1-Phenylhex-5-yn-3-ol (3l): Following the general procedure for the propargylation of aldehydes, the title compound was obtained in 92 % yield with spectral properties reported in literature.^[10] Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/iPrOH = 90/10, 1.0 mL/min), $t_{major} = 6.97 \text{ min}$, $t_{minor} = 9.67 \text{ min}$; ee = 82 %. $[\alpha]^{25}_{D} = -13.51 \text{ (c} = 1.38, \text{CHCl}_3)$. The reported value³ for the *R*-enantiomer (42 % ee) is $[\alpha]^{28}_{D} = +8.70 \text{ (c} = 0.4, \text{CHCl}_3)$. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.08 (m, 5H), 3.83-3.70 (m, 1H), 2.86-2.63 (m, 2H), 2.50 – 2.24 (m, 2H), 2.05 (t, *J* = 2.6 Hz, 1H), 1.96 (d, *J* = 5.2 Hz, 1H), 1.90-1.82 (m, 2H).¹³C NMR (100.6 MHz, CDCl₃) δ 141.84, 128.65, 128.63, 126.14, 80.85, 71.22, 69.32, 37.99, 32.10, 27.72.

1

pankaj2-96odh901.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	[Min]	[mAU]	[Min]	[mAU.Min]	[%]
1	6.76	55.7	0.62	21.3	49.950
2	9.60	46.9	0.73	21.3	50.050
Total		102.6		42.6	100.000

pankaj2-116.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	6.79	201.7	0.62	76.8	90.981
2	9.67	18.1	0.68	7.6	9.019
Total		219.8		84.4	100.000

. 170 . 160 . 80 . 70 . 30

(*R*)-1-Cyclohexyl-but-3-en-1-ol (3m): Following the general procedure for the propargylation of aldehydes, the title compound was obtained in 89 % yield with spectral properties reported in literature.^[3,10,11] Enantiomeric excess was determined to be 77 % by ¹H NMR of the crude material after esterification with (*R*)-MTPACl by comparing the singlets at δ 3.62 (major) and 3.54 (minor).^[3] $[\alpha]^{25}_{D} =$ +7.70 (c = 0.35, CHCl₃). The reported value¹¹ for the *R*-enantiomer (59% ee) is $[\alpha]^{20}_{D} = +7$ (c = 0.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 3.54-3.45 (m, 1H), 2.50 – 2.27 (m, 2H), 2.05 (t, *J* = 2.6 Hz, 1H), 1.95 – 1.39 (m, 7H), 1.31 – 0.91 (m, 5H).¹³C NMR (100.6 MHz, CDCl₃) δ 84.92, 74.23, 70.90, 42.72, 29.24, 28.39, 26.59, 26.33, 26.17, 24.85.

¹H NMR of the crude**3m** after esterefication with (R)-MTPACI

(*R*)-5-phenyldihydrofuran-3-one (4): Following Zhang's gold catalysis procedure,^[7] while using 3,5dichloropyridine *N*-oxide as the oxidant, the title compound was obtained in 54 % yield with spectral properties reported in literature.^[7] Enantiomeric excess was determined by HPLC with a chiralcel OJ-H column (hexane/iPrOH = 90/10, 1.0 mL/min), $t_{minor} = 20.27$ min, $t_{major} = 21.41$ min; ee = 95 %. $[\alpha]^{25}_{D} =$

+67.61 (c = 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.32 (m, 5H), 5.29 (dd, *J* = 9.5, 6.3 Hz, 1H), 4.25 (d, *J* = 17.0 Hz, 1H), 4.02 (d, *J* = 17.0 Hz, 1H), 2.87 (dd, *J* = 17.9, 6.3 Hz, 1H), 2.55 (dd, *J* = 17.9, 9.5 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 214.38, 140.18, 128.94, 128.54, 126.07, 79.57, 71.95, 44.94.

Peak results :

pankaj2-146ojh901.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

muex	[Min]	[mAU]	[Min]	[mAU.Min]	[%]
1	20.01	33.4	1.13	25.3	45.822
2	21.77	29.6	1.32	29.9	54.178
Total		63.0		55.1	100.000

pankaj2-154oj901.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028]

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	20.27	1.9	0.85	1.1	2.639
2	21.41	41.1	1.31	39.4	97.361
Total		43.0		40.5	100.000

OH

(R)-1-phenylpenta-3,4-dien-1-ol (5): Following the reported procedure^[12] the title compound was obtained in 34 % yield with spectral properties reported in literature.^[12,13] Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/iPrOH = 90/10, 1.0 mL/min), t_{maior} = 6.07min, $t_{minor} = 7.01$ min; ee = 95 %. $[\alpha]_{D}^{25} = +45.88 (c = 0.60, CHCl_3)$. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.32 (m, 4H), 7.31 - 7.27 (m, 1H), 5.12 (p, J = 7.0 Hz, 1H), 4.77 (t, J = 6.5 Hz, 1H), 4.72 (dt, J = 6.7, 2.8Hz, 2H), 2.52 – 2.40 (m, 2H), 2.17 (br s, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 209.70, 143.83, 128.63, 127.82, 126.06, 86.32, 75.28, 73.84, 38.70.

]

7.01

Total

4.8

218 5

Index	Time [Min]	Height [mAU]	Width USP [Min]	Area [mAU.Min]	Area % [%]
1	6.11	99.2	0.36	22.1	49.846
2	7.04	90.4	0.40	22.3	50.154
Total		189.7		44.4	100.000

0.40

pankai-155odh901.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028

153.DATA [Prostar 335 Absorbance Analog Channel 1 EL06029028 Time Height Width USP Area Area % 1 Area [mAU.Min] [Min] [mAU] [Min] [%] 6.07 213.7 0.37 97.559 48.7

1.2

2.441

49.9 100.000

(*R*)-2-phenyl-2,3dihydrofuran (4): Following the literature procedure,^[14] the title compound was obtained in 61 % yield with spectral properties reported in literature.^[15] Enantiomeric excess was determined to be >94 % by chiral GC (80 °C for 2 min, increase 1 °C/min for 38 min, cyclodex-B column), t_{minor} = 18.65 min, t_{major} = 18.95 min; $[\alpha]^{25}_{D}$ = -28.10 (c = 0.23, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.24 (m, 5H), 6.49 – 6.43 (m, 1H), 5.53 (dd, *J* = 10.7, 8.4 Hz, 1H), 5.01 – 4.94 (m, 1H), 3.14 – 3.05 (m, 1H), 2.67 – 2.58 (m, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 145.54, 143.26, 128.73, 127.84, 125.81, 99.24, 82.57, 38.07.

Spectrum Peak#:1 R.Time:18.6(Scan#:4095) MassPeaks:86 100 146 103 131 155 177 191 209 227 240 270 286 307 319 332 70 130 150 170 190 210 230 250 270 290 310 330 50 90 110 350 30

Peak#:2 R.Time:18.9(Scan#:4185) MassPeaks:99

m/z

Full reference 17:

Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

В	0.30191459	0.92047127	0.0000000
С	1.89522159	0.31233727	0.43231500
С	2.20439059	0.78524427	1.56587000
С	1.92930259	1.37711827	2.76708700
Н	2.41691459	-0.31066173	-0.27917700
Н	2.35492359	2.35323227	2.99862100
Н	1.78930059	0.72553527	3.62759200
0	0.47330559	2.14798427	-0.71072600
С	-0.44184941	2.13853827	-1.82233700
0	-0.40132141	-0.00186773	-0.86570600
С	-0.52048141	0.60817827	-2.17939900
С	-1.79028341	2.70511827	-1.34373900
Н	-2.22307841	2.08319427	-0.55459200
Н	-1.62155441	3.70615627	-0.93341300
Н	-5.50372341	0.85729827	0.72497100
С	0.13200659	3.02449927	-2.92846300
Н	0.16610659	4.06346527	-2.58408600
Н	1.14904059	2.72652327	-3.19344700
Н	-0.49214041	2.98767427	-3.82913600
С	-1.83717741	0.16407827	-2.81289300
H	-2.68300441	0.33588527	-2.14346500
Н	-1.80275041	-0.90433273	-3.04/13200
Н	-2.01674041	0.70460827	-3.74972200
С	0.66332459	0.12798127	-3.03196800
H	1.61496359	0.48608327	-2.62827300
Н	0.68113959	-0.96690373	-3.03584200
Н	0.57860959	0.47093627	-4.06877300
0	-0.39797641	1.00672527	1.30118500
C	0.01466859	1.84562927	2.22095800
H	0.29298859	2.8415/82/	1.86386800
C	-0.6/936041	1.//60/52/	3.52906900
C	-0.76527141	2.92345627	4.32889900
C	-1.251/2241	0.5/12332/	3.96776800
C	-1.42520041	2.8/40322/	5.55636500
	-1.90597441	0.52868227	5.19655300
	-1.99588741	1.6/62142/	5.99142200
н	-0.32496141	3.830/042/	3.98414100
н	-1.10324241	-0.31/01//3	3.34812800 C 1C017500
п	-1.49093041	3./00400Z/ 0.40425772	6.1091/JUU 5 52562800
п	-2.54/51041	-0.40433773	6 04021000
n u	-2.30907241	_1 /0323873	-0 45325800
0	-1 24627741	-2 4/10/772	-0.30714400
D	-1.24037741	-2.44104773	1 01/29600
0	-0 179098/1	-2 25910673	2 08228800
0	0 28546159	-4 24603573	0 38926800
0	-1 93966441	-4 02810073	1 58473100
C	0 73628259	-5 30944673	1 16710000
Č	-0 15719441	-6 35107173	1 47598200
C	2.09874859	-5.35361173	1.50386900
C	0.35018459	-7.44992873	2.19062400
C	2.55910459	-6.48845873	2.18677400

1.69383659	-7.52204173	2.53986700
-0.32821241	-8.24744673	2.47700600
3.61238759	-6.54623573	2.44514000
2.06751959	-8.38267373	3.08737400
-2.40890841	-5.22648073	1.06069900
-1.57534741	-6.36053873	1.03162700
-3 77053941	-5 28128473	0 71396700
-2 14442941	-7 57028573	0 59549400
-1 20375211	-6 52078473	0 32249100
-3 /882/7/1	-7 655/5273	0.25140800
1 51000041	-7.00040270	0.23140800
-1.J1090941	-0.44001273	0.32308900
-5.34/02241	-0.58107773	0.06402600
-3.90696741	-8.60329673	-0.0/464/00
3.06265259	-4.25555173	1.15/5/200
3.59206759	-3.43947773	2.18506300
3.50696659	-4.08437173	-0.17599800
4.56872559	-2.49067073	1.85665800
4.48143859	-3.11781973	-0.44675600
5.03864159	-2.31648173	0.55470800
4.98428259	-1.87077673	2.64809800
4.83263459	-3.00627673	-1.46988400
-4.64955241	-4.06579973	0.74426600
-5.05489841	-3.49981373	1.97474800
-5.10331341	-3.50191973	-0.47346300
-5.88136141	-2.37067973	1.95826100
-5.92848141	-2.37335273	-0.42980200
-6.32424041	-1.78306673	0.77274100
-6 19252841	-1 93210873	2 90403600
-6 26267641	-1 93773273	-1 36842400
3 1/979/59	-3 55/67373	3 64474100
2 56173759	-2 23380673	1 17655200
1 20828250	_/ 0/991173	4.54601200
9.29020209	4.04991173	2 60027100
2.34931739	-4.29/344/3	3.6993/100
1.70862159	-1.92328573	3.56676300
2.21823059	-2.36584973	5.21020500
3.31024759	-1.43163073	4.1/814800
4.68930959	-5.01621//3	4.20/35400
5.13474759	-3.34065273	4.55631300
3.95005159	-4.16868873	5.57919700
6.15201659	-1.31968773	0.25483000
5.73995959	-0.25904873	-0.78236900
7.44311159	-2.04020173	-0.18058800
6.37207159	-0.79178873	1.19304700
4.86175059	0.30387127	-0.44882200
6.55592359	0.45474427	-0.94804000
5.50064859	-0.71606673	-1.75012500
7.76181259	-2.76937973	0.57225900
7.29650559	-2.57853473	-1.12458200
8.25836359	-1.32152073	-0.32837400
2.99678759	-4.94878873	-1.32888700
4.12501259	-5.81122173	-1.92917400
2.30083459	-4.10833673	-2.41621500
2 24906959	-5 64026773	-0 93132400
4 59121259	-6 44214073	-1 16400700
3 72960359	-6 46602273	-2 71513300
A Q12Q3050	-5 10363373	-2 37648800
1 AGOOAGEO	_3 5/3/1672	-1 99/53200
T.40204023	-3 2000077	-2 00502700
2.99401339 1 00704050	-J.JJJJ00/J _A 750/5070	-2.00302/00
	-4./30030/3	
-4./2164441	-4.068388/3	-1.042200UU
-3.90/10041	-3.030/46/3	-2.70011300
-5.95136441	-4.6193/2/3	-2.59009000
-4.03627241	-4.90552073	-1.68749600

С
Н Н
Н
C C
С
C C
C
H u
н Н
С
C
С
C C
H
H C
С
C C
C
С ц
H
C C
C
H
н Н
H
н Н
H
C C
Ċ
H H
Н
H H
H
H C
C
С
н Н
H
н Н
H
H C
С
C H

Н	-3.07335341	-2.68880073	-2.17526100
Н	-3.65845441	-3.48600273	-3.65231000
Н	-4.59040841	-2.16477973	-2.93176700
Н	-6.46451041	-5.39103873	-2.00462700
Н	-6.68040441	-3.82855073	-2.80384800
Н	-5.65143941	-5.06324073	-3.54726300
С	-4.66277241	-4.09896573	3.32455400
С	-5.89431341	-4.66900773	4.05674500
С	-3.90520241	-3.09425173	4.21323800
Н	-3.98645341	-4.93864473	3.14247900
Н	-6.40846841	-5.41781673	3.44365300
Н	-5.59430641	-5.14708673	4.99731100
Н	-6.61897841	-3.88238973	4.29871200
Н	-3.00601641	-2.72922473	3.70835500
Н	-4.53133241	-2.23132173	4.47103000
Н	-3.60052441	-3.57440273	5.15144900
С	-7.19166341	-0.53150473	0.80081600
С	-8.55022141	-0.74470073	0.10806600
С	-6.44951241	0.67953427	0.20244700
Н	-7.39376341	-0.30350673	1.85648700
Н	-9.09396241	-1.58577573	0.55217000
Н	-9.17491741	0.15216127	0.19868300
Н	-8.42631441	-0.95475573	-0.96100500
Н	-2.51702541	2.78847327	-2.15823800
Н	-6.21982041	0.51792227	-0.85758400
Н	-7.05882841	1.58859827	0.27736000
Sum of electronic	and zero-poi	nt Energies=	-3146.510009
Sum of electronic	and thermal	Energies=	-3146.441101
Sum of electronic	and thermal	Enthalpies=	-3146.440156
Sum of electronic	and thermal	Free Energies=	-3146.617796
Imaginary frequence	cy: -365.06 c	m^{-1}	

TSs1

В	-1.11729300	3.26467100	-1.01100600
С	-2.79932000	2.78956200	-1.07105200
С	-3.37098900	3.09539800	0.02050700
С	-3.39167600	3.47921200	1.32939200
Н	-3.17200100	2.34024300	-1.98042500
Н	-3.85606500	4.42338700	1.61108600
Н	-3.44543300	2.70009100	2.08856900
0	-0.96357500	4.52917700	-1.65233400
С	0.25270900	4.47670100	-2.42585200
0	-0.28312000	2.30873600	-1.70893900
С	0.31722300	2.96241900	-2.85844600
С	1.42489400	4.88378900	-1.51581700
Н	1.54894400	4.18095000	-0.68707500
Н	1.21350000	5.87217400	-1.09473200
Н	2.36924100	4.94302500	-2.06829700
С	0.12467400	5.46733300	-3.58345800
Н	0.06941400	6.48647300	-3.18669200
Н	-0.78090700	5.28549000	-4.16684100
Н	0.99195300	5.41185800	-4.25208700
С	1.72492200	2.40010600	-3.05234200
Н	2.31843100	2.48039000	-2.13922800
H	1.67089300	1.34129100	-3.32765700
Н	2.24663900	2.92942900	-3.85821300
С	-0.54924500	2.65235800	-4.08762300
Н	-1.55369000	3.07307300	-3.98189700
H	-0.63989200	1.56700200	-4.20044500
Н	-0.10376200	3.05222100	-5.00487100
0	-0.78881200	3.21835200	0.43827000
С	-1.41334700	3.99652700	1.28412600
Н	-1.62567900	5.01108300	0.93274200

-	-1.05623300	3.85272600	2.71436900
	-1 37133200	4 88678900	3 60862800
	0 20441200	2 70220200	2 17/02200
-	-0.39441300	2.70556200	3.1/403300
-	-1.03296200	4.77604600	4.95523800
	-0.06071700	2.60081800	4.52429500
	-0.37882000	3.62991200	5.41509400
	-1 07206700	5 70002400	2 24506600
	-1.0/390/00	5.70005400	5.24506600
	-0.13370800	1.91224600	2.47672700
	-1.27324200	5.58211900	5.64305400
	0.45750500	1.71410400	4.87795800
	_0 112/8700	3 54262200	6 46516800
	-0.11240700	5.54202200	1.25501700
•	-0.22440500	0./5601900	-1.35521/00
-	-0.25802200	-0.24980800	-1.23156200
	0.30107700	-0.78901200	0.13976500
	0 68518300	0 18465400	1 18202600
	1 400510500	1 70005000	1.10202000
	1.46252400	-1./8935800	-0.40/86000
	-0.80872300	-1.82300100	0.72655200
	2.00696300	-2.76345800	0.42400200
	1 23/50900	-3 89560/00	0 7338/100
	1.23430900	-3.09500400	0.75504100
	3.34931300	-2.62822200	0.81252100
	1.83460200	-4.89671700	1.51625400
	3.90765400	-3.66569800	1.57184900
	3 15614500	-4 78294800	1 93437200
	1 24660000		1 70050000
	1.24669000	-5./6445200	1./9959000
	4.94715100	-3.58537000	1.87613000
	3.60404900	-5.56730000	2.53800300
	-1 10777200	-3 06499700	0 17912500
	2 42000	2 200172000	0.251(0200
-	-2.42669300	-3.2861/800	-0.25168300
	-0.14185200	-4.08922600	0.20824700
	-2.75995900	-4.57829900	-0.68290800
	-0.52328800	-5.35898300	-0.25685200
	_1 81849000	-5 60511200	-0 69726400
	-1.01049000	-5.00511200	-0.09720400
•	-3.//90/900	-4./6898000	-1.00591200
	0.21784400	-6.15208500	-0.27653900
-	-2.09557500	-6.59466400	-1.04947100
	4 18344300	-1 44630600	0 41239500
	4.46706000	1.44050000	1 25000100
	4.40/00800	-0.42//8200	1.32008100
	4.73038800	-1.37593200	-0.89229200
	5.29439300	0.63349800	0.96197100
	5 54439900	-0 29015300	-1 22696200
	5 94252200	0 72764900	_0 21649700
	5.04252200	0.72704000	-0.31048700
	5.51595100	1.41809400	1.68209000
	5.96319400	-0.24280400	-2.22948000
	-3,49293200	-2.22805100	-0.23378200
	-3 9792/800	-1 69839100	-1 /5393800
	-3.97924000	-1.09039100	-1.45595000
	-4.09265400	-1.84063300	0.98675700
	-5.07735200	-0.83142100	-1.42767400
-	-5.18157600	-0.96125100	0.95443900
	-5 70586200	-0 15775300	-0 23698500
	5.70500200	0.43773300	0.23030500
-	-5.45964300	-0.44853800	-2.3/0/9500
	-5.65510800	-0.67683400	1.89192700
	6.73398900	1.90257100	-0.69660000
	6 11330800	2 75268400	-1 82157400
	0 15701000	1 11000000	
	0.10/01000	1.44000000	-1.0/060400
	6.81648500	2.54428600	U.19133800
	5.11586500	3.10962100	-1.54207000
	6.74058700	3,62565500	-2.03980800
	6 01242200	2 17/20700	_2 7/702000
	0.01342300	2.1/428/00	-2.14/83900
	8.61681600	0.87551500	-0.25777300
	8.15108700	0.81353900	-1.96422500
	8.79761300	2.31418400	-1.28240700
	3 01200600	_0 /2001000	2 77600700
	2.9T300000	-0.43891800	2.1/602/00
	3.13574800	0.84875900	3.10687100

С	
С	
С	
C	
C	
Н	
Η	
Н	
H	
п Н	
0	
Ρ	
0	
0	
C	
C	
С	
С	
C C	
С Н	
Н	
Η	
С	
C	
С	
C	
С	
Н	
H U	
C	
С	
С	
C	
C	
H	
Н	
С	
C C	
C	
C	
С	
Η	
H	
C	
C	
Η	
H	
Ĥ	
н Н	
Н	
Η	
C c	
С	

С		5.0322700	-0.68755000	3.80722400
Н		3.2021320	-1.26565700	2.85582100
Н		2.3208860	0.99736000	2.39406000
Н		2.7075290	0.77628100	4.11493700
Н		3.7826720	1.73398300	3.09084400
Н		5.5533770	-1.63329900	3.61893000
Н		5.7808150	0.11346700	3.78077000
Н		4.6187160	-0.72496100	4.82250400
С		4.4919960	-2.46010800	-1.94354600
С		5.8025620	-3.18389000	-2.31181700
С		3.7936680	-1.90350500	-3.19879000
Н		3.8253920	-3.21319800	-1.51431600
Н		6.2777930	-3.61885200	-1.42539500
Н		5.60582200	-3.99384300	-3.02478900
Н		6.52430200	-2.50065900	-2.77493400
Н		2.8419070	-1.43166100	-2.93651300
Н		4.41662200	-1.16058900	-3.71157600
Н		3.5897960	-2.71223000	-3.91137200
С		-6.95561100	0.41377400	-0.22579100
C		-8.17429700	-0.36455600	-0.76213300
C		-6.7810690	1.74100200	-0.98498300
H		-7.1643100	0.66277700	0.82399000
Н		-8.33585000) -1.28715000	-0.19408900
Н		-9.0847440	0.24349300	-0.69476600
Н		-8.0321360	-0.64149400	-1.81368700
Н		-5.94810800	2.32679500	-0.58057600
Н		-6.58814800	1.57404100	-2.05134800
Н		-7.6914890	2.34754800	-0.90849500
С		-3.35312200	-2.04320000	-2.80626900
С		-2.8975100	-0.78420200	-3.56816900
С		-4.30362800	-2.89142300	-3.67441300
Н		-2.4555550	-2.64044000	-2.62153000
Н		-2.19988800	-0.19842800	-2.96289400
Н		-2.3884910	-1.06876700	-4.49722300
Н		-3.7448710	-0.14350300	-3.84254300
Н		-4.59133300	-3.81920800	-3.16775000
Н		-5.2242580	-2.34369300	-3.90927700
Н		-3.8228440	-3.15921200	-4.62311300
С		-3.6270940	-2.37575300	2.34041700
С		-4.7211010	-3.22602500	3.01671400
С		-3.1451790	-1.24586400	3.26956600
Н		-2.7724310	-3.03573900	2.17049100
Н		-5.0317320	-4.05713700	2.37353800
Н		-4.3511710	-3.64631300	3.95982300
Н		-5.61303200	-2.63042100	3.24500500
Н		-2.3307300	-0.67997800	2.80729400
Н		-3.9564220	-0.54821200	3.51129900
Н		-2.7764820	-1.66230300	4.21487400
Sum of	electronic	and zero-po	oint Energies=	-3146.508455
Sum of	electronic	and thermal	l Energies=	-3146.439604
Sum of	electronic	and thermal	l Enthalpies=	-3146.438660
Sum of	electronic	and thermal	l Free Energies=	-3146.615719
Imagina	ry frequenc	cy: -356.96	cm^{-1}	

References

- [1] S. E. Denmark, T. Wynn, J. Am. Chem. Soc. 2001, 123, 6199–6200.
- [2] L. C. Hirayama, K. K. Dunham, B. Singaram, *Tetrahedron Lett.* 2006, 4. 5173-5176.
- [3] D. L. Usanov, H. Yamamoto, Angew. Chem. 2010, 122, 8245 8248; Angew. Chem. Int. Ed. 2010, 49, 8169 8172
- [4] B. M. Trost, M.-Y. Ngai, G. Dong, G. Org. Lett. 2011, 13, 1900-1903
- [5] M. L. Maddess, M. Lautens, Org. Lett. 2005, 7, 3557-3560.
- [6] X. Ma, J.-X. Wang, S. Li, K.-H Wang, D. Huang, *Tetrahedron* **2009**, *65*, 8683-8689.
- [7] L. Ye, L. Cui, G. Zhang, L. Zhang, J. Am. Chem. Soc. 2010, 132, 3258-3259.
- [8] Q.-R. Li, C.-Z. Gu, H. Yin, Chin. J. Chem. 2006, 24, 72-78.
- [9] N. Minowa, T. Mukaiyama, T. Bull. Chem. Soc. Jpn. 1987, 60, 3697–3704.
- [10] J. Tummatorn, G. B. Dudley, J. Am. Chem. Soc. 2008, 130, 5050-5051.
- [11] J. Chen, B. Captain, N. Takenaka, Org. Lett. 2011, 13, 1654-1657.
- [12] X. Cheng, X. Jiang, Y. Yu, S. Ma. J. Org. Chem. 2008, 73, 8960-8965.
- [13] V. Coeffard, M. Aylward, P. J. Guiry, Angew. Chem. 2009, 121, 9316-9319; Angew. Chem., Int. Ed.
 2009, 48, 9152-9155.
- [14] F. E. McDonald, C. B. Connolly, M. M. Gleason, T. B. Towne, K. D. Treiber, J. Org. Chem. 1993, 58, 6952.
- [15] W.-M. Dai, K. K. Y. Yeung, Y. Wang, *Tetrahedron* **2004**, *60*, 4425-4430.