Supplementary Information

Protein fold determined by paramagnetic magic-angle spinning solid-state NMR spectroscopy

Ishita Sengupta¹, Philippe S. Nadaud¹, Jonathan J. Helmus¹, Charles D. Schwieters² and Christopher P. Jaroniec¹*

¹Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA ²Division of Computational Bioscience, Center for Information Technology, Building 12A, National Institutes of Health, Bethesda, Maryland 20892, USA

*E-mail: jaroniec@chemistry.ohio-state.edu

Figure S1. The pulse scheme used to determine residue-specific longitudinal ¹⁵N relaxation rate constants, R_1 , in the GB1 Cys-EDTA-Cu²⁺/Zn²⁺ mutants from series of two-dimensional ¹⁵N-¹³CO (2D NCO) correlation spectra recorded with different values of τ_{relax} in the 100 μ s to 4 s range.¹ The experiments were performed at 11.7 T (500 MHz ¹H Larmor frequency) and 40 kHz MAS rate. Narrow and wide black rectangles correspond to 90° and 180° pulses, respectively, and all pulses have phase x unless indicated otherwise. The 1 H, 13 C and 15 N carriers were placed at ~4.7, 175, and 120 ppm, respectively. ¹H-¹⁵N cross-polarization (CP)² was achieved with a ~60 kHz ¹⁵N field applied with a tangent ramp,³ a ~100 kHz ¹H field, and a contact time of 1.0 ms. SPECIFIC CP^4 with a ~15 kHz ¹⁵N field, a ~25 kHz ¹³C field with a tangent ramp, and a 7 ms contact time was used to establish the ¹⁵N-¹³CO magnetization transfer. Proton XiX⁵ and nitrogen WALTZ-16⁶ decoupling was applied at field strengths of \sim 12 kHz and \sim 3.3 kHz, respectively, during periods indicated in the figure. The spin-state-selective excitation $(S^{3}E)$ ¹³CO-¹³Ca J-decoupling scheme,^{7,8} with the delay $\delta = 2.25$ ms, consisted of two separate spectra recorded with selective rSNOB 180° refocusing pulses⁹ of 250 µs duration applied to the ¹³CO spins at the frequency of 175 ppm (filled black shapes) and $^{13}C\alpha$ spins at the frequency of 55 ppm (filled gray shapes) in either position a or b. The spectra were processed as described by Laage et al.⁸ The following phase cycles were employed to record spectra a and b. Spectrum a: $\varphi_1 = 2(x), 2(-x); \varphi_2 = x, -x; \varphi_3 = y; \psi = x; receiver = x, -x, -x, x.$ Spectrum b: $\varphi_1 = 2(x), 2(-x); \varphi_2 = x, -x; \varphi_3 = y; \psi = x; receiver = x, -x, -x, x.$ -x; $\varphi_3 = y$; $\psi = -y$; receiver = x, -x, -x, x. Quadrature in the ¹⁵N dimension was achieved by alternating phase φ_2 according to the States method.¹⁰

EDTA-Cu ²⁺	Residue		Residue	NOL
tag position	number	PKE, I_1 (S)	number	NOE
8	4	0.14 ± 0.01	2	*
	5	0.26 ± 0.02	17	*
	9	0.34 ± 0.05	18	*
	14	0.52 ± 0.05	19	*
	15	0.54 ± 0.11	20	*
	39	0.15 ± 0.01	21	*
	40	0.24 ± 0.03	24	*
	41	0.14 ± 0.03	25	*
	43	0.27 ± 0.02	26	*
	44	0.22 ± 0.03	27	*
	45	0.14 ± 0.01	28	*
	46	0.14 ± 0.01	29	*
	47	0.11 ± 0.01	30	*
	50	0.11 ± 0.02	31	*
	51	0.14 ± 0.01	32	*
	52	0.18 ± 0.01	33	*
	53	0.29 ± 0.02	34	*
	55	0.54 ± 0.11	35	*
	56	0.20 ± 0.05	36	*
			37	*
			38	*
			48	*
			49	*
19	5	0.19 ± 0.02	7	*
	9	0.18 ± 0.01	14	*
	10	0.24 ± 0.04	33	*
	11	0.19 ± 0.02	34	*
	12	0.12 ± 0.02	35	*
	15	0.14 ± 0.01	37	*
	16	0.21 ± 0.01	43	*
	20	0.74 ± 0.09	45	*
	21	0.11 ± 0.01	46	*
	23	0.19 ± 0.03	53	*
	25	0.11 ± 0.02	54	*
	26	0.17 ± 0.01		
	28	0.14 ± 0.01		
	38	0.12 ± 0.01		
	39	0.13 ± 0.02		
	40	0.22 ± 0.03		
	41	0.18 ± 0.04		
	42	0.22 ± 0.03		
	47	0.12 ± 0.01		

Table S1. Summary of longitudinal amide ¹⁵N PRE restraints and repulsive 'NOE-type' distance restraints determined for the six GB1 mutants modified with paramagnetic EDTA-Cu²⁺ tags

EDTA-Cu ²⁺	Residue	PRE Γ . ^N (s ⁻¹) ^a	Residue	NOE
tag position	number	$1\mathbf{XL},1 (\mathbf{S})$	number	NUE
	49	0.12 ± 0.01		
	51	0.15 ± 0.01		
	55	0.15 ± 0.02		
28	21	0.13 ± 0.01	2	*
	24	0.33 ± 0.02	4	*
	25	0.81 ± 0.05	5	*
	26	0.21 ± 0.01	6	*
	27	0.21 ± 0.01	7	*
	28	0.56 ± 0.07	8	*
	29	0.48 ± 0.03	9	*
	30	0.22 ± 0.01	10	*
	31	0.34 ± 0.03	11	*
	32	0.51 ± 0.02	12	*
	33	0.18 ± 0.01	13	*
	34	0.13 ± 0.01	14	*
	35	0.19 ± 0.01	15	*
	36	0.12 ± 0.01	17	*
	40	0.16 ± 0.01	18	*
	41	0.23 ± 0.02	19	*
	42	0.14 ± 0.01	20	*
	43	0.17 ± 0.01	37	*
			38	*
			39	*
			44	*
			45	*
			46	*
			47	*
			48	*
			49	*
			50	*
			51	*
			52	*
			53	*
			54	*
			55	*
			56	*
42	9	0.20 ± 0.01	7	*
	10	0.33 ± 0.09	14	*
	11	0.25 ± 0.05	18	*
	15	0.12 ± 0.00	19	*
	32	0.12 = 0.01 0.21 ± 0.03	20	*
	33	0.15 ± 0.00	21	*
	34	0.12 = 0.01 0.24 + 0.03	$\frac{-1}{24}$	*

EDTA-Cu ²⁺	Residue	DDE $\Gamma^{N}(a^{-1})^{a}$	Residue	NOE
tag position	number	PRE, I_1 (S)	number	NOE
	35	0.33 ± 0.03	25	*
	36	0.21 ± 0.01	26	*
	37	0.19 ± 0.01	27	*
	38	0.38 ± 0.02	29	*
	39	0.18 ± 0.02	30	*
	43	0.56 ± 0.03	45	*
	44	0.15 ± 0.01	47	*
	55	0.39 ± 0.02	48	*
	56	0.48 ± 0.13	49	*
			50	*
			51	*
			52	*
46	6	0.33 ± 0.03	9	*
	7	0.38 ± 0.03	10	*
	8	0.15 ± 0.03	11	*
	17	0.17 ± 0.02	13	*
	19	0.13 ± 0.03	14	*
	21	0.12 ± 0.01	15	*
	23	0.18 ± 0.02	18	*
	24	0.16 ± 0.01	29	*
	25	0.12 ± 0.02	30	*
	32	0.11 ± 0.02	31	*
	33	0.11 ± 0.02	40	*
	34	0.12 ± 0.03	42	*
	35	0.15 ± 0.03	55	*
	36	0.14 ± 0.03		
	37	0.12 ± 0.02		
	38	0.12 ± 0.02		
	39	0.12 ± 0.02		
	41	0.25 ± 0.02		
	43	0.22 = 0.02 0.11 ± 0.02		
	44	0.21 ± 0.02		
	45	0.21 = 0.02 0.36 ± 0.02		
	51	0.30 = 0.02 1 11 + 0 15		
	52	0.37 ± 0.04		
	56	0.37 = 0.01 0.13 + 0.01		
53	20	0.15 ± 0.01 0.15 + 0.02	9	*
55	5	0.15 ± 0.02 0.15 ± 0.01	10	*
	6	0.13 ± 0.01 0.13 ± 0.02	11	*
	7	0.13 ± 0.02 0.18 ± 0.05	13	*
	12	0.10 ± 0.03 0.14 ± 0.03	16	*
	14	0.14 ± 0.03 0.14 ± 0.03	17	*
	14	0.14 ± 0.03 0.15 ± 0.02	10	*

Table S1. continued				
EDTA-Cu ²⁺	Residue	PRE $\Gamma_1^N (s^{-1})^a$	Residue	NOF ^b
tag position	number	$1 \text{ KL}, 1 \mid (3)$	number	NOL
	21	0.12 ± 0.01	24	*
	43	0.12 ± 0.01	25	*
	49	0.17 ± 0.04	27	*
	51	0.21 ± 0.03	29	*
			31	*
			32	*
			33	*
			34	*
			36	*
			37	*
			38	*
			39	*
			41	*
			42	*
			46	*

^aPREs were calculated as $\Gamma_1^{N} = R_1(Cu^{2+}) - R_1(Zn^{2+})$, where ¹⁵N R_1 values for the corresponding pair of EDTA-Cu²⁺ and EDTA-Zn²⁺ tagged proteins were obtained by fitting residue-specific relaxation trajectories to decaying single exponentials. A total of 110 quantitative PRE restraints (77 for residues located in regular secondary structure elements and 33 for loop residues) were determined for the six GB1 analogs and used in the structure calculations via the PREPot potential term (see main text and Supplementary Table S3 for additional details).

via the PREPot potential term (see main text and Supplementary Table S3 for additional details). ^bFor residues where the PRE measurements yielded values of $\Gamma_1^N \le 0.10 \text{ s}^{-1}$ (indicated by asterisks) the PRE restraints were converted into purely repulsive 'NOE-type' distance restraints with a lower-bound cutoff of 15.1 Å and used in the structure calculations via the NOEPot potential term. A total of 121 residues for the six GB1 analogs fell into this category (89 located in regular secondary structure elements and 32 loop residues).

Residue number	φ (degrees)	ψ (degrees)
2	-115 ± 36	140 ± 36
3	-129 ± 26	149 ± 22
4	-133 ± 22	132 ± 20
5	-110 ± 24	122 ± 20
6	-105 ± 30	117 ± 30
7	-101 ± 30	124 ± 30
8	-108 ± 54	135 ± 54
9	-109 ± 70	170 ± 40
10	-67 ± 30	-32 ± 22
11	-102 ± 34	-4 ± 32
12	-117 ± 62	128 ± 42
13	-125 ± 28	161 ± 28
14	-150 ± 62	161 ± 34
15	-135 ± 34	151 ± 26
16	-121 ± 34	151 ± 32
17	-132 ± 20	156 ± 20
18	-128 ± 40	138 ± 26
19	-121 ± 20	129 ± 22
20	-114 ± 54	163 ± 30
21	-84 ± 36	-18 ± 32
22	_	_
23	-62 ± 20	-37 ± 20
24	-63 ± 20	-40 ± 20
25	-68 ± 20	-38 ± 20
26	-63 ± 20	-42 ± 20
27	-63 ± 20	-40 ± 24
28	-61 ± 20	-41 ± 20
29	-64 ± 20	-46 ± 20
30	-67 ± 20	-37 ± 20
31	-65 ± 20	-42 ± 20
32	-67 ± 20	-41 ± 20
33	-64 ± 20	-44 ± 20
34	-63 ± 20	-44 ± 20
35	-60 ± 20	-43 ± 20
36	-61 ± 20	-27 ± 20
37	-97 ± 26	7 ± 20
38	86 ± 20	13 ± 20
39	-84 ± 32	134 ± 20
40	-115 ± 48	138 ± 44
41		
<u>4</u> 2	-113 + 32	128 + 36
<u>43</u>	-113 ± 32 -111 + 38	120 ± 50 151 ± 28
	-129 + 44	151 ± 20 158 + 22
 45	127 ± 77 -145 ± 32	130 ± 22 134 ± 34
ъJ	-1 + J - J - J - J - J - J - J - J - J - J	1J + J +

Table S2. TALOS+ dihedral angle restraints for GB1^a

Residue number	φ (degrees)	ψ (degrees)
46	-112 ± 32	133 ± 32
47	_	_
48	-74 ± 22	-25 ± 38
49	-104 ± 20	6 ± 34
50	61 ± 22	34 ± 32
51	-102 ± 48	133 ± 20
52	-116 ± 26	153 ± 32
53	-129 ± 30	147 ± 20
54	-129 ± 26	132 ± 20
55	-107 ± 42	127 ± 28

^aDihedral restraints were obtained using the ¹³C and ¹⁵N solid-state NMR chemical shifts reported for microcrystalline GB1 (BMRB entry 15156) and the TALOS+ program¹¹ in the 'no-proton' mode (http://spin.niddk.nih.gov/bax/nmrserver/talos/). For predicted dihedral angles having uncertainties of less than $\pm 20^{\circ}$, the uncertainties were set to $\pm 20^{\circ}$ for the structure calculations.

Table S2. continued

Table 55. Totential term parameters during structure calculations					
Potential name		Force constant schedule ^a			
(force constant units)	Description	Initial minimization and dynamics	Simulated annealing		
PrePot	SSNMR PRE restraints	0.05	ramped: $0.05 \rightarrow 1.0$		
(kcal·sec/mol)	SSINIATINE Testraints	0.05	Tamped: $0.05 \rightarrow 1.0$		
NOEPot	repulsive distance	r	rompod: 2 \ 20		
(kcal/mol/Å ²)	restraints	2	Tamped. $2 \rightarrow 50$		
CDIH	TALOS+ based dihedral	1000	1000		
(kcal/mol/rad^2)	restraints	1000	1000		
COLL	radius of gyration	1000	1000		
(kcal/mol/Å ²)	restraint	1000	1000		
RAMA	knowledge-based	1	1		
(kcal/mol)	dihedral restraints	1	1		
HBDB	knowledge-based	2/1	2/1		
(kcal/mol)	hydrogen bond restraints	2/1	2/1		
ResidueAffPot	knowledge-based	50/1	50/1		
(kcal/mol/Å)	contact potential	50/1	JU/ 1		
BOND	band langth	1000	1000		
(kcal/mol/Å^2)	bolid length	1000	1000		
ANGL	hand angle	200	ramped: 200×500		
(kcal/mol/rad ²)	bond angle	200	Tamped. 200 → 500		
IMPR	improper dihedral angle	50	ramped: $50 \rightarrow 5000$		
$(kcal/mol/rad^2)$	improper unicular angle	50	Tamped: 50 → 5000		
DIHE	dihedral angle	50	ramped: $50 \rightarrow 5000$		
(kcal/mol/rad ²) ^b	unicular angle	50	Tamped. 50 → 5000		
VDW	quartic atom-atom	0.004	ramped: $0.004 \rightarrow 4$		
(kcal/mol/Å ⁴) ^c	repulsion	Ca-only	all atoms		

Table 53. Polyntial term Datameters during structure calculation	Table S3. Potential	term parameters	during structure	calculations
---	---------------------	-----------------	------------------	--------------

^aEntries with two slash-separated values correspond to the anneal value and refine value, respectively. ^bOnly applied to the EDTA-Cu²⁺ sidechain dihedral angles for which the **RAMA** term contains no information. ^cIn addition atomic radii are scaled by a value of 1.2 during initial dynamics and minimization and scaled by a value ramped from 0.9 to 0.78 during simulated annealing.

References

- 1. Nadaud, P. S., Helmus, J. J., Sengupta, I. & Jaroniec, C. P. Rapid acquisition of multidimensional solid-state NMR spectra of proteins facilitated by covalently bound paramagnetic tags. *J. Am. Chem. Soc.* **132**, 9561-9563 (2010).
- 2. Pines, A., Gibby, M. G. & Waugh, J. S. Proton-enhanced NMR of dilute spins in solids. J. Chem. Phys. 59, 569-590 (1973).
- 3. Hediger, S., Meier, B. H. & Ernst, R. R. Adiabatic passage Hartmann-Hahn crosspolarization in NMR under magic-angle sample spinning. *Chem. Phys. Lett.* **240**, 449-456 (1995).
- 4. Baldus, M., Petkova, A. T., Herzfeld, J. & Griffin, R. G. Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. *Mol. Phys.* **95**, 1197-1207 (1998).
- Detken, A., Hardy, E. H., Ernst, M. & Meier, B. H. Simple and efficient decoupling in magic-angle spinning solid-state NMR: the XiX scheme. *Chem. Phys. Lett.* 356, 298-304 (2002).
- 6. Shaka, A. J., Keeler, J. & Freeman, R. Evaluation of a new broadband decoupling sequence: WALTZ-16. *J. Magn. Reson.* **53**, 313-340 (1983).
- 7. Meissner, A., Duus, J. O. & Sorensen, O. W. Spin-state-selective excitation. Application for E.COSY-type measurement of J(HH) coupling constants. *J. Magn. Reson.* **128**, 92-97 (1997).
- Laage, S. *et al.* Transverse-dephasing optimized homonuclear J-decoupling in solid-state NMR spectroscopy of uniformly ¹³C-labeled proteins. *J. Am. Chem. Soc.* 131, 10816-10817 (2009).
- 9. Kupce, E., Boyd, J. & Campbell, I. D. Short selective pulses for biochemical applications. J. Magn. Reson. B 106, 300-303 (1995).
- States, D. J., Haberkorn, R. A. & Ruben, D. J. A two-dimensional nuclear Overhauser experiment with pure absorption phase in four quadrants. *J. Magn. Reson.* 48, 286-292 (1982).
- Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: A hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. *J. Biomol. NMR* 44, 213-223 (2009).