Table S3. Gap analysis for Mathematical Modelling of Human Helminthiases | Core theme | What we know | What research not used / applied | What not known | What research needed | |--|---|--|--|--| | Mathematical models of helminth infections | Behaviour of host-
parasite systems at
equilibrium | Longitudinal studies of
the impact of multiple
rounds of targeted or
MDA on helminth
infection and associated
morbidity | Anthelmintic efficacy
and effectiveness on
various parasite life-
stages and temporal
changes under long-
term anthelmintic
treatment | Models fitted to data to estimate efficacy & effectiveness of anthelmintics Longitudinal immuno-epidemiological studies | | | | | Long-term impact of
changes in parasite
exposure, load, and
mortality on host
immune responses and
reinfection rates | Models fitted to cohort data to estimate changes in exposure, force of infection, treatment frequency | | | Parasite and host populations are genetically diverse | Host genetics and susceptibility/predisposition to infection Vector genetics and vector competence/ capacity Parasite genetics regarding drug susceptibility | Molecular genetic markers of decreased drug efficacy / drug resistance starting to be developed Need to distinguish genetic changes in parasite populations from programmatic issues such as low treatment coverage and compliance; reinfection from absence of clearance | Evaluation of temporal trends of treatment coverage & adherence Evaluation of transmission intensity Rigorous characterisation of suboptimal responses Integration of parasite phenotypic and genotypic studies | | | Populations of parasites, intermediate hosts and vectors are not closed entities | Studies on human
population movement,
flight range of vectors,
transportation of snails
or parasite larvae | How human movement and migration patterns affect transmission, infection and disease dynamics and reintroduction in controlled areas | Metapopulation and spatial parasite transmission models | | | Morbidity control programmes aim at elimination of public health disease burden | Available data on the relationship between infection and morbidity in those programmes following longitudinal cohorts | How disease (as opposed to infection) elimination thresholds relate to burden of disease | Models for disease
burden that take into
account cumulative
effects in addition to
present infection status | | | Allee effects (initial facilitation of transmission at low population densities as parasite load increases) in host-parasite systems lead to transmission breakpoints | The dynamics of transmission breakpoints scarcely studied in helminth infections of humans | Relationship between parasite breakpoints and host-parasite interactions Relationship between transmission breakpoints and assumed infection thresholds in humans & vectors for elimination | Integrate models with data to explore the dynamics of transmission breakpoints for the host-parasite combinations prevailing in endemic areas Use modelling to update and refine assumed elimination thresholds | | | Surveillance after cessation of control is important | Mathematical models are under-utilised in surveillance systems | Relationship between
model state variables
and empirical
surveillance tools | Epidemiological models
to aid design of
sampling protocols for
M&E and surveillance |