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ABSTRACT

A three layered back-propagation neural network was
trained to recognize E. coli promoters of the 17 base
spacing class. To this end, the network was presented
with 39 promoter sequences and derivatives of those
sequences as positive inputs; 60% A + T random
sequences and sequences containing 2 promoter-down
point mutations were used as negative inputs. The
entire promoter sequence of 58 bases, approximately
- 50 to +8, was entered as input. The network was
asked to associate an output of 1.0 with promoter
sequence input and 0.0 with non-promoter input.
Generally, after 100,000 input cycles, the network was
virtually perfect in classifying the training set. A trained
network was about 80% effective in recognizing 'new'
promoters which were not in the training set, with a
false positive rate below 0.1%. Network searches on
pBR322 and on the lambda genome were also
performed. Overall the results were somewhat better
than the best rule-based procedures. The trained
network can be analyzed both for its choice of base and
relative weighting, positive and negative, at each
position of the sequence. This method, which requires
only appropriate inpuVoutput training pairs, can be
used to define and search for any DNA regulatory
sequence for which there are sufficient exemplars.

INTRODUCTION

There have been numerous attempts to develop ad hoc procedures
for the analysis of DNA binding-site sequences (1-6). In
addition, there have been at least two attempts to develop
analytical methods for this purpose from a theoretical basis: one
aimed at determining the information content, position by
position, of an aligned group of related binding-site sequences
(7,8) and a second (9), employing a statistical-mechanics analogy,
to rank individual sequences within a related group with respect
to how well they fit the ideal group image. All of these methods
have shortcomings. Indeed, all share the significant fault that they
do not use all of the information available in the sequences being
analyzed. Take, for example, the two theoretically based
procedures (which, it should be noted, show substantial promise);
these procedures share a major assumption and a known fault.
The assumption common to both methods is that statistical
methods, developed and proven in the context of very large scale

ensembles, can be usefully applied to very small scale samples.
The common fault is that they posit positional independence, that
is, the choice of a given base at one position is treated as
independent of the choice at any other position. However, there
is extensive genetic evidence to the contrary in the form of
context-dependent and/or compensatory mutations. The authors
acknowledged that this choice was dictated by mathematical rather
than biological considerations. Possible cross-correlations in the
sequence information have generally either been ignored, as in
these cases, or weakly addressed by grouping subsets of positions
showing, say, pairwise correlation or perhaps a high degree of
conservation as a secondary criterion in a particular procedure.
What is clearly needed is a method which can accept the entire
sequence of the site and avidly use all of the information-not
only position by position but also all cross correlations of every
position with every other position-to determine the generalized
image of the input set. Mathematically, this is not a trivial
problem. However, with the advent of the back-propagation
neural network (10, 1), there now exists an extremely powerful
non-linear, sub-symbolic approach which can attack this complex
task by high-speed iteration.

This type of neural network can consist of three layers of
'neurons'. The first is an input layer which would, in this case,
receive an example of a site sequence encoded in binary form.
Every neuron in this layer is connected to every neuron of the
second layer by differentially weighted lines. The second or
'hidden' layer neuron is used to sum all the inputs received from
the first, in this case either 0 or 1 times the weight assigned to
the interconnecting line, and to convert that sum by a non-linear
transfer function to an output which is again transmitted on a
weighted line to the third, or output, layer. The third layer neuron
in turn sums its inputs and converts the sum by a transfer function
to an output value, in this case a value between 0 and 1. Training
the network consists of providing it with true and false input
examples and the corresponding desired output. In the case of
sequence analysis, a true site sequence could be paired with a
desired output of 1.0 and a false sequence with an output of 0.0.
The network receives these input-output pairs and, using a
gradient-descent algorithm (cf. 1), continually adjusts the
weights on the lines connecting the neurons in such a way as

to minimize the difference between the desired output and the
actual output as each pair is presented. The network continues
this cycle until the difference between expected and actual output,
for every member of the training set, becomes smaller than a
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value predetermined by the user, assuming there is no internal
contradiction in the input set. This network is therefore an
iteration machine which is free to make pragmatic use of fully
cross-correlated input data in its effort to make a correct output
classification.

In this work, a back-propagation network is designed and
trained to search for E. coli promoters belonging to the 17-base
spacing group; however, the approach is generally applicable to
sequence problems in which there are multiple examples of a
particular type of site.

METHODS
Networks
The neural networks employed in this study were all designed,
trained, and tested using Neuralware II ProfessionalTM software.
The approach developed should, nonetheless, be applicable within
any software environment which allows the generation of a back-
propagation model of sufficient size. More than 25 distinct
network configurations were tested in the course of this work,
including networks with two internal layers. Since the number
of neurons in the hidden layer is the primary determinate of the
network's complexity and its ability to generalize, a large number
of choices were examined, ranging from networks with as few
as 3 hidden layer neurons to as many as 60. Model studies were
also performed with reduced input sets with much smaller samples
of both positive and negative input data; these consistently
produced unacceptably high levels of false positive classifications

in the range of 5% and above. Of the architectures explored,
a network employing 232 input neurons, one hidden layer of 15
interneurons, and a single output neuron was found to be most
effective. The network requires an input in binary form. Both
dense (2 symbols to code 4 bases) and coarse (4 symbols to code
4 bases) coding were tested. Coarse coding of the input gave
superior results. The code adopted was: 0001=A, 0010=C,
0100=G, 1000=T. No allowance was made for degeneracies,
nor were there any degeneracies in the input set. A 58 base input
sequence is thus represented by 232 binary characters, one for
each input neuron. A sequence beginning with ACGT.... would
correspond to the values 0001 0010 0100 1000 being presented
to the first 16 neurons of the 232 neuron input layer. A 'desired'
output value is also supplied with each input sequence, 1.0 for
a promoter and 0.0 for a non-promoter, as the second half of
each input training pair. The network starts training with a
random assortment of small weights (+ /- 0.1) on all lines
between neurons. When the first binary sequence is presented
to the input layer, an output is generated based on those weights
and sigmoidal transfer functions, with range 0 to 1, in the second
and third layers. The final output is compared with the desired
output which was supplied in the input pair. The difference
between the actual and desired outputs is used to reset all the
weight values in the network in a direction that will reduce the
discrepancy. A new input sequence is then presented to the input
layer, and the procedure is repeated. The weights are readjusted
after every sequence presentation. The entire training set is
presented to the input layer, perhaps many times over, in the
course of obtaining the desired degree of precision in the output.

Table 1. Promoter classification of the input training set by 4 trained neural networks.

Network 1 Network 2 Network 3 Network 4

#in #out #in #out #in #out #in #out
Promoters 5148 5149 5148 5149 5148 5149 5148 5150

Non-promoters 10296 10295 10296 10295 10296 10295 10296 10294

Errors
false positive 1 1 1 2
false negative 0 0 0 0

The networks were trained as described in the Methods; in all cases, the learning coefficient was 0.9 and the momentum
was 0.6. Networks 1 and 2 received random sequence set A. Networks 3 and 4 received random sequence set
B. Network 1 was trained with 165,000 facts, 2 with 100,000 facts, 3 with 136,000 facts, and 4 with 130,000
facts. A sequence was scored as a promoter if it produced an output value of 0.9 or higher. The average promoter
in the training set produced a score of 0.9997 in network 1, 0.9992 in network 2, 0.9982 in network 3, and 0.9986
in network 4. The # in refers to the actual number of promoters or non-promoters in the input; the # out refers
to the number of sequences classified by the network as either promoters or non-promoters. The false positive
found by network 1 was the same found by 2; the false positive found by network 3 was one of those found by
network 4.

Table 2. Classification of previously unseen promoters by 4 trained neural networks.

Network 1 Network 2 Network 3 Network 4
#in #out #in #out #in #out #in #out

Naive
Promoters 36 29 36 31 36 29 36 26

Errors 8 (22%) 6 (17%) 8 (22%) 11 (31%)

Promoters 6,12,14,17 6,9,12,17, 6,12,14,17, 6,12,14,17,
Missed 20,24,25,27 24,27 20,24,26,30 19,20,21,22,23,24,27
The promoters used as input here are listed in the Methods. The number associated with a given promoter here
refers to the order within that list. Promoters were classified as found if they produced an output value of 0.9
or greater. A poll of the 4 networks finds 78 % of the input promoters recognized by 2 or more networks in common.
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Input Set
The input set consisted of 5148 58-base sequences drawn from
39 promoters of the 17-base spacing group, 4000 random
sequences which were 60% in A+T, and about 100 examples
of the P22 ant promoter representing all pairwise permutations
of double promoter-down mutations from the list of strong
promoter-down mutations reported by Youderian et al. (12); the
two smaller groups were duplicated until the size of each equalled
the size of the promoter group, resulting in an input of over
15,000 sequences. The random sequences were prescreened,
using previously described promoter-search programs (6,13), to
eliminate promoter sequences incidentally created in this group.
Input sequences from this set were supplied to the network in
random order with the promoter group assigned a 'true' output
value of 1.0 and the other two groups a 'false' value of 0.0. The
39 promoters used were: malT, trpP2, fol, uvrBP3, lexA, rplJ,
lacI, trp, bioB, spot 42, MIRNA, tufB, supBE, araC, thr,
uvrBPl, oriL, glnS, str, spc, rpoA, T7A1, X Pr, X Prm, P22ant,
T7C, 434Pr, 434Prm, P22mnt, TnlOPin, TnlOPout, Tn5neo,
gnd, T7B, T5N25, T5 26, T5 28, T5H207 (14), and T5DE20
(15). This group of 'true' sequences was expanded by permuting
all possible single base changes in positions other than those
known to harbor promoter point mutations; the rule used was
that all positions except for those in the -35 region, -4/+2
bases, and the -10 region, -51+2 bases could be altered singly.
In this expansion, there would be 132 derivatives of each
promoter sequence; in the first position of these 132 sequences,
129 would have the wild-type base and 3 would have the other
three bases. In 3 other sequences, the second position would be
mutated and so on. This was done on the assumption that single
point mutations which have not shown up in studies to-date are
unlikely to have a significant negative effect on the sequence.
The effect of this expansion in direct tests was to broaden the
promoter definition without significant effect on the frequency
of false positives. This description may be too generous, with
the inclusion of some non-promoter sequences in the promoter
group.
A second set of 36 promoters (14,16) was assembled as a test

of trained networks in recognizing promoter targets which were
not included in the training set. This set consisted of the following
promoters: T7A3, T7D,X pL, X pO, X pR', P22Prm, phiXA,
fdX, pBRbla, pBRP1, pBRprimer, pBRtet, colElPI, rsfprimer,
rlOOrnal, rlOOrnaII, Tn5IR, bioP98, X c17, X cin, X L57, cya,
divE, AtPE, plSprimer, pColvirPl, pyrEPI, rnp, rpmH2p,
rpmH3p, rpsTP2, rpmB, T7B, ompC, fdII, carAB-Pl.

Programs
The following set of programs were written, in Pascal unless
otherwise noted, in support of this work:
a.) A program to convert a DNA sequence of length, L, bases
into L-58+1 binary inputs of length 232, each with an output
designation, in a form suitable for input into Neuralware H.
b.) A program to convert L lines of 58 base sequences into L
lines of binary inputs of length 232, each with an output
designation.
c.) A program of the type in b.) above but capable of accepting
input from three distinct input files to produce a single binary
file suitable for input to Neuralware. (It should be noted that
WordPerfect 5.0Tm was found to be unsuitable for editing these
often extremely large ( > 8 megabytes) files, with data corruption
showing up after the first 40 pages routinely.)
d.) A program to read and summarize the output file generated
by Neuralware, subject to criteria set by the users.

e.) A program to introduce systematic single base changes, one
per sequence, into a set of input sequences over a range of
sequence positions set by the user.
f.) A program to introduce pairwise base changes into a set of
input sequences, permuting all possible pairs over a set of
positions determined by the user.
g.) A program, in Basic, to generate random DNA sequence of
any desired length subject to an overall constraint on base ratios
set by the user.

This software, including the source code, is available to
investigators on request. With minor modifications to the code,
it should be possible to use these programs with any of the various
commercial neural networks programs.

RESULTS

There are two major difficulties one encounters in applying a
back-propagation neural network in any classification problem.
The first is that there exists no set of rules defining the optimum
training procedure either with respect to learning the input set

Table 3. Promoter search by trained networks on pBR322 and lambda.

Network 1

Network 2

Network 3

Network 4

Network Poll
(> =2)

Network 1

Network 2

Network 3

Network 4

Network Poll

pBR322(cw)
477,1584,1970,4130

1584,1970,3650,4130

1584,1970,2024,3650,
4130,4153

1584,1970,2446,3343,
4130,4153

1584,1970,4130,4153

lambda(rw)

4576,8587,14518,
25227,37974,44538,
46999,48033

8587,13080,23077,
25365,37974,44538,
46999

37974,41206,46999,
47213

13034,16926,28714,
37974,41206,44538,
46999

8587,37974,41206,
44538,46999

pBR322(ccw)
85,1241,3138,3343,
3557,4239

85,1241,1842,3138,
3198,3343,3557,3832,
3868,4087

85,1241,1377,1737,
3138,3557,4087,4239

85,1814,2745,2866,
3138,3557,4239

85,1241,3138,3343,
3557,4087,4239
lambda(lw)

614,9452,16250,
21182,22703,25951,
25975,27256,28100,
35631,37989,38725,
42820,46026,46468

614,9452,23266,
28100,35631,36905,
37989,38725,42820,
42977

35631,37989,44155,
46468

4415,8367,9452,
23163,24038,27815,
34269,35631,37989,
42820,44155,46468

614,9452,28100,
35631,37989,38725
42820,44155,46468

In the search of pBR322, a cutoff value of 0.9 was used for promoter hits. In
the search of lambda, 0.9982 was the cutoff; this corresponds to the lowest score
for the average promoter in the training set among the 4 networks. (For a cutoff
of 0.9, the number of hits increased to 48(r) and 52(1) for network 1, 59(r) and
69(1) for network 2, 99(r) and 94(1) for network 3, and 39(r) and 50(1) for network
4, with the poll producing 47(r) and 67(1).) Positions underlined represent the
locations of known promoters.



316 Nucleic Acids Research, Vol. 19, No. 2

or with respect to generalizing on the basis of the learned set.
The second problem is that, while the network may be able to
learn the input set to an arbitrary degree of precision, there is
no guarantee that the solution thus obtained is an optimal one;
the solution can be any one of many adequate to the set task.
This means that both the type of training and the length of training
are empirically determined. The first problem was addressed by
frequently interrupting the training procedure to test the network's
abilities on both the input set and various naive (previously
unseen) sets. This was done at irregular intervals. These intervals
typically were after the first 100 input sequences, the first 300,
the first 1000, the first 3000, the first 10,000, the first 30,000,
the first 100,000, and on up to 550,000 inputs (40+ passes
through the entire input set). The second problem was assessed
by training several networks independently from scratch and then
polling them for common answers. (This could be accomplished
in a single network in the absence of practical limitations due
to size.)

Table 1 shows the effectiveness of four different networks,
of identical architecture, in learning an input set of approximately
15,000 facts. These input sets were identical except for the
random sequence; two networks were trained with one random
sequence set and two with another. It can be seen that none of
the networks had any significant difficulty in learning the input
set with essentially perfect accuracy. The sole exception for the
first pair of networks was a single random sequence which was
classified as a promoter by both of them. The second pair of
networks also mis-identified a single random sequence in
common, to which the fourth network added one more error of
the same type. In each case a random sequence passed the
prescreen for promoters but was, nonetheless, a promoter by the
neural net criteria; this was to be expected since the prescreen
is judged to be about 60% effective in finding new promoters.
The object here, of course, is not to learn the input set but

to learn from the input set the general definition of a promoter
sequence. The measure of this ability is the network's success
in classifying previously unseen inputs. Table 2 shows the
performance of the 4 networks on 36 'new' promoter sequences.
These sequences were chosen after prescreening with a program
based on a derived information content function (13). These
networks average a 77% recognition rate. Of those promoters
missed, 4 were missed by all four networks and three more were
missed by three of the four; these 7 (pBRtet, P22Prm, rsf primer,
Tn5IR, X cin, X PE, pyrEPI) constituted 76% of the misses on
the average.
A more stringent and realistic test of any search procedure is

its performance on a biological target. Table 3 shows the result
of searching pBR322 (17,18) and the lambda genome (19) with
these trained networks. It can be seen that the individual networks
are highly effective and that the network poll produces a highly
specific result. The search on pBR322 produced 4 hits in the
clockwise direction and 7 in the counter-clockwise direction,
including bla, primer, and P1; the tet and P4 promoters are
missed. A comparison of these coordinates with the transcription
map of pBR322 (20) suggests that the hits registered at
3343,3557,4087 (ccw), and 1970 (cw) may, as well, be functional
promoters. The search on lambda with a cutoff of 0.9 produced
47 hits in the rightward direction and 67 hits in the leftward
direction. A more stringent cutoff of 0.9982, corresponding to
the average score of a promoter in the training set, produced 5
hits in the rightward direction, including Pr and Pr', and 9 hits
in the leftward direction, including PL, Prm, and Po. Again, a
comparison with the transcription map of lambda (21) shows that
additional hits, 8587 and 46999 rightward and 614, 9452, 28100,
44155, and 46468 leftward, may be functional promoters. Note
that, with respect to these targets, only the Pr and Prm promoters
of lambda were present in the training set.
The weight structure of the trained network can be analyzed

Table 4. Promoter sequence preferences of trained networks.

Network
1 ACTACAAACCGTTCTTGACATACGTATCATGATGTTATATAATTGGGACCCCACAAAC

T G T C AG GT C G G

Network
2 ACAGCAAACAACGGTTGACAAAGATGTCACGTTGTTATATAATTGCGGCCCATCAACT

G G A G G A GGG A T AG GG

Network
3 ATAAGCGTTACGGGTTGACAAAGGTAGCGGGGTGGTATATAATCCCCGCACAACTGGC

T CAA T G G T A T GG C AT CT G

Network
4 AATACGATTACGTGTTGACATAGGTAGCGGTGTGTACTATAATACCACCCCAACGGAT

C A A T AG G TA GGG A C

Poll ACTACAATyAckkGTTGACAAAGGTATCrGGGTGTkATATAATTsCGGCCCAACAGny
43334443432344444444343344344343444434444443443444434434 4

Input
Consensus

TCTAAAAAAATTTGTTGACAAATTAACCAATTTTTTGTATAATAACAACACAACTTTT
* * ** *** * *** * * * ** * **

The weight matrices of the four trained networks were examined for their selection of bases in defining a promoter. Interneurons carrying positive weights to the
output were examined to see which bases resulted in positive inputs, and interneurons carrying negative weights to the output were examined for those bases which
resulted in negative inputs. Wherever one or, in some cases, two bases were favored, these are listed for each of the trained networks. The second choice at a
given position is listed beneath the first. The number listed below the poll indicates the number of networks supporting a particular choice. Departures of the network
consensus from the consensus of the 39 input promoters are indicated with an (*).
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to determine the definition that the network has arrived at in
making its classification. All outputs from the hidden layer
neurons fall between 0 and 1, but they are multiplied by either
positive or negative weights associated with the lines connecting
them to the output neuron. Suppose that 'A' is the most desirable
choice for the base at position 1 of our sequence. The first four
neurons code the first base; in the case of an 'A', the first three
neurons have a value of zero and the fourth neuron has a value
of one. Since this is the desired input, the network should have
learned during training to place positive weights between neuron
4 and those hidden layer neurons which carry positive weights
to the output neuron and negative weights between neuron 4 and
those hidden layer neurons carrying negative weights to the output
neuron. If 'T' is highly undesirable at position 1 of our sequence,
neuron 1 which has a value of 1 in the case of a 'T' in the first
sequence position should acquire weights of opposite sign to those
assigned to neuron 4 during training. Table 4 lists, for each of
the four networks, the choice(s) at each promoter position for
which there was consistent weighting in both layers, either both
positive or both negative. It can be seen that three or more of
the networks agreed on the choice of base in 37 positions, not
counting the -35 and -10 regions; 19 of these choices differ
from the consensus of the 39 input promoters, suggesting that

7-

6

5-

4-

3

2

3.0''wi ACNNCANNNNNNNCTTGACATACNNA

o COATGTNCTNCNCTSMWKTCQ3CACAN

-1111I IIIIII

the networks may have made use of cross-correlation information.
The testing interruptions during training indicated that the overall
optimum sequence is generally set during the first 2000 training
facts; in contrast, the weighting associated with those bases
continues to change, with improvement in the network's ability
to generalize until 100,000 to 200,000 facts have been examined.
Training beyond this level produces even more accurate
recognition of the input set but apparently becomes too specific,
resulting in a reduced ability to generalize. Figure 1 is a histogram
of the most positive and most negative choices and their relative
weights, drawn from the 3 interneurons which carry positive
weights to the output (promoter-confirming) in the first network.
Superimposed on this histogram is the information content of the
39 promoter set used for training. While there are specific
differences between the two measures, the qualitative agreement
is good.

DISCUSSION
An earlier attempt (22) to use a neural network for sequence
recognition employed the Perceptron model of Rosenblatt (23).
This early form of network is relatively limited (24) and, in the
case at hand, necessarily assumes positional independence. More
recently, other forms of neural networks have been trained to

Figure 1. Relative weighting of promoter base choices by a neural network. The relative weights, both positive and negative, assigned by network # 1 are shown
above and below the respective base choice. Only those positions which showed a common choice for all three positively weighted intemeurons are assigned a specific
base. The dashed curve in the upper histogram represents the information content, position by position, of the input set of 39 promoters.

I
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recognize E. coli promoters (25,26), however these attempts have
been beset by limited capacity and/or an unacceptable level of
false positives (several percent) in their output. By comparison,
back-propagation networks can learn the training set perfectly,
can generalize to a high level, and maintain a false positive level
in the 0.1 % range. The limitation on their success as a search
vehicle lies not in their inherent power but in the fact that the
training task is slightly at odds with what is actually being sought,
the ability to generalize. Paradoxically, this distinction springs
directly from the networks' considerable power; they can achieve
the task at hand without having to arrive at the core of the
problem. In the course of this study, one network was trained
on an input of 32,000 distinct sequences; after 8,000,000 cycles,
it learned to classify every single sequence correctly, but it still
was not particularly good on naive inputs. Thus the training set
should be designed to be as difficult as possible while remaining
faithful to the true and false input categories. In the case at hand,
information on promoter mutations was used to expand the input
set by over a 100 fold. This improved the performance on
pBR322, capturing 3 rather than 2 of the 5 known 17 base class
promoters, and on naive targets, capturing 77% rather than 70%
of previously unseen promoters.
The best rule-based methods which make use of the fact that

there is promoter sequence information specific to each spacing
class (6,13) each succeeded in correctly identifying 70% of the
promoters used in this test set. These networks improved that
result by about 10%. There is reason to suspect that they may
be doing even better, although this is difficult to prove in the
absence of fully-mapped biological targets. Those networks
presented here are specific for the 17-base spacing class. This
class appears to have the least amount of sequence conservation
(27,28) and, therefore, presents a difficult test. Insertion or
deletion of a base in the spacer region of a promoter sequence
abolishes its recognition. One could, presumably, train a network
on an input set containing all spacing classes without distinction.
This would, however, substantially complicate the training task.
The network would have to learn that the majority base choices
are correlated with the relative position of the - 10 sequence and
resolve these choices into three or more sets. By specifically
training networks for each spacing class and then employing all
such networks in the search, one greatly simplifies the training
problem with no loss in overall efficacy. The training of networks
for the 16 and 18-base spacing classes should be straightforward;
though each of these classes has fewer known members than the
17-base class, both have higher information content (13).
A comparison of the input consensus sequence with the network

output sequence (Table 4) shows the input consensus to be the
simpler of the two. The input consensus sequence has multiple
symmetry elements which do not appear in the network output
sequence. ( The input consensus sequence shows a direct repeat
of the sequence, AACnnATTnnTTGnnTAA, with two
mismatches, beginning at position 5 and repeating at position 26.
This sequence has a simple underlying purine-pyrimidine pattern:
RRY-RYY -YYR- YRR. The spacing is such that these
elements fall on a single face of the helix, exposed in the grooves,
with the same groove pattern in each repeat (cf. 27). A face of
the helix 360 away from that showing the direct repeat shows
an inverted repeat, AAAnnnnnnnGTTnnnnnnnAAA, with two
mismatches, beginning at position 4 and rotating about position
30. The spacing is such that these elements again fall on a single
face of the helix, allowing all rotationally symmetric bases to
be exposed in six successive major grooves.) It is tempting to
speculate that the input consensus gives a glimpse into the

construction and sequence of the (high level, constitutive?)
primitive promoter, whereas the output consensus evidences the
changes required to accommodate a rich overlay of promoter
regulation.
The weight-structure analysis of Figure 1 also makes

quantitative statements about the relative weight of a given base
at a particular position, indicating that the G of the - 35 region
is, by a slight margin, the most heavily weighted choice; however,
it should be remembered that this is not necessarily an ideal
promoter image. It is noteworthy that the second to last base of
the -35 region and the 3rd and 5th bases of the -10 region
are not more heavily weighted, by either measure, than a number
of other bases outside of the contact regions.

Finally, the point should be made explicitly that the back-
propagation neural network, in addition to being a powerful
analytical tool, is much easier to develop and to use than rule-
based search procedures. It requires neither mathematical nor
programming skills. Nor does it require the patience implicit in
determining appropriate cutoff values for a multi-layered search
procedure. The trained network files can be sent to other
investigators who, with a small software investment (as little as
$200) can immediately employ them to search on new targets
or modify them to search for new types of targets.
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