

**Figure S1** Two interacting DrosDel deficiencies identified in the initial screen covered two known factors, *ds* and *Dl*, acting in parallel to or downstream of the Fz/PCP signaling pathway. Graphs show average rotation and chirality defects as determined by the *Rh1-GFP* assay for indicated genotypes for both *sev-Gal4*, *UAS-dgo* (G) and *sev-Gal4*, *UAS-pk* (G2). (A) *Df*(*2R*)*ED62*, subdividing deficiencies *Df*(*2R*)*ED49* and *Df*(*2R*)*Exel8003* enhanced rotation defects of *sev-Gal4*, *UAS-dgo* significantly (\*=P<0.03). *Notchless* (*Nle*) might be the candidate gene responsible for that interaction. Subdividing deficiencies *Df*(*2R*)*ED49*, *Df*(*2R*)*ED94* and *ds*<sup>UA071</sup> enhanced chirality defects of *sev-Gal4*, *UAS-dgo* significantly (\*\*=P<0.02), confirming the initial chirality interaction (\*\*\*=P<0.1) and identifying *dachsous*(*ds*) as the gene responsible for it. No effects were seen with *sev-Gal4*, *UAS-gk*. (B) *Df*(*2R*)*ED94* enhanced rotation defects of *sev-Gal4*, *UAS-pk*. (B) *Df*(*3R*)*ED5942*, subdividing deficiencies *Df*(*3R*)*Cha9* and *DI*<sup>*RF*</sup> enhanced rotation defects of *sev-Gal4*, *UAS-dgo* significantly (\*=P<0.1), confirming the initial interaction and identifying *Delta*(*Dl*) as the gene responsible for it. Deficiency *Df*(*3R*)*Cha9* also enhanced chirality defects of *sev-Gal4*, *UAS-dgo*. 4 eyes were analyzed each and 90-150 ommatidia were evaluated per genotype.



**Figure S2** Graph summarizing suppression of *sev-dsh* by two DrosDel deficiencies. Eye sections of 4 eyes were analyzed for ommatidial chirality of indicated genotypes. *Df*(*2L*)*ED793* and *Df*(*3R*)*ED5644* significantly suppressed *sev-dsh* induced PCP defects of symmetrical photoreceptor arrangement (\*=P<0.003). For comparison, the strength of suppression by *misshapen* (*msn*), an established downstream effector of Fz/Dsh signaling in the eye, is shown (\*\*=P<0.03) (Paricio et al. 1999). 2-3 eyes and 200-350 ommatidia were evaluated per genotype.



**Figure S3** (A) Independent assay confirming *dgo* and *CG15283* loss-of-function interaction. Graph shows average wing hair defects as observed in *en-GAL4*, *UAS-dgo-IR* and enhancement by *CG15283-IR* knockdown. 20 misoriented wing hairs at 45-180 degrees compared to wild-type were recorded as a value of 1 and n was 24-26 wings analyzed for each genotype. (B) Quantification of the rotation defects associated with the *sevGAL4*, *UAS-Nmo*, *CG69633-IR* and *sev-Stan/Fmi* genotypes. Note that CG6963/CK1g knock down enhances Nmo GOF rotation defects, whereas *nmo-/+* suppresses the CG6963-IR defects, indicating an antagonistic relationship between these genes. In addition, rotation defects associated with *sev-Fmi/Stan* is enhanced by CG6963-IR knock down. P values are \*<0.03, \*\*<0.001, and \*\*\*<0.0001, with the number of ommatidia analyzed being n=422-633 in 3 eyes for each genotype.

| Table S1 | DrosDel deficiencies, which showed no dominant external eye or wing modification of sev-GAL4, UAS-dgo and sev- |
|----------|----------------------------------------------------------------------------------------------------------------|
| GAL4, UA | <i>pk</i> phenotype.                                                                                           |

| GAL4, UAS-pk phenotype. |              |               |                |
|-------------------------|--------------|---------------|----------------|
| Df(1)ED404              | Df(1)ED409   | Df(1)ED6574   | Df(1)ED411     |
| Df(1)ED6630             | Df(1)ED6712  | Df(1)ED6802   | Df(1)ED418     |
| Df(1)ED6829             | Df(1)ED6991  | Df(1)ED7005   | Df(1)ED429     |
| Df(1)ED7067             | Df(1)ED7153  | Df(1)ED7217   | Df(1)ED7229    |
| Df(1)ED7294             | Df(1)ED7355  | Df(1)ED7413   | Df(1)ED6906    |
| Df(1)ED7664             | Df(1)ED6849  | Df(2L)ED2809  | Df(2L)ED5878   |
| Df(2L)ED19              | Df(2L)ED87   | Df(2L)ED94    | Df(2L)ED108    |
| Df(2L)ED125             | Df(2L)ED123  | Df(2L)ED136   | Df(2L)ED247    |
| Df(2L)ED284             | Df(2L)ED508  | Df(2L)ED647   | Df(2L)ED678    |
| Df(2L)ED690             | Df(2L)ED701  | Df(2L)ED737   | Df(2L)ED761    |
| Df(2L)ED778             | Df(2L)ED3    | Df(2L)ED1050  | Df(2L)ED1102   |
| Df(2L)ED1109            | Df(2L)ED1158 | Df(2L)ED1165  | Df(2L)ED1186   |
| Df(2L)ED1226            | Df(2L)ED1231 | Df(2L)ED1303  | Df(2L)ED1384   |
| Df(2L)ED1473            | Df(2R)ED1484 | Df(2R)ED1612  | Df(2R)ED1735   |
| Df(2R)ED2155            | Df(2R)ED2219 | Df(2R)ED9045  | Df(2R)ED2354   |
| Df(2R)ED2426            | Df(2R)ED2436 | Df(2R)ED1     | Df(2R)ED3610   |
| Df(2R)ED3923            | Df(2R)ED4061 | Df(2R)ED4071  | Df(2R)Exel6061 |
| Df(2R)ED1770            | Df(2R)ED2098 | Df(3L)ED4079  | Df(3L)ED4256   |
| Df(3L)ED4287            | Df(3L)ED4288 | Df(3L)ED4341  | Df(3L)ED4342   |
| Df(3L)ED210             | Df(3L)ED211  | Df(3L)ED4408  | Df(3L)ED4421   |
| Df(3L)ED4457            | Df(3L)ED4475 | Df(3L)ED215   | Df(3L)ED4486   |
| Df(3L)ED217             | Df(3L)ED218  | Df(3L)ED223   | Df(3L)ED4674   |
| Df(3L)ED4685            | Df(3L)ED4710 | Df(3L)ED224   | Df(3L)ED225    |
| Df(3L)ED4782            | Df(3L)ED4786 | Df(3L)ED228   | Df(3L)ED4799   |
| Df(3L)ED4978            | Df(3L)ED231  | Df(3R)ED4710  | Df(3R)ED5138   |
| Df(3R)ED5147            | Df(3R)ED5156 | Df(3R)ED5177  | Df(3R)ED5196   |
| Df(3R)ED5230            | Df(3R)ED5343 | Df(3R)ED5429  | Df(3R)ED5591   |
| Df(3R)ED5610            | Df(3R)ED5642 | Df(3R)ED10642 | Df(3R)ED5780   |
| Df(3R)ED2               | Df(3R)ED5911 | Df(3R)ED6025  | Df(3R)ED10809  |
| Df(3R)ED10820           | Df(3R)ED6093 | Df(3R)ED6103  | Df(3R)ED6187   |
| Df(3R)ED6235            | Df(3R)ED6255 | Df(3R)ED6265  | Df(3R)ED6310   |
| Df(3R)ED6316            | Df(3R)ED6332 | Df(3R)ED6346  | Df(3R)ED5071   |
| Df(4)ED6364             | Df(4)ED6369  | Df(4)ED6380   | Df(4)ED6382    |
| Df(4)ED6384             |              |               |                |