Α	23°	28°	30°	32°	34°	36°
CDC13 cdc13-1 cdc13-S56F cdc13-V530G	 ○●●●●● ○●●●●● ○●●●● ○●●● ○●●● ○●●● ○●● ○●● ○●● ○● ○● ○● ○● ○● ○ <l< th=""><th></th><th>● ● ● ● ● ↓ ◎ ◎ ◎ ◎ ● ● ● ● ● ਆ ○ ● ● ● ● ● 72 -</th><th>• • • • •</th><th>.</th><th></th></l<>		● ● ● ● ● ↓ ◎ ◎ ◎ ◎ ● ● ● ● ● ਆ ○ ● ● ● ● ● 72 -	• • • • •	.	
CDC13 CDC13 cdc13-S531F cdc13-D546G cdc13-fs686 CDC13				 •••• ••• •••• ••••<th></th><th></th>		
B CDC13 cdc13-L529Q cdc13-V543F cdc13-S611L CDC13			●●●穆特 ●●●@穆表 ●●●@穆表 ●●@@なよ ●@@&よ ●@@&よ ●@@&よ ●@@&&			
cdc13-G614V cdc13-F683L cdc13-F684S CDC13					000	
C CDC13 cdc13-1 cdc13-F547A cdc13-N609A cdc13-F684A						•••*

Figure S1 Identification of new *cdc13-ts* mutations, part I. Mutant alleles recovered from (A) forward mutagenesis of the full length *CDC13* gene, (B) forward mutagenesis directed at the DBD of *CDC13* or (C) reverse mutagenesis of the DBD of *CDC13* were transformed into a *cdc13-* Δ / p*CEN CDC13 URA3* shuffle strain and subsequently streaked on 5-FOA media at 23°, to recover isolates which had lost the wild type *CDC13* plasmid. The resulting strains were grown overnight in culture and viability was assessed by plating serial dilutions on pre-warmed rich media plates and photographing after 2.5 days (for \geq 28° incubations) or 4 days (for 23° and 25°).

●●● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	●●增力 ●●● ● ~ ◎ ◎ ③ · ● ● ③ · ● ◎ 歩 A	
●● 保 公 ● ● 保 公 ● ● 保 公 ● ● 保 公 ● ● 像 法 → ●		
	 ● ● 章 章 · ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	

С

Allele	Mutations present (cluster 1, cluster 2, cluster 3)			
isolate 22	V543F			
isolate 23	N609D			
isolate 26	N609D, Y626F			
isolate 19	L599P, S650P			
isolate 16	M525T, I633V			
isolate 30	T507A, L529Q			
isolate 21	S533L, <mark>V616A</mark>			
isolate 15	M463I, <mark>S611L</mark>			
isolate 31	P506S, G614V			
isolate 28	K618E, F683S			
isolate 20	N631D, F684S			
isolate 17	D535G, P651L, F683L			
isolate 24	V481E, A489T, L562Q			
isolate 25	T496S, E519V, I578T			
isolate 27	F575L, N627S, Y680C, I686V			
isolate 29	M498V, F544L ,T586M, K629E			
isolate 18	S531T , I563V, E608V, K629E, L693P			
isolate 14	N455D, T473A, D492G, I552T, F574S			

Figure S2 Identification of new *cdc13-ts* mutations, Part II. (A) Additional mutant alleles, as discussed in the text, were analyzed as described in Figure S1. (B) Missense mutations identified in a panel of *cdc13-ts* alleles, following mutagenesis of the DNA binding domain with error-prone PCR, remissense; clusters of residues discussed in the text are indicated.

Α

Figure S3 Viability assays of $stn1^{-}$ missense mutations. (A) Plasmids carrying the indicated Stn1 alleles were transformed into a $stn1-\Delta/pCEN STN1 URA3$ shuffle strain and subsequently streaked on 5-FOA media at 23°, to recover isolates which had lost the wild type STN1 plasmid. The resulting strains were grown overnight in culture and viability was assessed by plating serial dilutions of two isolates for each genotype on pre-warmed rich media plates and photographing after 2.5 days (for $\geq 28^{\circ}$ incubations) or 4 days (for 23° and 25°). (B) Flow cytometry profile of log-phase cultures of a $stn1-\Delta/p stn1-G77S$ strain grown at 23° and 36° for 3.5h.

200

400 600 FL1-A: Sytox-Area 800 1000

200

400 600 FL1-A: Sytox-Area 800 1000

Α

Figure S4 Telomere length of strains expressing $stn1^{-}$ missense mutations in residues selected for reverse mutagenesis based on either (A) Evolutionary Trace or (B) position of the side-chain relative to the interior of the β -barrel of the essential Nterminal OB-fold domain of Stn1; $stn1-\Delta$ strains with *CEN* plasmids expressing the indicated mutations were grown at 23° prior to preparing genomic DNA for telomere length analysis.

	Viable?	Telomerelength	23°	36°
173A 173S 173Y	Nea ity inviable	Venylong Extne melylong Venylong	+ +/- +	+/- +/- to (+)
L75 A L75 S L75 Y	i nvia ble	Medlong Verylong n/a	+ (+) to +	(+) to + +/- to (+)
179A 179S 179Y	i nvia ble	Medlong Verylong n/a	++ + to ++	+ (+)
193A 193S 193Y		Med long Very long Slightly long	++ + ++	+ +/- to (+) +
L97 A L97 S L97 Y	i nvia ble	Venylong n/a Venylong	(+) (+) to +	+/- +/-
L106 A L106 S L106 Y		Wild t y pe Wild t y pe Wild t y pe	++ ++ ++	++ ++ ++
L140 A L140 S L140 Y		Wildtype Wildtype Wildtype	++ ++ ++	++ ++ ++
V1 42A V1 42S V1 42Y	Nea Il y inviable i nviable	Slightlylong nt. n/a	+ to ++ +/-	+
L153 A L153 S L153 Y	i nvia ble	Venylong n/a Venylong	(+) (+)	+/- +/-
V1 55A V1 55S V1 55Y	Nea Il y inv ia ble i nvia ble	Very long nt. n/a	+ +/-	(+) —
L158 A L158 S L158 Y		Very long Very long n.t.	+ + (+)	+ + +/-
G7 7A G7 7S G7 7Y	Nea Ity inviable	Very long n.t. nt	(+) to + (+) +/-	+/- to + +/- —
G1 37A G1 37S G1 37Y	+ + i nvia ble	Venylong Long n/a	+(+) ++	(+) +

Figure S5 Summary of viability and telomere length of a panel of $stn1^-$ missense mutations introduced into 11 hydrophobic residues with side-chains located in the interior of the β -barrel of the essential N-terminal OB-fold domain of Stn1. Telomere length of selected mutant isolates is shown in Figure S4. The results for mutagenesis of two highly conserved glycine residues are also included.

Figure S6 Schematic of relative colony size following dissection of a $CDC13/cdc13-\Delta$ $RAD24/rad24-\Delta$ $CG1121/cgi121-\Delta$ diploid; colony size is roughly to scale, with red dots indicating colonies that can only visulized with magnification. All indicated genoytpes are also $rad24-\Delta$. Data for representative colonies indicated by the box are shown in Figure 8C.