Genome-wide meta-analysis identifies 56 bone mineral density

loci and reveals 14 loci associated with risk of fracture

Karol Estrada*, Unnur Styrkarsdottir*, Evangelos Evangelou*, Yi-Hsiang Hsu*, Emma L Duncan*, Evangelia E Ntzani*, Ling Oei*, Omar M E Albagha, Najaf Amin, John P Kemp, Daniel L Koller, Guo Li, Ching-Ti Liu, Ryan L Minster, Alireza Moayyeri, Liesbeth Vandenput, Dana Willner, Su-Mei Xiao, Laura M Yerges-Armstrong, Hou-Feng Zheng, Nerea Alonso, Joel Eriksson, Candace M Kammerer, Stephen K Kaptoge, Paul J Leo, Gudmar Thorleifsson, Scott G Wilson, James F Wilson, Ville Aalto, Markku Alen, Aaron K Aragaki, Thor Aspelund, Jacqueline R Center, Zoe Dailiana, David J Duggan, Melissa Garcia, Natàlia Garcia-Giralt, Sylvie Giroux, Göran Hallmans, Lynne J Hocking, Lise Bjerre Husted, Karen A Jameson, Rita Khusainova, Ghi Su Kim, Charles Kooperberg, Theodora Koromila, Marcin Kruk, Marika Laaksonen, Andrea Z Lacroix, Seung Hun Lee, Ping C Leung, Joshua R Lewis, Laura Masi, Simona Mencej-Bedrac, Tuan V Nguyen, Xavier Nogues, Millan S Patel, Janez Prezelj, Lynda M Rose, Serena Scollen, Kristin Siggeirsdottir, Albert V Smith, Olle Svensson, Stella Trompet, Olivia Trummer, Natasja M van Schoor, Jean Woo, Kun Zhu, Susana Balcells, Maria Luisa Brandi, Brendan M Buckley, Sulin Cheng, Claus Christiansen, Cyrus Cooper, George Dedoussis, Ian Ford, Morten Frost, David Goltzman, Jesús González-Macías, Mika Kähönen, Magnus Karlsson, Elza Khusnutdinova, Jung-Min Koh, Panagoula Kollia, Bente Lomholt Langdahl, William D Leslie, Paul Lips, Östen Ljunggren, Roman S Lorenc, Janja Marc, Dan Mellström, Barbara Obermayer-Pietsch, José M Olmos, Ulrika Pettersson-Kymmer, David M Reid, José A Riancho, Paul M Ridker, François Rousseau, P Eline Slagboom, Nelson LS Tang, Roser Urreizti, Wim Van Hul, Jorma Viikari, María T Zarrabeitia, Yurii S Aulchenko, Martha Castano-Betancourt, Elin Grundberg, Lizbeth Herrera, Thorvaldur Ingvarsson, Hrefna Johannsdottir, Tony Kwan, Rui Li, Robert Luben, Carolina Medina-Gómez, Stefan Th Palsson, Sjur Reppe, Jerome I Rotter, Gunnar Sigurdsson, Joyce B J van Meurs, Dominique Verlaan, Frances MK Williams, Andrew R Wood, Yanhua Zhou, Kaare M Gautvik, Tomi Pastinen, Soumya Raychaudhuri, Jane A Cauley, Daniel I Chasman, Graeme R Clark, Steven R Cummings, Patrick Danoy, Elaine M Dennison, Richard Eastell, John A Eisman, Vilmundur Gudnason, Albert Hofman, Rebecca D Jackson, Graeme Jones, J Wouter Jukema, Kay-Tee Khaw, Terho Lehtimäki, Yongmei Liu, Mattias Lorentzon, Eugene McCloskey, Braxton D Mitchell, Kannabiran Nandakumar, Geoffrey C Nicholson, Ben A Oostra, Munro Peacock, Huibert A P Pols, Richard L Prince, Olli Raitakari, Ian R Reid, John Robbins, Philip N Sambrook, Pak Chung Sham, Alan R Shuldiner, Frances A Tylavsky, Cornelia M van Duijn, Nick J Wareham, L Adrienne Cupples, Michael J Econs, David M Evans, Tamara B Harris, Annie W C Kung, Bruce M Psaty, Jonathan Reeve, Timothy D Spector, Elizabeth A Streeten, M Carola Zillikens, Unnur Thorsteinsdottir[#], Claes Ohlsson[#], David Karasik[#], J Brent Richards[#], Matthew A Brown[#], Kari Stefansson[#], André G Uitterlinden[#], Stuart H Ralston[#], John P A Ioannidis[#], Douglas P Kiel[#], Fernando Rivadeneira[#]

* These authors contributed equally to this work.

[#]These authors jointly directed this work.

SUPPLEMENTARY INFORMATION

CONTENTS

-	SU	IPPLEMENTARY TABLES 1-203											
-	SU	IPPLEMENT,	ARY FIGURES 1-10	64									
-	SU	IPPLEMENT,	ARY NOTE	112									
	1.	DE-NOVO GENOTYPING FOLLOW-UP (STAGE 2)											
	2.	ADDITIONAL ANALYSES											
		2.1.	Secondary signals	113									
		2.2.	Gene x Gene interaction	114									
		2.3.	Fine Mapping using 1000 Genomes Project data	114									
		2.4.	Gene expression	115									
		2.5.	Literature-based annotation with GRAIL	116									
		2.6.	Allele Risk Modeling	116									
	3.	URLS		117									
	4.	SUPPLEME	ENTARY REFERENCES	118									
	5.	COHORT-SPECIFIC CONTRIBUTIONS 1											
	6.	FULL ACK	NOWLEDGMENTS	123									

Supplementary Tables

Supplementary Table 1.	Stage 1 meta-analyses results for markers that were selected for replication in stage 2.
Supplementary Table 2.	Secondary signals in BMD loci after conditional analysis
Supplementary Table 3.	Gene x Gene interaction results
Supplementary Table 4.	Sex-combined meta-analysis results for:A. New loci associated with BMD at GWS level.B. Known loci associated with BMD at GWS level.C. Loci not reaching GWS association with BMD after replication
Supplementary Table 5.	Sex-stratified meta-analysis results for: A. New loci associated with BMD at GWS level. B. Known loci associated with BMD at GWS level. C. Loci not reaching GWS association with BMD after replication
Supplementary Table 6.	Association of BMD loci with Any low-trauma fracture across stage categories
Supplementary Table 7.	Proportion of Fracture Risk explained by BMD
Supplementary Table 8.	Results of meta-analysis for different types of fractures
Supplementary Table 9.	Weights for Allele Score Modeling

Supplementary Table 10.	Associated top SNPs from SNP-FN BMD association analysis using 1000G imputed genotypes (Pooled analysis)
Supplementary Table 11.	Associated top SNPs from SNP-LS BMD association analysis using 1000G imputed genotypes (Pooled analysis)
Supplementary Table 12.	Predicted functional SNPs (imputed from 1000 Genomics Project) in LD with targeted SNP in each locus
Supplementary Table 13.	Correlation between BMD at femoral neck and lumbar spine and gene expression in trans-iliacal bone biopsies
Supplementary Table 14.	Probable BMD-SNP cis eQTLs; Significant correlation between BMD associated SNP genotypes and gene expression
Supplementary Table 15.	Non-BMD SNP cis eQTLs; Significant correlation between non- associated SNP genotypes and gene expression
Supplementary Table 16.	Candidate Genes selected by GRAIL
Supplementary Table 17.	Functional and biological evidence for genes underlying GWAS loci
Supplementary Tables 18-20.	Description of studies (Stage 1, Stage 2-In-silico replication and Stage 2 de-novo genotyping replication with:
	A. Study design
	B. Study descriptive
	C. Study descriptive fracture information
	D. Genotyping quality control

								FN	-BMD	LS	BMD		
			Closest									Known	
SNP	Locus	Position	Gene	A1	A2	Freq1	Analysis	Beta	Р	Beta	Р	Locus/signal	
rs2120461	1p36.23	8370309	RERE	t	С	0.68	Both sexes	0.048	3.91E-08	0.035	1.44E-04	no	
rs7521902	1p36.12	22363311	WNT4	а	С	0.31	Secondary signal	-0.051	8.78E-08	-0.050	1.25E-06	yes	
rs6426749	1p36.12	22584060	ZBTB40	С	g	0.17	Both sexes	0.108	1.35E-23	0.105	2.35E-20	yes	
rs12137389	1p34.1	45710973	TESK2	t	С	0.02	Both sexes	-0.127	3.05E-06	-0.052	7.38E-02	no	
rs17482952	1p31.3	68411973	WLS	а	g	0.93	Secondary signal	0.076	2.32E-07	0.063	7.19E-05	yes/no	
rs12407028	1p31.3	68420304	WLS	t	С	0.61	Both sexes	0.048	1.47E-08	0.081	6.86E-20	yes	
rs11809524	1p21.1	103232125	COL11A1	t	С	0.85	Both sexes	0.055	1.37E-06	0.047	1.06E-04	no	
rs479336	1q24.3	170466196	DNM3	t	g	0.74	Both sexes	-0.050	1.06E-07	-0.024	1.34E-02	no	
rs12120297	1q41	221617907	SUSD4	t	С	0.85	Both sexes	0.042	7.95E-04	0.065	3.05E-06	no	
rs13413210	2p23.2	29426149	ALK	а	С	0.91	Males	-0.059	3.02E-02	-0.130	2.65E-06	no	
rs7584262	2p21	42104053	PKDCC	t	С	0.23	Both sexes	0.053	1.44E-07	0.016	1.27E-01	no	
rs4233949	2p16.2	54513211	SPTBN1	С	g	0.38	Both sexes	0.032	1.49E-04	0.062	5.01E-12	yes	
rs730402	2p16.1	59948210	BCL11A	а	g	0.45	Males	0.070	2.62E-06	0.037	1.45E-02	no	
rs17040773	2q13	112216506	ANAPC1	а	С	0.77	Both sexes	0.045	4.26E-06	0.005	6.14E-01	no	
rs1878526	2q14.2	118755068	INSIG2	а	g	0.22	Females	0.013	2.77E-01	0.061	6.41E-07	no	
rs1346004	2q24.3	166309292	GALNT3	а	g	0.49	Both sexes	-0.052	1.79E-10	-0.049	1.29E-08	yes	
rs11675051	2q32.2	191154675	NAB1	а	g	0.32	Females	0.049	1.47E-06	0.019	8.15E-02	no	
rs12995369	2q33.1	202535225	ALS2CR7	а	g	0.55	Both sexes	0.052	1.94E-07	0.031	4.71E-03	no	
rs6436440	2q36.1	224413150	AP1S3	а	g	0.47	Females	0.046	1.17E-06	0.033	1.10E-03	no	
rs2291296	3p24.2	25400886	RARB	а	g	0.17	Females	-0.007	5.88E-01	-0.061	3.76E-06	no	
rs7427438	3p24.1	29369729	RBMS3	а	С	0.33	Females	-0.047	2.29E-06	-0.017	1.16E-01	no	
rs430727	3p22.1	41103568	CTNNB1	t	С	0.47	Both sexes	-0.074	9.73E-17	-0.056	2.87E-09	yes	
rs1026364	3q13.2	114852700	KIAA2018	t	g	0.36	Both sexes	0.041	2.01E-06	0.019	4.29E-02	no	
rs344081	3q25.31	158038678	LEKR1	t	С	0.87	Males	0.112	6.83E-07	0.083	2.87E-04	no	
rs3755955	4p16.3	984414	IDUA	а	g	0.16	Both sexes	-0.061	3.90E-07	-0.068	1.35E-07	no	
rs6532023	4q22.1	88992873	MEPE	t	g	0.34	Both sexes	0.051	2.55E-09	0.061	1.72E-11	yes	
rs1366594	5q14.3	88411817	MEF2C	а	С	0.53	Both sexes	0.092	7.38E-29	0.019	2.90E-02	yes	
rs4957742	5q21.3	105200867	EFNA5	а	g	0.77	Both sexes	-0.044	4.74E-06	-0.028	7.56E-03	no	
rs9466056	6p22.3	21492592	CDKAL1	а	g	0.38	Both sexes	-0.048	1.80E-08	-0.036	6.53E-05	no	
rs11755164	6p21.1	44747162	SUPT3H	t	С	0.40	Both sexes	-0.012	2.26E-01	-0.052	3.52E-07	no	
rs13204965	6q22.32	127208765	RSPO3	а	С	0.76	Females	0.069	2.90E-07	0.049	8.23E-04	yes	
rs4869742	6q25.1	151949441	C6orf97	t	С	0.32	Both sexes	-0.068	3.61E-14	-0.087	3.27E-20	yes	
rs7751941	6q25.1	151988351	C6orf97	а	g	0.21	Secondary signal	-0.048	5.34E-07	-0.077	3.97E-14	yes/yes	
rs7788807	7p22.1_1	4734564	FOXK1	t	С	0.94	Females	0.043	3.34E-02	0.098	4.11E-06	no	
rs2008425	7p22.1_2	5786972	RNF216	t	g	0.02	Females	-0.127	2.00E-03	-0.194	2.97E-06	no	
rs10226308	7p14.1	37904947	TXNDC3	а	g	0.84	Secondary signal	-0.029	3.81E-03	-0.063	3.36E-09	yes/no	

Supplementary Table 1	Stage 1 meta-analy	vses results fo	or markers that w	ere selected for re	plication in stage	2.

								FN	-BMD	LS	BMD		
			Closest									Known	
SNP	Locus	Position	Gene	A1	A2	Freq1	Analysis	Beta	Р	Beta	Р	Locus/signal	
rs6959212	7p14.1	38094851	STARD3NL	t	С	0.34	Both sexes	-0.030	6.36E-04	6E-04 -0.077 6.8		yes	
rs2282930	7p12.2	50722173	GRB10	а	g	0.26	Females	-0.057	5.03E-07	-0.037	2.26E-03	no	
rs4727338	7q21.3	95958611	SLC25A13	С	g	0.67	Both sexes	0.081	2.99E-20	0.074	1.11E-15	yes	
rs13245690	7q31.31	120572300	C7orf58	а	g	0.65	Secondary signal	0.032	8.57E-05	0.052	1.07E-09	no	
rs3801387	7q31.31	120762001	WNT16	а	g	0.74	Both sexes	-0.071	4.23E-14	-0.083	1.35E-16	no	
rs7812088	7q36.1	150550762	ABCF2	а	g	0.12	Both sexes	0.061	1.22E-06	0.055	2.93E-05	no	
rs1670346	7q36.3	157960022	PTPRN2	а	g	0.30	Both sexes	-0.042	2.81E-06	-0.020	3.49E-02	no	
rs7017914	8q13.3	71753757	XKR9	а	g	0.49	Females	0.053	4.70E-08	0.010	3.52E-01	no	
rs13272568	8q21.12	79197014	ΡΚΙΑ	а	С	0.44	Both sexes	-0.039	2.13E-06	-0.014	9.80E-02	no	
rs2062377	8q24.12	120076601	TNFRSF11B	а	t	0.59	Both sexes	-0.063	2.50E-14	-0.081	2.26E-20	yes	
rs4240467	9q33.2	123350111	DAB2IP	С	g	0.32	Males	-0.043	6.75E-03	-0.079	9.65E-07	no	
rs7851693	9q34.11	132468648	FUBP3	С	g	0.63	Both sexes	0.047	3.08E-08	0.017	5.81E-02	no	
rs3905706	10p11.23	28519948	MPP7	t	с	0.23	Both sexes	0.005	6.28E-01	0.063	2.93E-09	no	
rs1373004	10q21.1	54097831	MBL2	t	g	0.12	Females	-0.065	6.32E-06	-0.089	8.87E-09	no	
rs7071206	10q22.3_1	79071322	KCNMA1	t	с	0.76	Females	-0.020	8.68E-02	-0.087	8.34E-13	no	
rs2784767	10q22.3_2	81884474	PLAC9	t	с	0.43	Females	0.052	4.80E-06	0.036	5.09E-03	no	
rs7084921	10q24.2	101803792	CPN1	t	с	0.40	Females	0.045	3.13E-06	0.027	8.62E-03	no	
rs11602954	11p15.5	192856	BET1L	а	g	0.23	Both sexes	0.034	1.06E-03	0.056	2.74E-07	no	
rs7108738	11p15.2	15666660	SOX6	t	g	0.82	Both sexes	-0.093	1.03E-17	-0.047	4.51E-05	yes	
rs10835187	11p14.1_1	27462253	LIN7C	t	С	0.54	Females	-0.028	3.70E-03	-0.052	4.14E-07	no	
rs163879	11p14.1_2	30908250	DCDC5	t	с	0.66	Both sexes	-0.042	1.70E-06	-0.049	8.81E-08	yes	
rs7932354	11p11.2	46678797	ARHGAP1	t	С	0.33	Both sexes	0.050	2.29E-08	0.041	1.23E-05	yes	
rs600231	11q13.1	65017222	SCYL1	а	g	0.69	Females	-0.051	9.03E-07	-0.032	3.55E-03	no	
rs3736228	11q13.2	67957871	LRP5	t	с	0.15	Both sexes	-0.054	1.79E-06	-0.081	1.62E-11	yes	
rs2887571	12p13.33	1508432	ERC1	а	g	0.76	Both sexes	-0.037	1.06E-04	-0.052	2.20E-07	no	
rs11048046	12p12.1	25496076	IFLTD1	а	g	0.08	Males	-0.148	3.59E-06	-0.055	8.30E-02	no	
rs7953528	12p11.22	27908426	KLHDC5	а	t	0.18	Both sexes	0.058	5.75E-08	0.001	9.44E-01	no	
rs12821008	12q13.12	47760872	DHH	t	С	0.40	Both sexes	0.032	1.89E-04	0.047	1.53E-07	no	
rs2016266	12q13.13	52014222	SP7	а	g	0.69	Both sexes	-0.045	4.79E-07	-0.063	1.53E-11	yes	
rs736825	12q13.13	52703843	НОХС6	С	g	0.56	Secondary signal	0.036	7.65E-06	0.054	2.40E-10	yes/no	
rs1053051	12q23.3	105891355	C12orf23	t	С	0.51	Both sexes	-0.036	1.35E-05	-0.041	2.47E-06	no	
rs9533090	13q14.11	41849449	AKAP11	t	с	0.48	Both sexes	-0.054	9.84E-11	-0.110	1.02E-35	yes	
rs7326472	13q14.11	41877951	AKAP11	а	g	0.92	Secondary signal	-0.055	2.55E-03	-0.103	9.80E-08	yes/no	
rs1286083	14q32.12	90512532	RPS6KA5	t	С	0.80	Both sexes	-0.059	2.91E-08	-0.074	1.69E-11	no	
rs11623869	14q32.32	102953386	MARK3	t	g	0.34	Both sexes	-0.041	1.26E-06	-0.030	7.53E-04	yes	
rs2118784	15q21.2	49238477	CYP19A1	а	С	0.29	Females	-0.050	1.41E-06	-0.038	5.26E-04	no	

Supplementary Table 1 Stage 1 meta-analyses results for markers that were selected for replication in stage 2.

								FN	-BMD	LS	BMD	
			Closest									Known
SNP	Locus	Position	Gene	A1	A2	Freq1	Analysis	Beta	Р	Beta	Р	Locus/signal
rs9921222	16p13.3_1	315783	AXIN1	t	С	0.46	Both sexes	-0.043	2.46E-07	-0.049	2.20E-08	no
rs13336428	16p13.3_2	1472464	C16orf38	а	g	0.44	Both sexes	-0.043	2.87E-07	-0.036	5.94E-05	no
rs4985155	16p13.11	15036960	NTAN1	а	g	0.65	Both sexes	-0.031	3.53E-04	-0.045	8.71E-07	no
rs1564981	16q12.1	49543809	CYLD	а	g	0.50	Secondary signal	-0.025	1.05E-03	-0.045	6.24E-08	no
rs1566045	16q12.1	49579304	SALL1	t	с	0.80	Both sexes	-0.074	4.95E-12	-0.030	7.83E-03	no
rs10048146	16q24.1	85268161	FOXL1	а	g	0.80	Both sexes	0.056	1.28E-07	0.061	2.95E-08	yes
rs4790881	17p13.3	2015682	SMG6	а	С	0.67	Both sexes	0.051	1.66E-08	0.032	6.04E-04	no
rs4792909	17q21.31_1	39154350	SOST	t	g	0.37	Secondary signal	0.035	1.85E-05	0.044	5.14E-07	yes/yes
rs227584	17q21.31_1	39581073	C17orf53	а	с	0.67	Both sexes	-0.060	3.44E-11	-0.048	4.77E-07	yes
rs1864325	17q21.31_2	41333623	MAPT	t	С	0.22	Both sexes	-0.040	7.79E-05	-0.057	1.11E-07	yes
rs7226305	17q22	49464490	KIF2B	а	с	0.82	Both sexes	-0.017	1.29E-01	-0.058	1.33E-06	no
rs7217932	17q24.3	67460611	SOX9	а	g	0.46	Both sexes	0.045	3.65E-08	0.009	3.12E-01	no
rs4796995	18p11.21	13698574	C18orf19	а	g	0.61	Both sexes	0.040	3.18E-06	0.031	5.22E-04	no
rs884205	18q21.33	58205837	TNFRSF11A	а	С	0.25	Both sexes	-0.042	3.87E-05	-0.065	4.85E-09	yes
rs7257450	19p13.11	17349607	PLVAP	а	g	0.76	Females	0.014	2.78E-01	0.065	4.79E-06	no
rs10416218	19q13.11	38290967	GPATCH1	t	С	0.72	Both sexes	-0.042	5.73E-06	-0.056	9.19E-09	no
rs3790160	20p12.2	10587988	JAG1	t	С	0.50	Both sexes	0.043	1.32E-07	0.057	5.36E-11	yes
rs4817775	21q22.12	36406932	CBR3	а	С	0.58	Both sexes	0.023	6.24E-03	0.042	1.49E-06	no
rs4820539	22q11.23	21807970	RTDR1	а	g	0.44	Both sexes	0.038	4.86E-06	0.025	3.65E-03	no
rs5934507	Xp22.31	8877206	FAM9B	а	g	0.73	ChrX - men	-0.031	1.19E-02	-0.057	5.66E-06	no
rs5926033	Xp22.11	22594282	DDX53	t	С	0.71	ChrX - both sexes	0.037	4.13E-06	0.014	9.96E-02	no
rs5952638	Xp11.3	44579849	DUSP21	а	t	0.93	ChrX - both sexes	0.056	3.03E-04	0.069	2.29E-05	no
rs4492531	Xq13.3	74948856	MAGEE2	а	g	0.55	ChrX - both sexes	-0.066	1.98E-03	-0.094	2.40E-05	no
rs964181	Xq28	150792732	MAGEA4	t	С	0.41	ChrX - both sexes	0.036	4.72E-06	0.028	5.22E-04	no

Supplementary Table 1	Stage 1 meta-analyses results for markers that were selected for replication i	in stage 2.
-----------------------	--	-------------

The effect estimates (Beta) are expressed as standardized values per copy of the SNP allele (A1). Results are shown for the analysis from which the marker was selected for replication, shown in the Analysis column. Freq1 denotes allelic frequency of SNP allele A1, FN-BMD is BMD at the femoral neck and LS-BMD is BMD at lumbar spine. In the pooled analysis of both sexes were 32,961 subjects, 31,900 in the secondary signal analysis, 22,990 in the female only analysis and 9,9980 in males only. Subjects analysed for the X chromosome were 31,801. Wether a locus has previously been reported to associate with BMD, or a secondary signal at a known locus, is shown. Position is given according to NCBIbuild36.

Supplementary Table 2 Secondary signals in BMD loci after conditional analysis

										Second sig	nal P val	ue						
										after con	ditionin	g	Secon	Second signal P value after replication				
										(Discovery	/ n=31,90	0)	(Dis	(Discovery + Replication n=56,123)				
									FI	FNBMD LSBMD		SBMD	FN	IBMD	LS	BMD		
Second signal		Closest		Conditioned	Distance	Genetic	HanMan ^c											
Second Signal	Locus	Ciusesi Cono/Condidato	MAE	SND	(hn)b	(cM)		۸1 ^d	Rota	в	Rota	р	Rota	р	Rota	р		
JINF	LUCUS	Gene/Canuluate	IVIAF	JINF	(up)			AI	Deta	r	Deta	F	Deta	r	Deta	r		
rs17482952	1p31.3	WLS	0.07	rs12407028	8,331	0.01	0.062	а	0.08	2.32E-07	0.06	7.19E-05	0.08	1.31E-11	0.07	1.69E-08		
rs7521902	1p36.12	WNT4	0.19	rs6426749	220,749	0.42	0.003	а	-0.05	8.78E-08	-0.05	1.25E-06	-0.04	2.85E-09	-0.05	9.66E-11		
rs7751941	6q25.1	C6orf97/ESR1	0.23	rs4869742	38,910	0.11	0.008	а	-0.05	5.34E-07	-0.08	3.97E-14	-0.04	1.59E-09	-0.08	1.99E-24		
rs10226308	7p14.1	TXNDC3/SFRP4	0.19	rs6959212	189,904	0.25	0.004	а	-0.03	3.81E-03	-0.06	3.36E-09	-0.02	1.53E-02	-0.06	6.40E-13		
rs13245690	7q31.31	C7orf58	0.38	rs3801387	189,701	0.15	0.028	а	0.03	8.57E-05	0.05	1.07E-09	0.02	8.20E-04	0.05	1.65E-11		
rs736825	12q13.13	НОХС6	0.35	rs2016266	689,621	NA	NA	С	0.04	7.65E-06	0.05	2.40E-10	0.04	1.06E-09	0.05	7.68E-16		
rs7326472	13q14.11	AKAP11/TNFSF11	0.04	rs9533090	28,502	0.01	0.033	а	-0.05	2.55E-03	-0.10	9.80E-08	-0.05	5.07E-04	-0.07	2.61E-07		
rs1564981	16q12.1	CYLD	0.47	rs1566045	35,495	0.10	0.009	а	-0.03	1.05E-03	-0.04	6.24E-08	-0.02	4.38E-05	-0.04	1.95E-10		
rs4792909	17q21.31	SOST	0.35	rs227584	426,723	0.25	0.001	t	0.04	1.85E-05	0.04	5.14E-07	0.04	1.95E-11	0.04	9.43E-10		

a Index marker representing the second signal in the originally associated locus after conditioning for the most significant SNP in the same region. b Distance of conditioned SNP from the index SNP. c HapMap CEU phase II release 22. d Coded allele of the second signal for which the Beta estimate is specified.

 TRAIT	SNP1	GENE1	SNP2	GENE2	Beta_interaction	se_interaction	12	P_interaction
 FNBMD	rs4869742	C6orf97	rs12821008	DHH	0.04	0.009	0	4.90E-05
FNBMD	rs11809524	COL11A1	rs9533090	AKAP11	0.04	0.011	20	2.18E-04
LSBMD	rs9466056	CDKAL1	rs2016266	SP7	0.02	0.007	8	2.23E-04
LSBMD	rs11675051	NAB1	rs2282930	GRB10	-0.03	0.009	0	5.98E-04
LSBMD	rs9921222	AXIN1	rs1864325	MAPT	0.03	0.009	37	7.58E-04
FNBMD	rs11675051	NAB1	rs3755955	IDUA	0.04	0.012	0	1.20E-03
FNBMD	rs2120461	RERE	rs2282930	GRB10	0.03	0.010	24	1.25E-03
LSBMD	rs7953528	KLHDC5	rs7257450	PLVAP	0.02	0.007	16	1.34E-03
LSBMD	rs7953528	KLHDC5	rs6532023	MEPE	0.02	0.007	0	1.34E-03

Supplementary Table 3 Gene x Gene interaction results.

Nominally significant (P< 1.5x10-3) gene x gene interaction results for pair-wise tests of lead SNPs at 82 BMD loci with P<5x10-6 in Stage 1. Adjusting for 3321 tests, the P-value for significance is 1.5x10-5.

Sui	oplementary	V Table 4A	Sex-combined meta-ana	lysis results across stage	s for new loc	i associated with	BMD at GWS level.
1							

						FNBMD								LSBMD								
								ST			ST/	AGE 1 +							ST/	GE 1 +		
						ST	AGE 1		STAGE	2		ST	AGE 2	ST	AGE 1	STAGE 2				STAGE 2		
						(Up to	o 32,961)		(Up to 50,	933)		(Up t	o 83,894)	(Up t	o 31,800)	(Up to 45,708)				(Up to 77,508)		
SNP	Locus	Closest Gene	A1a	A2	Freq1	Beta	Р	Beta	Р	12	Q _{het} P	Beta	Р	Beta	Р	Beta	Р	12	Q _{het} P	Beta	Р	
rs479336	1q24.3	DNM3	t	g	0.74	-0.05	1.06E-07	-0.04	1.30E-08	0	0.94	-0.04	8.51E-15	-0.02	0.01	-0.03	4.97E-04	0	0.84	-0.03	2.14E-05	
rs7584262	2p21	PKDCC	t	С	0.23	0.05	1.44E-07	0.03	3.37E-04	0	0.75	0.04	1.27E-09	0.02	0.13	0.01	0.28	0	0.93	0.01	0.07	
rs17040773	2q13	ANAPC1	а	С	0.76	0.05	4.26E-06	0.03	6.08E-05	21	0.14	0.04	1.51E-09	0.01	0.61	0.01	0.21	0	0.97	0.01	0.19	
rs1878526	2q14.2	INSIG2	а	g	0.22	0.00	0.70	0.00	0.97	12	0.27	0.00	0.79	0.05	7.31E-06	0.04	3.38E-06	0	0.48	0.04	1.22E-10	
rs1026364	3q13.2	KIAA2018	t	g	0.37	0.04	2.01E-06	0.03	2.51E-05	0	0.66	0.03	4.08E-10	0.02	0.04	0.02	7.26E-03	33	0.04	0.02	7.57E-04	
rs344081	3q25.31	LEKR1	t	С	0.87	0.05	1.09E-04	0.03	2.50E-03	21	0.14	0.04	2.22E-06	0.06	2.76E-05	0.06	3.54E-08	0	0.77	0.06	4.46E-12	
rs3755955	4p16.3	IDUA	а	g	0.16	-0.06	3.90E-07	-0.05	6.14E-09	6	0.37	-0.06	1.46E-14	-0.07	1.35E-07	-0.05	5.52E-09	20	0.16	-0.06	5.24E-15	
rs11755164	6p21.1	SUPT3H	t	С	0.40	-0.01	0.23	-0.01	0.12	0	0.91	-0.01	0.05	-0.05	3.52E-07	-0.03	9.19E-06	0	0.82	-0.04	5.60E-11	
rs9466056	6p22.3	CDKAL1	а	g	0.38	-0.05	1.80E-08	-0.03	1.55E-06	0	0.74	-0.04	2.73E-13	-0.04	6.53E-05	-0.03	1.11E-04	16	0.21	-0.03	3.56E-08	
rs3801387	7q31.31	WNT16	а	g	0.74	-0.07	4.23E-14	-0.08	2.00E-27	12	0.27	-0.08	5.02E-40	-0.08	1.35E-16	-0.10	1.50E-36	17	0.19	-0.09	3.17E-51	
rs13245690	7q31.31	C7orf58	а	g	0.65	0.03	8.57E-05	0.00	0.69	37	0.07	0.02	8.20E-04	0.05	1.07E-09	0.03	1.30E-03	18	0.24	0.05	1.65E-11	
rs7812088	7q36.1	ABCF2	а	g	0.13	0.06	1.22E-06	0.04	4.41E-04	27	0.08	0.05	7.28E-09	0.06	2.93E-05	0.04	1.10E-03	50	0.002	0.04	2.24E-07	
rs7017914*	8q13.3	XKR9	а	g	0.49	0.04	3.60E-07	0.02	0.02	10	0.35	0.03	2.29E-07	0.00	0.91	-0.01	0.11	5	0.78	-0.01	0.26	
rs7851693	9q34.11	FUBP3	С	g	0.64	0.05	3.08E-08	0.05	1.43E-15	0	0.51	0.05	3.37E-22	0.02	0.06	0.04	6.71E-08	1	0.45	0.03	6.08E-08	
rs3905706	10p11.23	MPP7	t	С	0.22	0.00	0.63	-0.02	1.67E-03	0	0.95	-0.01	0.03	0.06	2.93E-09	0.05	6.68E-09	0	0.49	0.05	2.41E-16	
rs1373004	10q21.1	MBL2	t	g	0.13	-0.06	1.39E-05	-0.04	1.45E-04	19	0.18	-0.04	1.45E-08	-0.07	5.40E-08	-0.05	2.24E-06	26	0.10	-0.06	1.56E-12	
rs7071206	10q22.3_1	KCNMA1	t	С	0.78	-0.01	0.29	0.01	0.26	1	0.45	0.00	0.81	-0.07	1.54E-12	-0.05	6.24E-09	28	0.07	-0.06	5.02E-19	
rs7084921	10q24.2	CPN1	t	С	0.39	0.03	1.42E-04	0.03	1.55E-06	0	0.51	0.03	9.03E-10	0.02	0.01	0.03	1.92E-05	15	0.23	0.03	9.15E-07	
rs10835187	11p14.1_1	LIN7C	t	С	0.55	-0.01	0.17	-0.01	0.08	0	0.91	-0.01	0.03	-0.04	3.04E-05	-0.02	2.36E-04	24	0.11	-0.03	4.90E-08	
rs7953528	12p11.22	KLHDC5	а	t	0.18	0.06	5.75E-08	0.04	2.43E-06	0	0.54	0.05	1.87E-12	0.00	0.94	-0.02	0.05	0	0.94	-0.01	0.13	
rs2887571	12p13.33	ERC1	а	g	0.76	-0.04	1.06E-04	-0.03	1.60E-05	25	0.10	-0.03	6.49E-09	-0.05	2.20E-07	-0.04	2.88E-06	0	0.52	-0.04	5.59E-12	
rs12821008	12q13.12	DHH	t	С	0.39	0.03	1.89E-04	0.03	5.20E-04	0	0.72	0.03	3.34E-07	0.05	1.53E-07	0.05	1.89E-09	7	0.36	0.05	1.17E-15	
rs1053051	12q23.3	C12orf23	t	С	0.52	-0.04	1.35E-05	-0.03	1.82E-05	13	0.27	-0.03	9.60E-10	-0.04	2.47E-06	-0.02	2.38E-03	0	0.86	-0.03	7.90E-08	
rs1286083	14q32.12	RPS6KA5	t	С	0.81	-0.06	2.91E-08	-0.05	9.32E-09	0	0.50	-0.05	2.02E-15	-0.07	1.69E-11	-0.04	7.13E-06	25	0.10	-0.05	1.75E-14	
rs4985155	16p13.11	NTAN1	а	g	0.67	-0.03	3.53E-04	-0.03	1.38E-07	4	0.41	-0.03	1.74E-10	-0.04	8.71E-07	-0.03	1.83E-04	0	0.66	-0.03	2.15E-09	
rs9921222	16p13.3_1	AXIN1	t	С	0.48	-0.04	2.46E-07	-0.03	2.37E-06	43	0.01	-0.04	5.18E-12	-0.05	2.20E-08	-0.04	8.29E-10	28	0.07	-0.04	1.00E-16	
rs13336428	16p13.3_2	C16orf38	а	g	0.43	-0.04	2.87E-07	-0.04	1.08E-10	0	0.79	-0.04	1.49E-16	-0.04	5.94E-05	-0.04	5.75E-10	0	0.65	-0.04	1.66E-13	
rs1566045	16q12.1	SALL1	t	С	0.80	-0.07	4.95E-12	-0.06	3.03E-12	30	0.05	-0.06	1.94E-22	-0.03	7.83E-03	-0.01	0.55	25	0.11	-0.01	0.04	
rs1564981	16q12.1	CYLD	а	g	0.50	-0.03	1.05E-03	-0.02	0.01	23	0.18	-0.02	4.38E-05	-0.04	6.24E-08	-0.03	5.37E-04	48	0.01	-0.04	1.95E-10	
rs4790881	17p13.3	SMG6	а	С	0.69	0.05	1.66E-08	0.05	1.18E-11	12	0.28	0.05	9.75E-19	0.03	6.04E-04	0.04	1.65E-06	27	0.09	0.03	3.38E-09	
rs7217932	17q24.3	SOX9	а	g	0.46	0.05	3.65E-08	0.03	2.69E-05	5	0.39	0.03	1.92E-11	0.01	0.31	0.01	0.15	0	0.69	0.01	0.08	
rs4796995	18p11.21	C18orf19	а	g	0.63	0.04	3.18E-06	0.02	1.13E-03	39	0.01	0.03	4.85E-08	0.03	5.22E-04	0.01	0.11	14	0.24	0.02	6.65E-04	
rs10416218	19q13.11	GPATCH1	t	С	0.73	-0.04	5.73E-06	-0.02	7.11E-04	0	0.69	-0.03	5.52E-08	-0.06	9.19E-09	-0.03	1.22E-04	0	0.96	-0.04	6.64E-11	
rs5934507*	Xp22.31	FAM9B	а	g	0.73	-0.01	0.09	-0.01	0.16	34	0.25	-0.01	0.03	-0.02	6.81E-03	-0.01	0.34	37	0.08	-0.02	7.29E-03	

P-values in bold reflect loci reaching GWS level. ^aBeta estimates (effect on each allele of the SNP on standardized BMD) and frequencies are reported for this allele. The measure of heterogeneity (Cochran's Qhet P statistic and I2) was calculated in the Stage 2 samples. *These markers were GWS in the sex-stratified meta-analysis.

									FNBM	D							LSB	MD			
						ST. (Up to	AGE 1 o 32,961)	(U)	STAGE 2 p to 50,933)		ST/ S1 (Up t	AGE 1 + TAGE 2 to 83,894)	ST (Up t	AGE 1 o 31,800)	(U	STAGE 2 p to 45,70	8)		ST/ S1 (Up t	AGE 1 + TAGE 2 to 77,508)
SNP	Locus	Closest Gene	A1ª	A2	Freq1	Beta	Р	Beta	Р	ľ	Q _{het} P	Beta	Р	Beta	Р	Beta	Р	۱²	Q _{het} P	Beta	Р
rs17482952	1p31.3	WLS	а	g	0.93	0.08	2.32E-07	0.08	1.23E-05	17	0.25	0.08	1.31E-11	0.06	7.19E-05	0.07	5.66E-05	8	0.36	0.07	1.69E-08
rs12407028	1p31.3	WLS	t	с	0.60	0.05	1.47E-08	0.05	4.62E-16	0	0.75	0.05	3.44E-23	0.08	6.86E-20	0.07	1.12E-26	27	0.09	0.08	3.11E-45
rs7521902	1p36.12	WNT4	а	с	0.31	-0.05	8.78E-08	-0.03	3.92E-03	0	0.45	-0.04	2.85E-09	-0.05	1.25E-06	-0.05	1.60E-05	42	0.03	-0.05	9.66E-11
rs6426749	1p36.12	ZBTB40	С	g	0.17	0.11	1.35E-23	0.11	3.49E-35	0	0.86	0.11	7.39E-57	0.11	2.35E-20	0.10	3.66E-26	0	0.80	0.10	1.86E-44
rs4233949	2p16.2	SPTBN1	С	g	0.38	0.03	1.49E-04	0.02	6.40E-03	0	0.56	0.02	5.91E-06	0.06	5.01E-12	0.04	2.35E-08	41	0.01	0.05	2.25E-18
rs1346004	2q24.3	GALNT3	а	g	0.50	-0.05	1.79E-10	-0.05	1.16E-16	30	0.06	-0.05	1.08E-25	-0.05	1.29E-08	-0.07	1.50E-23	6	0.37	-0.06	3.87E-30
rs430727	3p22.1	CTNNB1	t	с	0.48	-0.07	9.73E-17	-0.05	3.43E-11	12	0.28	-0.06	4.41E-25	-0.06	2.87E-09	-0.05	9.58E-11	27	0.10	-0.05	1.54E-18
rs6532023	4q22.1	MEPE	t	g	0.34	0.05	2.55E-09	0.06	3.62E-18	0	0.53	0.06	4.95E-26	0.06	1.72E-11	0.06	7.32E-18	3	0.41	0.06	1.23E-27
rs1366594	5q14.3	MEF2C	а	с	0.54	0.09	7.38E-29	0.08	6.25E-34	26	0.09	0.08	4.47E-61	0.02	0.03	0.01	0.14	0	0.53	0.01	0.01
rs13204965	6q22.32	RSPO3	а	с	0.76	0.05	1.49E-06	0.04	7.24E-07	0	0.82	0.04	8.12E-12	0.04	2.68E-04	0.04	3.90E-07	0	0.75	0.04	3.61E-10
rs7751941	6q25.1	C6orf97	а	g	0.21	-0.05	5.34E-07	-0.04	7.49E-04	0	0.84	-0.04	1.59E-09	-0.08	3.97E-14	-0.08	8.27E-12	32	0.10	-0.08	1.99E-24
rs4869742	6q25.1	C6orf97	t	С	0.31	-0.07	3.61E-14	-0.04	5.38E-07	16	0.21	-0.05	4.15E-18	-0.09	3.27E-20	-0.07	5.05E-17	14	0.24	-0.08	3.95E-35
rs10226308	7p14.1	TXNDC3	а	g	0.84	-0.03	3.81E-03	0.00	0.81	8	0.36	-0.02	0.02	-0.06	3.36E-09	-0.05	3.17E-05	28	0.13	-0.06	6.40E-13
rs6959212	7p14.1	STARD3NL	t	С	0.32	-0.03	6.36E-04	-0.05	1.85E-11	0	0.97	-0.04	1.18E-13	-0.08	6.86E-17	-0.07	7.21E-23	0	0.66	-0.07	3.76E-38
rs4727338	7q21.3	SLC25A13	С	g	0.67	0.08	2.99E-20	0.08	2.61E-29	26	0.09	0.08	8.10E-48	0.07	1.11E-15	0.07	5.24E-21	4	0.40	0.07	2.13E-35
rs2062377	8q24.12	TNFRSF11B	а	t	0.57	-0.06	2.50E-14	-0.05	2.63E-12	4	0.40	-0.06	9.06E-25	-0.08	2.26E-20	-0.07	2.18E-20	0	0.59	-0.08	3.16E-39
rs7932354	11p11.2	ARHGAP1	t	С	0.31	0.05	2.29E-08	0.05	3.46E-11	0	0.97	0.05	5.12E-18	0.04	1.23E-05	0.04	1.10E-07	0	0.60	0.04	5.45E-12
rs163879	11p14.1_2	DCDC5	t	С	0.68	-0.04	1.70E-06	-0.02	6.66E-04	34	0.03	-0.03	2.06E-08	-0.05	8.81E-08	-0.03	1.72E-05	0	0.58	-0.04	2.19E-11
rs7108738	11p15.2	SOX6	t	g	0.83	-0.09	1.03E-17	-0.07	1.82E-17	6	0.37	-0.08	1.08E-32	-0.05	4.51E-05	-0.03	3.93E-03	30	0.06	-0.03	2.14E-06
rs3736228	11q13.2	LRP5	t	С	0.16	-0.05	1.79E-06	-0.05	5.29E-06	0	0.80	-0.05	4.83E-11	-0.08	1.62E-11	-0.09	1.30E-16	0	0.85	-0.08	2.08E-26
rs736825	12q13.13	НОХС6	С	g	0.56	0.04	7.65E-06	0.04	2.76E-05	44	0.03	0.04	1.06E-09	0.05	2.40E-10	0.05	5.59E-07	41	0.04	0.05	7.68E-16
rs2016266	12q13.13	SP7	а	g	0.68	-0.04	4.79E-07	-0.03	4.48E-05	3	0.42	-0.03	3.67E-10	-0.06	1.53E-11	-0.05	1.59E-10	0	0.76	-0.05	2.95E-20
rs9533090 ^b	13q14.11	AKAP11	t	с	0.49	-0.05	9.84E-11	-0.05	1.04E-13	27	0.09	-0.05	4.94E-23	-0.11	1.02E-35	-0.09	1.92E-34	66.1 ^b	2.73E-07	-0.10	4.82E-68
rs11623869	14q32.32	MARK3	t	g	0.35	-0.04	1.26E-06	-0.04	7.02E-11	26	0.09	-0.04	5.20E-16	-0.03	7.53E-04	-0.04	1.23E-08	1	0.45	-0.04	5.12E-11
rs10048146	16q24.1	FOXL1	а	g	0.80	0.06	1.28E-07	0.05	1.63E-08	0	0.51	0.05	1.00E-14	0.06	2.95E-08	0.04	4.70E-05	0	0.93	0.05	3.09E-11
rs4792909	17q21.31 1	SOST	t	g	0.37	0.04	1.85E-05	0.05	8.74E-08	41	0.04	0.04	1.95E-11	0.04	5.14E-07	0.03	3.29E-04	23	0.18	0.04	9.43E-10
rs227584		C17orf53	а	c	0.70	-0.06	3.44E-11	-0.05	1.18E-14	9	0.32	-0.06	2.56E-24	-0.05	4.77E-07	-0.03	1.23E-04	13	0.27	-0.04	9.92E-10
rs1864325		MAPT	t	с	0.22	-0.04	7.79E-05	-0.02	0.06	10	0.31	-0.03	7.47E-05	-0.06	1.11E-07	-0.04	3.11E-05	14	0.25	-0.04	4.89E-11
rs884205		TNFRSF11A	а	с	0.27	-0.04	3.87E-05	-0.03	1.68E-06	0	0.70	-0.04	3.18E-10	-0.06	4.85E-09	-0.05	2.61E-10	0	0.71	-0.05	1.58E-17
rs3790160	20p12.2	JAG1	t	C	0.50	0.04	1.32F-07	0.03	2.44E-06	25	0.10	0.04	3.61F-12	0.06	5.36E-11	0.04	3.84E-10	21	0.15	0.05	3.07E-19

Supplementary Table 4B	Sex-combined meta-analy	vsis results across stag	es for known loci	associated with BN	AD at GWS lev
Supplementally rable 4D	Sex-complined meta-analy	ysis results across stag	ges for known loci	associated with Div	//D at G w 3

P-values in bold reflect loci reaching GWS level. ^aBeta estimates (effect on each allele of the SNP on standardized BMD) and frequencies are reported for this allele. The measure of heterogeneity (Cochran's Qhet P statistic and I2) was calculated in the Stage 2 samples. ^bThe SNP rs9533090 was the only GWS SNP with high degree of heterogeneity of effects (I2>50%). After applying random effects meta-analysis, this marker was still significant (P=3.98x10⁻¹³)

									FNBMD)							LSBMD)			
												STAGE	1 + STAGE							STA	AGE 1 +
						STA	AGE 1		STAGE 2				2	ST	AGE 1		STAGE 2			ST	AGE 2
						(Up to	32,961)	(U	p to 50,933	3)		(Up to	o 83,894)	(Up t	o 31,800)	(U	p to 45,708)		(Up t	o 77,508)
		Closest Gana	۸1 ^a				-		-	12	• •		-		-		-	1 ²			-
SNP	Locus	Closest delle	AI	AZ	Freq1	Beta	Р	Beta	Р	•	Q _{het} P	Beta	Р	Beta	Р	Beta	Р	'	Q _{het} P	Beta	Р
rs11809524	1p21.1	COL11A1	t	С	0.85	0.06	1.37E-06	0.02	0.06	13	0.26	0.03	9.32E-06	0.05	1.06E-04	0.02	0.10	0	0.69	0.03	2.23E-04
rs12137389	1p34.1	TESK2	t	С	0.03	-0.13	3.05E-06	-0.01	0.69	31	0.05	-0.06	5.76E-04	-0.05	0.07	0.02	0.45	24	0.12	-0.01	0.52
rs2120461	1p36.23	RERE	t	С	0.67	0.05	3.91E-08	0.01	0.10	0	0.49	0.03	3.07E-06	0.04	1.44E-04	0.02	3.53E-03	21	0.15	0.03	3.11E-06
rs12120297	1q41	SUSD4	t	С	0.86	0.04	7.95E-04	-0.01	0.38	17	0.20	0.01	0.24	0.06	3.05E-06	0.01	0.45	0	0.53	0.03	1.19E-03
rs730402	2p16.1	BCL11A	а	g	0.45	0.03	9.01E-05	0.00	0.44	0	0.76	0.02	2.49E-03	0.02	0.04	0.001	0.88	0	0.57	0.01	0.16
rs13413210	2p23.2	ALK	а	С	0.91	-0.02	0.23	-0.01	0.58	0	0.69	-0.01	0.25	-0.05	3.86E-03	0.001	0.92	7	0.36	-0.02	0.10
rs11675051	2q32.2	NAB1	а	g	0.33	0.04	2.38E-06	0.01	0.07	23	0.12	0.02	1.02E-05	0.01	0.12	0.01	0.11	0	0.49	0.01	0.03
rs12995369	2q33.1	ALS2CR7	а	g	0.52	0.05	1.94E-07	0.01	0.24	6	0.37	0.02	8.40E-05	0.03	4.71E-03	0.001	0.84	14	0.24	0.01	0.09
rs6436440	2q36.1	AP1S3	а	g	0.47	0.03	2.46E-05	0.01	0.06	0	0.98	0.02	4.58E-05	0.03	6.44E-04	0.02	7.13E-03	0	0.70	0.02	2.41E-05
rs7427438	3p24.1	RBMS3	а	С	0.33	-0.04	2.99E-05	-0.01	0.13	34	0.04	-0.02	1.16E-04	-0.01	0.15	0.004	0.65	0	0.59	0.00	0.55
rs2291296	3p24.2	RARB	а	g	0.17	-0.004	0.74	-0.01	0.11	0	0.82	-0.01	0.15	-0.04	1.20E-04	-0.02	0.02	22	0.14	-0.03	3.01E-05
rs4957742	5q21.3	EFNA5	а	g	0.77	-0.04	4.74E-06	-0.01	0.45	0	0.55	-0.02	5.21E-04	-0.03	7.56E-03	-0.005	0.59	14	0.25	-0.01	0.03
rs2282930	7p12.2	GRB10	а	g	0.24	-0.04	8.09E-06	-0.02	0.01	0	0.71	-0.03	3.43E-06	-0.03	4.85E-03	-0.02	4.10E-03	0	0.84	-0.02	6.51E-05
rs7788807	7p22.1_1	FOXK1	t	С	0.94	0.02	0.17	0.00	0.96	0	0.89	0.01	0.41	0.06	1.74E-03	0.01	0.54	29	0.07	0.03	0.01
rs2008425	7p22.1_2	RNF216	t	g	0.02	-0.08	0.03	-0.05	0.06	20	0.15	-0.06	5.08E-03	-0.11	2.01E-03	-0.04	0.10	15	0.23	-0.06	1.86E-03
rs1670346	7q36.3	PTPRN2	а	g	0.29	-0.04	2.81E-06	0.00	0.78	0	0.60	-0.02	2.27E-03	-0.02	0.03	0.002	0.77	15	0.23	-0.01	0.28
rs13272568	8q21.12	ΡΚΙΑ	а	С	0.44	-0.04	2.13E-06	-0.02	9.76E-03	0	0.66	-0.03	6.08E-07	-0.01	0.10	-0.004	0.53	27	0.09	-0.01	0.13
rs4240467	9q33.2	DAB2IP	С	g	0.32	-0.0004	0.96	0.01	0.51	34	0.04	0.003	0.64	-0.01	0.56	-0.004	0.58	2	0.43	0.00	0.42
rs2784767	10q22.3_2	PLAC9	t	С	0.41	0.03	5.08E-04	0.00	0.60	19	0.17	0.01	0.02	0.02	0.07	-0.01	0.23	0	0.89	0.00	0.96
rs11602954	11p15.5	BET1L	а	g	0.24	0.03	1.06E-03	0.01	0.17	0	0.47	0.02	1.92E-03	0.06	2.74E-07	0.02	0.05	0	0.94	0.03	2.25E-06
rs600231	11q13.1	SCYL1	а	g	0.70	-0.04	1.19E-05	-0.02	0.01	0	0.74	-0.02	4.03E-06	-0.02	0.03	-0.005	0.53	0	0.94	-0.01	0.07
rs11048046	12p12.1	IFLTD1	а	g	0.09	-0.03	0.09	0.00	0.99	0	0.97	-0.01	0.25	-0.01	0.50	-0.001	0.98	0	0.73	-0.01	0.63
rs7326472	13q14.11	AKAP11	а	g	0.92	-0.05	2.55E-03	-0.04	0.06	30	0.12	-0.05	5.07E-04	-0.10	9.80E-08	-0.04	0.05	2	0.43	-0.07	2.61E-07
rs2118784	15q21.2	CYP19A1	а	С	0.28	-0.04	5.20E-05	0.00	0.55	17	0.20	-0.02	3.48E-03	-0.03	5.02E-03	-0.01	0.20	16	0.21	-0.02	6.72E-03
rs7226305	17q22	KIF2B	а	С	0.84	-0.02	0.13	0.00	0.71	0	0.75	-0.004	0.54	-0.06	1.33E-06	0.002	0.81	33	0.04	-0.02	6.66E-03
rs7257450	19p13.11	PLVAP	а	g	0.79	0.01	0.55	0.00	0.92	0	0.84	0.003	0.68	0.05	4.01E-05	-0.001	0.94	0	0.65	0.02	0.03
rs4817775	21q22.12	CBR3	а	с	0.59	0.02	6.24E-03	0.01	0.04	19	0.16	0.02	8.59E-04	0.04	1.49E-06	0.02	0.01	14	0.24	0.03	8.94E-07
rs4820539	22q11.23	RTDR1	а	g	0.42	0.04	4.86E-06	0.02	2.10E-03	1	0.45	0.03	1.65E-07	0.03	3.65E-03	0.02	1.63E-03	0	0.93	0.02	1.96E-05
rs5926033	Xp22.11	DDX53	t	c	0.71	0.04	4.13E-06	0.01	0.19	0	0.68	0.03	9.73E-06	0.01	0.10	0.01	0.35	0	0.49	0.01	0.06
rs5952638	Xp11.3	DUSP21	а	t	0.93	0.06	3.03E-04	0.01	0.72	12	0.35	0.04	2.74E-03	0.07	2.29E-05	-0.001	0.94	0	0.72	0.04	1.74E-03
rs4492531	Xq13.3	MAGEE2	а	g	0.55	-0.07	1.98E-03	0.01	0.59	0	0.92	-0.03	0.08	-0.09	2.40E-05	-0.02	0.39	4	0.41	-0.05	4.52E-04
rs964181	Xq28	MAGEA4	t	c	0.41	0.04	4.72E-06	-0.01	0.20	0	0.57	0.02	8.33E-03	0.03	5.22E-04	0.01	0.48	0	0.60	0.02	2.17E-03

Supplementary Table 4C Sex-combined meta-analysis results across stages for BMD loci not reaching GWS

P-values in italics reflect loci reaching sugestive significance level. ^aBeta estimates (effect on each allele of the SNP on standardized BMD) and frequencies are reported for this allele. The measure of heterogeneity (Cochran's Qhet P statistic and I2) was calculated in the Stage 2 samples.

Supplementary Table 5A Gender-stratified meta-analysis results across stages for novel loci associated with BMD at GWS level.

											FNBN	٨D												LSBMD						
							FE	MALES					N	IALES						F	EMALES					М	ALES			
									ST/	AGE 1 +					STA	AGE 1 +												STA	GE 1 +	
					ST	AGE 1	ST	TAGE 2	ST	TAGE 2	ST	AGE 1	ST	AGE 2	ST	AGE 2	Gender	ST	AGE 1	ST	AGE 2	STAGE 1	+ STAGE 2	ST	AGE 1	ST	AGE 2	ST/	AGE 2	Gender
					(n=:	22,990)	(n=	:39,060)	(n=	:62,050)	(n=	9,971)	(n=	11,885)	(n=	21,856)	Het ^b	(n=2	22,177)	(n=:	34,521)	(n=5	6,698)	(n=	9,980)	(n=1	1,214)	(n=2	1,194)	Het ^b
		Closest																												
SNP	Locus	Gene	A1 ^ª A	2 Freq1	Beta	Р	Beta	Р	Beta	Р	Beta	Р	Beta	Р	Beta	Р	Р	Beta	Р	Beta	Р	Beta	Р	Beta	Р	Beta	Р	Beta	Р	Р
rs479336	1q24.3	DNM3	t g	0.74	-0.05	8.17E-06	-0.03	2.73E-05	-0.04	1.56E-09	-0.06	9.51E-04	-0.06	2.94E-05	-0.06	1.02E-07	0.11	-0.03	0.01	-0.02	4.98E-03	-0.03	1.80E-04	-0.02	0.37	-0.03	0.03	-0.03	0.03	0.96
rs7584262	2p21	PKDCC	t c	0.23	0.05	6.82E-05	0.03	3.42E-03	0.03	2.17E-06	0.07	1.06E-04	0.04	0.03	0.05	2.64E-05	0.21	0.01	0.25	0.02	0.11	0.01	0.05	0.02	0.20	-0.01	0.39	0.00	0.78	0.43
rs17040773	2q13	ANAPC1	a c	0.77	0.04	3.96E-04	0.03	4.73E-04	0.04	7.58E-07	0.07	4.31E-04	0.03	0.04	0.05	1.14E-04	0.39	0.01	0.64	0.00	0.61	0.01	0.50	0.01	0.74	0.03	0.09	0.02	0.14	0.36
rs1878526	2q14.2	INSIG2	a g	0.22	0.01	0.28	-0.01	0.42	0.00	0.99	-0.02	0.34	0.02	0.14	0.01	0.61	0.66	0.06	6.41E-07	0.04	6.13E-05	0.05	5.44E-10	0.02	0.28	0.04	0.02	0.03	0.01	0.27
rs1026364	3q13.2	KIAA2018	t g	0.36	0.04	1.34E-04	0.03	1.10E-03	0.03	8.86E-07	0.04	8.57E-03	0.03	0.01	0.04	2.68E-04	0.55	0.02	0.12	0.02	0.05	0.02	0.01	0.02	0.17	0.02	0.08	0.02	0.03	0.59
rs344081	3q25.31	LEKR1	t c	0.87	0.03	0.07	0.03	8.8/E-03	0.03	1.52E-03	0.11	6.83E-07	0.03	0.11	0.07	6.62E-06	0.02	0.05	2.9/E-03	0.06	1.24E-06	0.05	1.49E-08	0.08	2.8/E-04	0.06	6.63E-03	0.07	8.69E-06	0.45
rs3/55955	4p16.3	IDUA	a g	0.16	-0.06	3.62E-05	-0.05	1.30E-06	-0.05	2.22E-10	-0.07	1.52E-03	-0.06	1.0/E-03	-0.07	5.7/E-06	0.46	-0.06	2.65E-05	-0.05	1.56E-06	-0.06	2.22E-10	-0.07	1.79E-03	-0.06	9.86E-04	-0.07	5.92E-06	0.50
rs11/55164	6p21.1	SUPISH	tc	0.40	-0.02	0.13	-0.02	0.04	-0.02	0.01	-0.01	0.73	0.01	0.59	0.00	0.85	0.15	-0.05	1.09E-05	-0.04	2.4/E-Ub	-0.04	2.19E-10	-0.06	5.21E-04	-0.01	0.55	-0.03	6.28E-03	0.28
159466056	6p22.3	CDKALI	a g	0.38	-0.04	9.1/E-06	-0.04	3.80E-00	-0.04	1.4/E-10	-0.06	2.48E-04	-0.02	1.00	-0.04	2.24E-04	0.91	-0.02	0.02	-0.03	7.8/E-04	-0.03	4.50E-05	-0.06	2.55E-05	-0.03	0.00	-0.05	1.74E-05	1 275 04
rc7012009	7026.1	ABCE2	a g	0.74	-0.07	2.22E-11 9.02E-05	-0.08	5.50E-02	-0.08	2.702-33	-0.00	1.55E-04	-0.07	1.002-03	-0.06	1.02E-04	0.27	-0.10	6 225.04	0.11	1 20E-02	-0.11	2 245-06	-0.05	2.12E-05	-0.00	4.67E-04	-0.05	0.02	1.276-04
rc7017014	7q30.1 9q12.2	VKD0	a g a g	0.12	0.00	4 70E-09	0.03	7 11E-02	0.04	1 0/15-00	0.07	0.16	0.00	0.03	0.00	0.29	0.37	0.05	0.331-04	-0.04	0.41	0.05	0.09	-0.02	0.01	0.02	0.45	0.04	0.02	0.08
rs7851693	9a3/ 11	FLIRDS		0.43	0.05	1 02E-06	0.02	8 04F-13	0.04	5 26F-18	0.02	6 8/F-03	0.00	3 27E-04	0.01	7 39F-06	0.03	0.01	0.33	0.01	2 11F-06	0.00	2 59F-07	0.02	0.21	0.03	9.42F-03	0.02	0.02	0.00
rs3905706	10n11 23	MPD7	t c	0.03	0.05	0.58	-0.02	0.041	-0.05	0.11	0.04	0.841-03	-0.03	0.04	-0.03	0.13	0.58	0.02	1 195-08	0.04	1 27E-06	0.05	2.33L-07	0.00	0.88	0.04	1 37F-03	0.02	4 91F-05	0.25
rs1373004	10g21 1	MRI 2	t ø	0.12	-0.07	6 32F-06	-0.02	4 62F-04	-0.05	3.01F-08	-0.02	0.37	-0.03	0.04	-0.02	0.15	0.05	-0.09	8.87F-09	-0.06	3 58F-06	-0.07	6.63F-13	-0.03	0.01	-0.03	0.10	-0.03	0.03	0.06
rs7071206	10022.3 1	KCNMA1	to	0.76	-0.02	0.09	0.01	0.52	0.00	0.59	0.01	0.41	0.02	0.26	0.02	0.17	0.14	-0.09	8.34E-13	-0.05	1.34F-07	-0.06	1.64E-17	-0.04	0.02	-0.04	0.01	-0.04	7.27F-04	0.12
rs7084921	10a24.2	CPN1	to	0.40	0.05	3.13E-06	0.03	2.13F-04	0.03	7.16E-09	0.00	0.82	0.04	2.46F-03	0.02	0.02	0.42	0.03	8.62F-03	0.03	2.90F-04	0.03	7.58F-06	0.02	0.25	0.03	0.03	0.02	0.02	0.75
rs10835187	11p14.1 1	LIN7C	tc	0.54	-0.03	3.70E-03	-0.01	0.23	-0.02	6.41E-03	0.03	0.03	-0.02	0.13	0.00	0.77	0.10	-0.05	4.14E-07	-0.03	1.05E-03	-0.04	1.23E-08	0.01	0.74	-0.02	0.12	-0.01	0.35	0.03
rs7953528	12p11.22	KLHDC5	a t	0.18	0.05	3.65E-05	0.03	4.54E-04	0.04	1.02E-07	0.08	8.17E-05	0.05	1.06E-03	0.06	4.29E-07	0.11	0.00	0.73	-0.02	0.13	-0.01	0.16	0.01	0.57	-0.02	0.16	-0.01	0.49	0.87
rs2887571	12p13.33	ERC1	a g	0.76	-0.05	1.37E-05	-0.02	3.84E-03	-0.03	8.59E-07	-0.01	0.50	-0.06	1.48E-04	-0.04	9.81E-04	0.73	-0.05	5.60E-06	-0.04	6.13E-06	-0.05	2.08E-10	-0.05	1.96E-03	-0.03	0.09	-0.04	8.44E-04	0.64
rs12821008	12q13.12	DHH	t c	0.40	0.03	1.87E-03	0.03	3.22E-03	0.03	1.94E-05	0.04	0.02	0.01	0.29	0.02	0.02	0.81	0.05	3.46E-06	0.04	2.47E-06	0.04	4.53E-11	0.04	8.86E-03	0.06	3.06E-05	0.05	1.36E-06	0.59
rs1053051	12q23.3	C12orf23	t c	0.51	-0.04	3.11E-05	-0.03	4.55E-05	-0.04	6.19E-09	-0.02	0.11	-0.02	0.14	-0.02	0.03	0.36	-0.04	6.70E-05	-0.03	1.58E-03	-0.03	7.14E-07	-0.04	4.61E-03	-0.01	0.77	-0.03	0.02	0.71
rs1286083	14q32.12	RPS6KA5	t c	0.80	-0.06	2.65E-06	-0.05	5.93E-08	-0.05	8.93E-13	-0.06	3.43E-03	-0.03	0.04	-0.04	4.85E-04	0.50	-0.07	7.44E-09	-0.05	9.43E-07	-0.06	1.33E-13	-0.07	1.44E-04	-0.01	0.69	-0.04	5.25E-03	0.13
rs4985155	16p13.11	NTAN1	a g	0.65	-0.01	0.16	-0.03	4.29E-06	-0.03	5.56E-06	-0.07	1.79E-06	-0.04	9.32E-03	-0.05	2.96E-07	0.03	-0.03	1.16E-03	-0.03	1.16E-03	-0.03	5.35E-06	-0.06	4.76E-05	-0.03	0.08	-0.04	5.88E-05	0.28
rs9921222	16p13.3_1	AXIN1	t c	0.46	-0.05	2.84E-06	-0.03	4.73E-05	-0.04	1.08E-09	-0.04	0.01	-0.03	0.02	-0.04	4.68E-04	1.00	-0.05	4.03E-06	-0.05	7.94E-09	-0.05	1.37E-13	-0.06	2.66E-04	-0.03	0.03	-0.04	3.62E-05	0.78
rs13336428	16p13.3_2	C16orf38	a g	0.44	-0.05	2.56E-06	-0.04	5.51E-09	-0.04	7.17E-14	-0.04	0.02	-0.04	4.22E-03	-0.04	2.48E-04	0.57	-0.04	2.38E-05	-0.05	7.82E-09	-0.04	1.03E-12	-0.02	0.23	-0.03	0.02	-0.03	0.01	0.13
rs1566045	16q12.1	SALL1	t c	0.80	-0.07	2.01E-09	-0.06	5.05E-09	-0.06	8.89E-17	-0.08	7.45E-05	-0.06	1.42E-04	-0.07	5.06E-08	0.55	-0.03	9.68E-03	-0.01	0.45	-0.02	0.03	-0.02	0.35	0.00	0.91	-0.01	0.61	0.49
rs4790881	17p13.3	SMG6	a c	0.67	0.05	3.03E-06	0.05	1.86E-11	0.05	2.54E-16	0.05	1.27E-03	0.03	0.05	0.04	3.51E-04	0.32	0.04	8.79E-04	0.05	2.72E-09	0.05	1.32E-11	0.01	0.48	-0.01	0.45	0.00	0.93	3.56E-04
rs7217932	17q24.3	SOX9	a g	0.46	0.04	4.30E-06	0.03	4.45E-05	0.03	1.65E-09	0.05	4.91E-04	0.02	0.23	0.03	1.25E-03	0.82	0.01	0.23	0.02	0.04	0.01	0.02	0.00	0.84	-0.01	0.57	0.00	0.78	0.14
rs4796995	18p11.21	C18orf19	a g	0.61	0.04	1.09E-04	0.03	5.81E-04	0.03	3.30E-07	0.04	0.01	0.01	0.59	0.02	0.03	0.46	0.03	8.80E-03	0.01	0.18	0.02	7.27E-03	0.04	6.08E-03	0.01	0.43	0.03	0.01	0.49
rs10416218	19q13.11	GPATCH1	t c	0.72	-0.05	1.23E-05	-0.03	9.88E-04	-0.03	1.55E-07	-0.03	0.10	-0.02	0.29	-0.02	0.06	0.31	-0.06	1.08E-06	-0.03	9.66E-04	-0.04	2.68E-08	-0.05	1.72E-03	-0.03	0.05	-0.04	3.75E-04	0.90
rs5934507	Xp22.31	FAM9B	a g	0.73	0.00	0.75	0.00	0.98	0.00	0.84	-0.03	0.01	-0.08	8.26E-04	-0.04	1.64E-04	2.96E-03	0.00	0.75	0.01	0.48	0.01	0.46	-0.06	5.66E-06	-0.09	3.21E-04	-0.06	1.18E-08	1.62E-08

^aBeta estimates (effect on each allele of the SNP on standardized BMD) and frequencies are reported for this allele.^bgender-specificity null hypothesis, i.e., BFEMALES = BMALES, estimated in the combined STAGE1 + STAGE 2 meta-analysis.

Supplementary Table 5B Gender-stratified meta-analysis results across stages for known loci associated with BMD at GWS level.

											FNBN	ID												LSBIV	ID					
							FE	MALES					N	IALES						FE	EMALES					N	/IALES			
									STA	GE 1 +					ST	AGE 1 +						ST	AGE 1 +					ST/	AGE 1 +	
					ST	TAGE 1	ST	AGE 2	STA	AGE 2	ST	AGE 1	ST	AGE 2	S	TAGE 2	Gender	ST	AGE 1	S	TAGE 2	S	TAGE 2	ST	AGE 1	S	AGE 2	ST	AGE 2	Gender
		Classet			(n=	22,990)	(n=	39,060)	(n=6	2,050)	(n=	9,971)	(n=	11,885)	(n=	=21,856)	Het	(n=	22,177)	(n=	=34,521)	(n:	=56,698)	(n=	9,980)	(n=	11,214)	(n=	21,194)	Het
SND	Locus	Closest	A1 ^a A	2 Eroal	Rota	р	Rota	D	Rota	D	Rota	р	Rota	р	Rota	р	р	Rota	р	Rota	р	Rota	р	Rota	р	Rota	р	Rota	р	р
rs12407028	1n31 3	W/IS	t	0.61	0.06	1.18F-08	0.06	1.77E-15	0.06	1.46F-22	0.03	0.04	0.04	0.01	0.03	1 15E-03	0.04	0.08	4.57E-16	0.08	2.19F-22	0.08	5.51F-37	0.08	9 60F-08	0.07	5 19F-06	0.07	7.81F-12	0.60
rs6426749	1p36.12	ZBTB40	C P	0.17	0.11	1.88E-19	0.11	4.86E-27	0.11	7.83E-45	0.09	1.64F-06	5 0.11	1.26E-09	0.10	1.16E-14	0.63	0.11	7.58E-18	0.10	1.34E-20	0.11	1.08E-36	0.09	2.26F-05	0.09	3.78F-07	0.09	3.81E-11	0.29
rs4233949	2p16.2	SPTBN1	c g	0.38	0.03	4.49E-03	0.02	0.03	0.02	4.15E-04	0.04	4.67E-03	3 0.02	0.11	0.03	1.78E-03	0.39	0.06	2.72E-09	0.04	2.52E-06	6 0.05	9.31E-14	0.06	5.46E-05	0.05	1.47E-03	0.05	3.35E-07	0.74
rs1346004	2q24.3	GALNT3	a g	0.49	-0.05	1.35E-08	-0.05	3.89E-14	-0.05	3.31E-21	-0.05	1.34E-03	-0.05	3.45E-04	-0.05	1.56E-06	0.54	-0.04	2.57E-05	-0.06	2.84E-16	6 -0.06	5 1.17E-19	-0.07	4.79E-06	-0.08	3.89E-09	-0.07	1.04E-13	0.10
rs430727	3p22.1	CTNNB1	t c	0.47	-0.07	7.29E-13	-0.04	3.29E-08	-0.05	1.39E-18	-0.07	5.98E-06	6 -0.05	2.46E-04	-0.06	6.85E-09	0.56	-0.06	1.28E-07	-0.05	6.40E-09	-0.05	5 4.53E-15	-0.06	3.48E-05	-0.04	4.74E-03	-0.05	8.90E-07	0.88
rs6532023	4q22.1	MEPE	t g	0.34	0.06	2.04E-09	0.06	1.42E-13	0.06	1.22E-21	0.03	0.07	0.06	4.78E-06	0.05	4.42E-06	0.40	0.07	2.25E-11	0.06	1.48E-12	2 0.06	2.71E-22	0.04	0.01	0.07	5.93E-07	0.06	9.85E-08	0.62
rs1366594	5q14.3	MEF2C	a c	0.53	0.10	6.48E-25	0.08	2.58E-26	0.09	7.85E-49	0.08	4.18E-08	3 0.08	1.78E-09	0.08	4.24E-16	0.64	0.02	0.02	0.01	0.52	0.01	0.05	0.02	0.32	0.03	0.06	0.02	0.04	0.46
rs13204965	6q22.32	RSPO3	a c	0.76	0.07	2.90E-07	0.05	4.43E-07	0.05	1.90E-12	0.02	0.21	0.02	0.35	0.02	0.12	0.04	0.05	8.23E-04	0.04	1.77E-05	0.04	5.38E-08	0.04	0.02	0.05	9.44E-03	0.05	5.73E-04	0.83
rs4869742	6q25.1	C6orf97	t c	0.32	-0.07	1.40E-11	-0.03	9.59E-05	-0.05	3.14E-13	-0.06	1.48E-04	-0.06	1.53E-05	-0.06	8.84E-09	0.24	-0.09	3.39E-15	-0.06	6.67E-11	L -0.07	7 9.41E-24	-0.09	8.95E-08	-0.09	5.02E-09	-0.09	2.56E-15	0.19
rs6959212	7p14.1	STARD3NL	t c	0.34	-0.03	9.26E-03	-0.05	1.09E-09	-0.04	1.30E-10	-0.04	0.01	-0.04	3.31E-03	-0.04	9.15E-05	0.90	-0.08	3.68E-13	-0.08	2.54E-20	30.0-	3 4.10E-32	-0.07	4.23E-06	-0.05	2.20E-04	-0.06	6.12E-09	0.23
rs4/2/338	/q21.3	SLC25A13	c g	0.67	0.08	1.92E-15	0.08	6.04E-24	0.08	1.20E-37	0.08	2.01E-07	0.07	3.73E-07	0.08	3.33E-13	0.73	0.07	2.23E-10	0.07	1.00E-15	6 0.07	1.34E-24	0.09	6.43E-08	0.07	1.18E-06	0.08	4.67E-13	0.48
rs2062377	8q24.12	INFRSF11B	a t	0.59	-0.06	1.16E-09	-0.05	1.68E-09	-0.05	1.60E-17	-0.07	8.34E-07	-0.06	3.26E-04	-0.06	1.50E-09	0.33	-0.08	7.13E-16	-0.07	3.35E-15	5 -0.0 <i>1</i>	2.55E-29	-0.07	9.83E-07	-0.08	8.65E-07	-0.08	3.94E-12	0.91
rs/932354	11p11.2	AKHGAP1	tc	0.33	0.05	9.9/E-0/	0.04	2.77E-06	0.04	1.60E-11	0.05	3.41E-0:	3 0.07	3.93E-07	0.06	9.34E-09	0.16	0.04	3.49E-04	0.04	1.09E-05	0.04	1.34E-08	0.04	8.59E-03	0.04	4.39E-03	0.04	1.09E-04	0.85
rc7109729	11p14.1_2	SOVE	ιι τ σ	0.00	-0.04	6 42E-14	-0.02	9.09E-05	-0.05	2 525-26	-0.03	2.546-05	5 -0.04	9.746-03	-0.03	4.10E-03	0.13	-0.05	1 205-0/	-0.02	4.40E-05	-0.02	5 1.01E-07	-0.04	7.47E-05	-0.00	0.05	-0.03	0.01	0.10
rs3736728	11013.2	I RP5	t c	0.82	-0.05	5.08E-04	-0.07	9 1/F-05	-0.08	1 82F-07	-0.08	2.33E-0.	1 -0.05	0.02	-0.07	2.06E-05	0.32	-0.05	1 91F-05	-0.02	1 34F-15	-0.0	2 80F-22	-0.03	5 51E-06	-0.03	0.05	-0.03	4 21F-07	0.53
rs2016266	12n13 13	SP7	ag	0.15	-0.04	2 91E-05	-0.02	1 43E-03	-0.03	3 82F-07	-0.04	0.01	-0.04	7 19F-03	-0.04	2.00E 05	0.54	-0.07	2.18F-10	-0.05	6.68F-09	-0.0F	5 2.13F-17	-0.04	5 72E-03	-0.04	5 36F-03	-0.04	9.14F-05	0.55
rs9533090	13014.11	AKAP11	tc	0.48	-0.06	1.80E-10	-0.05	2.79E-13	-0.06	3.36E-22	-0.03	0.03	-0.03	0.06	-0.03	3.61F-03	0.05	-0.12	6.31E-31	-0.10	6.92E-33	-0.11	1.51E-61	-0.09	7.43E-09	-0.08	7.96F-07	-0.09	2.62E-14	0.16
rs11623869	14032.32	MARK3	te	0.34	-0.04	1.41E-05	-0.05	1.70E-09	-0.05	1.27E-13	-0.04	8.02E-03	3 -0.04	9.64E-03	-0.04	2.12E-04	0.59	-0.03	9.24E-03	-0.04	3.83E-07	7 -0.04	1 2.30E-08	-0.04	7.11E-03	-0.04	6.65E-03	-0.04	1.30E-04	0.74
rs10048146	16q24.1	FOXL1	ag	0.80	0.05	5.29E-06	0.04	3.40E-05	0.05	1.14E-09	0.06	9.58E-04	0.07	4.50E-05	0.07	1.66E-07	0.15	0.07	1.55E-07	0.04	1.27E-04	0.05	4.37E-10	0.06	3.52E-03	0.03	0.13	0.04	2.10E-03	0.59
rs227584	17q21.31_1	C17orf53	a c	0.67	-0.06	3.31E-09	-0.05	1.35E-10	-0.06	3.15E-18	-0.05	2.11E-03	-0.06	1.99E-05	-0.06	1.87E-07	0.86	-0.04	5.66E-05	-0.03	2.98E-03	-0.03	3 1.64E-06	-0.06	2.96E-04	-0.04	0.01	-0.05	1.63E-05	0.23
rs1864325	17q21.31_2	MAPT	t c	0.22	-0.04	1.68E-03	-0.01	0.25	-0.02	4.60E-03	-0.05	4.55E-03	-0.03	0.06	-0.04	8.44E-04	0.14	-0.06	8.01E-06	-0.03	4.83E-04	-0.04	1 3.96E-08	-0.06	1.40E-03	-0.04	0.02	-0.05	9.06E-05	0.63
rs884205	18q21.33	TNFRSF11A	a c	0.25	-0.05	2.57E-05	-0.04	9.47E-07	-0.04	1.43E-10	-0.03	0.13	-0.01	0.38	-0.02	0.10	0.06	-0.07	2.67E-07	-0.06	9.12E-10) -0.06	5 1.66E-15	-0.06	8.99E-04	-0.03	0.04	-0.04	1.63E-04	0.28
rs3790160	20p12.2	JAG1	t c	0.50	0.04	2.58E-05	0.02	6.36E-04	0.03	1.31E-07	0.05	6.06E-04	0.05	2.90E-04	0.05	6.14E-07	0.09	0.06	1.81E-08	0.04	9.42E-07	0.05	2.49E-13	0.05	6.94E-04	0.06	3.49E-05	0.05	9.21E-08	0.45

^bBeta estimates (effect on each allele of the SNP on standardized BMD) and frequencies are reported for this allele.^bgender-specificity null hypothesis, i.e., BFEMALES = BMALES, estimated in the combined STAGE1 + STAGE 2 meta-analysis.

Supplementary Table 5C Gender-stratified meta-analysis results across stages for BMD loci not reaching GWS level.

											FNBN	٨D												LSBMD						
							FEN	IALES					M	ALES						FE	MALES					M	ALES			
									STA	GE 1 +					STA	GE 1 +												STA	GE 1 +	
					ST	AGE 1	STA	GE 2	ST/	AGE 2	ST	AGE 1	STA	GE 2	ST	AGE 2	Gender	ST	AGE 1	STA	GE 2	STAGE 1	+ STAGE 2	ST	AGE 1	STA	GE 2	STA	GE 2	Gender
					(n=	22,990)	(n=39	9,060)	(n=6	2,050)	(n=	9,971)	(n=1	1,885)	(n=2	21,856)	Het ^b	(n=:	22,177)	(n=3	4,521)	(n=5	6,698)	(n=	9,980)	(n=1)	1,214)	(n=2	1,194)	Het ^b
		Closest																												
SNP	Locus	Gene	A1° A2	2 Freq1	Beta	Р	Beta	Р	Beta	P	Beta	Р	Beta	Р	Beta	Р	Р	Beta	Р	Beta	Р	Beta	Р	Beta	Р	Beta	Р	Beta	Р	Р
rs11809524	1p21.1	COL11A1	t c	0.85	0.05	1.07E-04	0.02	0.06	0.03	1.20E-04	0.06	2.20E-03	0.01	0.67	0.03	0.02	0.90	0.05	1.25E-03	0.02	0.14	0.03	1.79E-03	0.06	3.98E-03	0.01	0.43	0.04	0.01	0.60
1512137389	1p34.1	DESK2	t c	0.02	-0.12	1.19E-04	-0.01	0.60	-0.06	3.30E-U3	-0.13	5.07E-03	0.00	1.00	-0.07	1 225 02	0.75	-0.04	0.28	0.02	0.58	-0.01	1 505 05	-0.07	0.15	0.03	0.58	-0.03	0.48	0.65
rc12120401	1041		ιι τ c	0.08	0.04	9.40E-00	0.01	0.15	0.02	1.002-04	0.00	0.20	0.01	0.44 4 64E 02	0.05	1.52E-05	0.59 5 065 02	0.04	1.010-04	0.02	0.01	0.05	1.30E-03	0.05	1 295 02	0.02	0.14	0.05	0.02	0.64
rs730/02	2n16.1	BCI 11A	2 a	0.85	0.05	2.331-04	-0.002	0.58	0.02	0.01	0.02	2.62F-06	-0.05	4.041-03	0.05	4 29F-06	4 18F-04	0.00	0.25	-0.001	0.15	0.03	0.53	0.08	0.01	0.02	0.41	0.02	0.22	0.14
rs13413210	2p10.1	ALK	ас	0.91	0.00	0.83	-0.01	0.44	-0.01	0.46	-0.06	0.03	0.01	0.74	-0.02	0.24	0.53	-0.01	0.59	-0.005	0.73	-0.01	0.55	-0.13	2.65F-06	0.02	0.43	-0.05	0.04	0.07
rs11675051	2032.2	NAB1	a g	0.32	0.05	1.47F-06	0.01	0.24	0.02	9.46F-05	0.02	0.28	0.02	0.11	0.02	0.06	0.74	0.02	0.08	0.01	0.26	0.01	0.05	0.001	0.95	0.02	0.25	0.01	0.39	0.78
rs12995369	2q33.1	ALS2CR7	ag	0.55	0.05	4.56E-06	0.01	0.37	0.02	8.80E-04	0.06	1.26E-03	0.01	0.45	0.03	8.95E-03	0.55	0.02	0.05	-0.003	0.71	0.005	0.47	0.05	8.13E-03	0.02	0.23	0.03	9.05E-03	0.06
rs6436440	2q36.1	AP1S3	a g	0.47	0.05	1.17E-06	0.02	0.01	0.03	5.58E-07	0.01	0.71	-0.01	0.47	-0.003	0.77	5.58E-03	0.03	1.10E-03	0.02	0.02	0.02	1.24E-04	0.02	0.11	0.02	0.27	0.02	0.06	0.69
rs7427438	3p24.1	RBMS3	a c	0.33	-0.05	2.29E-06	-0.004	0.66	-0.02	6.70E-04	-0.01	0.67	-0.03	0.04	-0.02	0.07	0.82	-0.02	0.12	0.01	0.17	-0.0001	0.98	-0.01	0.73	-0.02	0.16	-0.01	0.21	0.30
rs2291296	3p24.2	RARB	a g	0.17	-0.01	0.59	-0.01	0.13	-0.01	0.12	0.00	0.85	-0.01	0.63	-0.003	0.84	0.58	-0.06	3.76E-06	-0.02	0.03	-0.04	5.22E-06	-0.01	0.78	-0.02	0.40	-0.01	0.44	0.12
rs4957742	5q21.3	EFNA5	a g	0.77	-0.05	1.27E-05	-0.01	0.21	-0.03	2.38E-04	-0.03	0.05	0.02	0.31	-0.01	0.51	0.23	-0.03	0.01	-0.01	0.51	-0.02	0.04	-0.03	0.15	0.000	0.99	-0.01	0.30	0.91
rs2282930	7p12.2	GRB10	a g	0.26	-0.06	5.03E-07	-0.02	0.02	-0.03	1.08E-06	-0.01	0.45	-0.01	0.38	-0.01	0.25	0.14	-0.04	2.26E-03	-0.03	3.51E-03	-0.03	3.02E-05	-0.01	0.42	-0.01	0.48	-0.01	0.29	0.21
rs7788807	7p22.1_1	FOXK1	t c	0.94	0.04	0.03	0.002	0.90	0.02	0.16	-0.03	0.28	-0.01	0.66	-0.02	0.29	0.10	0.10	4.11E-06	0.02	0.29	0.05	2.08E-04	-0.04	0.24	-0.02	0.44	-0.03	0.17	1.99E-03
rs2008425	7p22.1_2	RNF216	t g	0.02	-0.13	2.00E-03	-0.06	0.02	-0.08	2.86E-04	0.01	0.80	0.01	0.82	0.01	0.74	0.03	-0.19	2.97E-06	-0.06	0.06	-0.10	2.14E-05	-0.05	0.38	0.01	0.86	-0.02	0.67	0.06
rs1670346	7q36.3	PTPRN2	a g	0.30	-0.04	1.58E-05	0.00	0.53	-0.02	1.74E-03	-0.03	0.05	0.01	0.61	-0.01	0.37	0.43	-0.02	0.03	0.003	0.73	-0.01	0.27	-0.01	0.59	0.00	0.96	-0.004	0.69	0.81
rs13272568	8q21.12	PKIA	a c	0.44	-0.04	4.34E-05	-0.02	0.03	-0.03	1.90E-05	-0.04	0.01	-0.02	0.21	-0.03	7.74E-03	0.88	-0.01	0.24	-0.01	0.31	-0.01	0.13	-0.01	0.34	0.01	0.54	-0.002	0.83	0.55
rs4240467	9q33.2	DAB2IP	c g	0.32	0.02	0.14	0.01	0.56	0.01	0.16	-0.04	6.75E-03	0.004	0.77	-0.02	0.10	0.03	0.03	0.02	0.003	0.76	0.01	0.08	-0.08	9.65E-07	-0.03	0.10	-0.05	4.75E-06	1.36E-06
rs2784767	10q22.3_2	PLAC9	t c	0.43	0.05	4.80E-06	0.003	0.67	0.02	4.34E-03	-0.01	0.42	0.002	0.86	-0.004	0.74	0.09	0.04	5.09E-03	-0.004	0.65	0.01	0.28	-0.01	0.67	-0.02	0.08	-0.02	0.10	0.05
rs11602954	11p15.5	BETTL SCVL1	ag	0.23	0.03	0.03	0.01	0.15	0.02	1.085.06	0.05	5.10E-03	0.003	0.85	0.03	0.04	0.59	0.05	0.74E-05	0.03	5./1E-03	0.04	4.24E-06	0.07	3.24E-04	-0.02	0.33	0.02	0.07	0.37
rc11049046	12n12.1		ag	0.09	-0.05	9.05E-07	-0.02	0.05	-0.05	0.75	-0.01	2 505 06	-0.01	0.51	-0.01	0.22	2 215 02	-0.05	5.55E-U5	-0.004	1.00	-0.01	0.05	0.001	0.97	-0.01	0.07	-0.005	0.77	0.56
rc2118784	15a21.2	CVD1QA1	a g	0.08	-0.01	1.41E-06	0.00	0.91	-0.02	6 15E-03	0.15	0.78	-0.01	0.85	-0.07	0.15	0.89	-0.01	5 26F-04	-0.01	0.35	-0.02	4.06F-03	-0.05	0.08	-0.003	0.32	-0.03	0.20	0.23
rs7226305	17022	KIF2B	ac	0.82	-0.02	0.16	0.002	0.59	-0.003	0.69	-0.02	0.39	-0.004	0.82	-0.01	0.47	0.67	-0.06	1.97F-05	0.01	0.56	-0.02	0.04	-0.05	0.01	-0.01	0.64	-0.03	0.05	0.54
rs7257450	19p13.11	PLVAP	a g	0.76	0.01	0.28	0.00	0.63	0.01	0.32	-0.01	0.56	-0.01	0.59	-0.01	0.43	0.24	0.07	4.79F-06	0.00	0.89	0.02	0.02	0.02	0.37	0.004	0.79	0.01	0.45	0.55
rs4817775	21022.12	CBR3	a c	0.58	0.02	0.07	0.01	0.04	0.02	6.48E-03	0.04	0.02	0.01	0.51	0.02	0.04	0.68	0.04	1.45E-04	0.01	0.07	0.02	1.62E-04	0.05	9.98E-04	0.03	0.06	0.04	3.25E-04	0.26
rs4820539	22q11.23	RTDR1	a g	0.44	0.04	1.18E-04	0.02	0.01	0.02	1.49E-05	0.04	8.38E-03	0.02	0.09	0.03	2.68E-03	0.68	0.02	0.06	0.02	8.80E-03	0.02	1.29E-03	0.04	0.02	0.02	0.08	0.03	4.78E-03	0.46
rs5926033	Xp22.11	DDX53	t c	0.71	0.03	5.79E-03	0.02	0.17	0.02	3.21E-03	0.05	1.08E-04	0.005	0.85	0.04	4.20E-04	0.23	0.01	0.19	0.005	0.69	0.01	0.23	0.02	0.21	0.04	0.13	0.02	0.07	0.42
rs5952638	Xp11.3	DUSP21	a t	0.93	0.05	0.01	0.01	0.77	0.03	0.05	0.06	9.82E-03	0.01	0.82	0.05	0.02	0.36	0.05	0.03	0.004	0.86	0.02	0.10	0.08	6.07E-04	-0.02	0.62	0.06	5.79E-03	0.16
rs4492531	Xq13.3	MAGEE2	a g	0.55	-0.05	0.04	0.001	0.96	-0.02	0.19	-0.09	0.02	0.05	0.24	-0.03	0.25	0.76	-0.09	7.42E-04	-0.02	0.35	-0.05	4.09E-03	-0.11	3.35E-03	0.002	0.96	-0.06	0.02	0.71
rs964181	Xq28	MAGEA4	t c	0.41	0.04	3.44E-04	-0.01	0.35	0.01	0.06	0.03	0.02	-0.02	0.37	0.02	0.13	0.83	0.02	0.03	0.00	0.71	0.01	0.08	0.03	0.01	0.02	0.35	0.03	9.21E-03	0.90

^aBeta estimates (effect on each allele of the SNP on standardized BMD) and frequencies are reported for this allele.^bgender-specificity null hypothesis, i.e., BFEMALES = BMALES, estimated in the combined STAGE1 + STAGE 2 meta-analysis.

Supplementary	v Table 6	Association of	BMD	loci with /	۸ny lov	v-trauma	fracture	across	stage	cate	zorie

					STAGE 1 (In-si 5411 cases, 2190	ilico 1) 19 controls	STAGE 2 (In-s 9187 cases, 45057	ilico 2) controls	STAGE 2 (De-nov 16418 cases, 3	vo genotyping) 5478 controls	STAGE 2 (Insilico 25605 cases, 80	2 + De-novo) 535 controls	COMBINED 31016 cas	D (STAGE 1 + ST/ ses, 102444 con	AGE 2) trols	
SNP	Risk Allele	Locus	Closest Gene	Freq1	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	l ²	Qhet P
rs6426749	G	1p36.12	ZBTB40	0.83	1.1 (1.03-1.16)	0.003	1.11 (1.06-1.17)	4.20E-05	1.03 (0.99-1.07)	0.141	1.06 (1.03-1.09)	2.36E-04	1.07 (1.04-1.1)	3.60E-06	24	0.07
rs7521902	Α	1p36.12*	WNT4	0.27	1.08 (1.02-1.15)	0.012	1.12 (1.06-1.18)	1.50E-05	1.07 (1-1.13)	0.038	1.10 (1.06-1.14)	3.51E-06	1.09 (1.06-1.13)	1.40E-07	0	0.87
rs4233949	G	2p16.2	SPTBN1	0.63	1.05 (1-1.1)	0.052	1.08 (1.04-1.13)	3.00E-05	1.05 (1.02-1.09)	6.50E-04	1.07 (1.04-1.09)	1.39E-07	1.06 (1.04-1.08)	2.60E-08	6	0.36
rs430727	т	3p22.1	CTNNB1	0.47	1.07 (1.02-1.12)	0.003	1.04 (1.01-1.08)	0.026	1.06 (1.03-1.09)	2.90E-04	1.05 (1.03-1.08)	2.44E-05	1.06 (1.03-1.08)	2.90E-07	0	0.93
rs6532023	G	4q22.1	MEPE	0.67	1.07 (1.02-1.12)	0.006	1.03 (0.99-1.07)	0.12	1.08 (1.05-1.12)	5.20E-07	1.06 (1.04-1.09)	8.84E-07	1.06 (1.04-1.09)	1.70E-08	0	1.00
rs6959212	т	7p14.1	STARD3NL	0.33	1.06 (1.01-1.11)	0.021	1.02 (0.98-1.06)	0.276	1.05 (1.02-1.09)	0.001	1.04 (1.02-1.07)	1.02E-03	1.05 (1.02-1.07)	7.20E-05	2	0.43
rs4727338	G	7q21.3	SLC25A13	0.32	1.08 (1.03-1.13)	0.002	1.09 (1.05-1.14)	1.30E-05	1.06 (1.03-1.1)	1.10E-04	1.08 (1.05-1.1)	1.04E-08	1.08 (1.05-1.1)	5.90E-11	31	0.03
rs3801387	Α	7q31.31	WNT16	0.74	1.01 (0.97-1.05)	0.666	1.07 (1.02-1.11)	0.004	1.09 (1.06-1.13)	2.30E-07	1.08 (1.05-1.11)	4.98E-09	1.06 (1.04-1.08)	2.70E-07	0	0.69
rs7851693	G	9q34.11	FUBP3	0.37	1.07 (1.03-1.12)	0.003	1.06 (1.02-1.1)	0.003	1.03 (1-1.06)	0.094	1.04 (1.01-1.06)	1.88E-03	1.05 (1.02-1.07)	3.50E-05	0	0.65
rs1373004	т	10q21.1	MBL2/DKK1	0.13	1.11 (1.04-1.19)	0.003	1.05 (1-1.12)	0.065	1.12 (1.07-1.17)	1.10E-06	1.09 (1.06-1.13)	7.19E-07	1.1 (1.06-1.13)	9.00E-09	0	0.64
rs163879	т	11p14.1	DCDC5	0.66	1.01 (0.96-1.06)	0.775	1.05 (1.01-1.1)	0.011	1.06 (1.03-1.1)	1.70E-04	1.06 (1.03-1.09)	6.40E-06	1.05 (1.03-1.07)	3.30E-05	28	0.05
rs3736228	т	11q13.2	LRP5	0.15	1.11 (1.04-1.19)	0.002	1.14 (1.08-1.2)	6.60E-07	1.05 (1-1.1)	0.051	1.09 (1.05-1.12)	2.06E-06	1.09 (1.06-1.13)	1.40E-08	0	0.78
rs1286083	т	14q32.12	RPS6KA5	0.81	1.07 (1.01-1.13)	0.024	1.08 (1.02-1.13)	0.004	1.04 (1-1.08)	0.05	1.05 (1.02-1.08)	9.76E-04	1.05 (1.03-1.08)	7.20E-05	34	0.01
rs4792909	G	17q21.31*	SOST	0.62	1.05 (1-1.11)	0.053	1.07 (1.03-1.12)	0.001	1.07 (1.02-1.13)	0.009	1.07 (1.04-1.11)	3.99E-05	1.07 (1.04-1.1)	6.90E-06	10	0.31
rs227584	Α	17q21.31	C17orf53	0.67	1.05 (1-1.1)	0.076	1.06 (1.02-1.1)	0.007	1.04 (1.01-1.08)	0.01	1.05 (1.02-1.08)	2.17E-04	1.05 (1.03-1.07)	4.10E-05	0	0.49
rs4796995	G	18p11.21	C18orf19	0.39	1.15 (1.1-1.2)	3.50E-09	1.07 (1.03-1.11)	3.80E-04	1.06 (1.02-1.09)	3.90E-04	1.06 (1.04-1.09)	6.37E-07	1.08 (1.06-1.1)	8.80E-13	20	0.12

The odds ratios are per allele copy for any low-trauma fracture among cases as compared with controls across stages. Stage 1: Samples also used in the discovery of BMD-associated variants. Results of Stage 2 are here divided by In-silico replication and de-novo genotyped studies. The measures of heterogeneity (Cochran's Q statistic and I²) was calculated in the combined data set across all stages.

					ANYFRA	CTURE (8594 (cases, 23218	controls)		
				not l	NBMD ad	justed	FN	BMD adju	sted	Fracture risk
SNP	Risk Allele	Locus	Closest Gene	Effect	StdErr	Р	Effect	StdErr	Р	explained by BMD
rs4796995	G	18p11.21	C18orf19	0.08	0.02	8.77E-05	0.07	0.02	1.12E-03	0.15
rs4727338	G	7q21.3	SLC25A13	0.08	0.02	2.78E-04	0.05	0.02	1.46E-02	0.32
rs3801387	А	7q31.31	WNT16	0.08	0.02	3.17E-04	0.05	0.02	2.15E-02	0.35
rs227584	А	17q21.31_1	C17orf53	0.08	0.02	4.84E-04	0.06	0.02	9.78E-03	0.25
rs1373004	т	10q21.1	MBL2	0.11	0.03	5.09E-04	0.09	0.03	3.27E-03	0.14
rs163879	т	11p14.1_2	DCDC5	0.06	0.02	1.85E-03	0.06	0.02	5.29E-03	0.09
rs430727	т	3p22.1	CTNNB1	0.06	0.02	4.13E-03	0.05	0.02	2.63E-02	0.21
rs6532023	G	4q22.1	MEPE	0.05	0.02	1.27E-02	0.03	0.02	1.40E-01	0.40
rs4233949	G	2p16.2	SPTBN1	0.05	0.02	3.07E-02	0.04	0.02	5.60E-02	0.10
rs6959212	т	7p14.1	STARD3NL	0.04	0.02	4.68E-02	0.03	0.02	1.73E-01	0.30
rs3736228	т	11q13.2	LRP5	0.05	0.03	0.13	0.04	0.03	0.29	NS
rs7851693	G	9q34.11	FUBP3	0.03	0.02	0.17	0.01	0.02	0.56	NS
rs1286083	т	14q32.12	RPS6KA5	0.03	0.03	0.17	0.02	0.03	0.35	NS
rs6426749	G	1p36.12	ZBTB40	0.03	0.03	0.28	0.01	0.03	0.76	NS

	Supplementary Ta	able 7 Pro	portion of	Fracture F	Risk ex	plained by	BMD.
--	------------------	------------	------------	------------	---------	------------	------

Supplement	tary Table 8	F	Results of me	ta-analys	is for different types o	of fractures				
					ANYFRACTU	JRE	NONVERTEBRA	L FRACTURE	VERTEBRAL F	RACTURE
					31016 cases, 10244	4 controls	12941 cases, 4126	53 controls	3659 cases, 17,89	9 controls
SNP	Locus	Closest Gene	Risk Allele	Freq	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р
rs6426749	1p36.12	ZBTB40	G	0.83	1.07 (1.04-1.1)	3.6E-06	1.09 (1.04-1.13)	1.8E-04	1.04 (0.97-1.12)	0.28
rs4233949	2p16.2	SPTBN1	G	0.63	1.06 (1.04-1.08)	2.6E-08	1.06 (1.02-1.09)	8.7E-04	1.02 (0.96-1.08)	0.50
rs430727	3p22.1	CTNNB1	т	0.47	1.06 (1.03-1.08)	2.9E-07	1.03 (1-1.07)	4.6E-02	1.07 (1.01-1.14)	0.02
rs6532023	4q22.1	MEPE	G	0.67	1.06 (1.04-1.09)	1.7E-08	1.07 (1.03-1.11)	2.4E-04	1.11 (1.04-1.18)	9.3E-04
rs6959212	7p14.1	STARD3NL	т	0.33	1.05 (1.03-1.08)	7.2E-05	1.07 (1.03-1.1)	3.4E-04	1.04 (0.98-1.1)	0.24
rs4727338	7q21.3	SLC25A13	G	0.32	1.08 (1.05-1.1)	5.9E-11	1.07 (1.04-1.11)	5.2E-05	1.08 (1.02-1.15)	0.01
rs3801387	7q31.31	WNT16	А	0.74	1.06 (1.04-1.08)	2.7E-07	1.1 (1.06-1.14)	2.4E-07	0.98 (0.93-1.05)	0.62
rs7851693	9q34.11	FUBP3	G	0.37	1.05 (1.02-1.07)	3.5E-05	1.05 (1.01-1.09)	4.8E-03	0.96 (0.91-1.02)	0.18
rs1373004	10q21.1	MBL2	т	0.13	1.1 (1.06-1.13)	9.0E-09	1.11 (1.05-1.17)	1.2E-04	1.05 (0.96-1.15)	0.29
rs163879	11p14.1	DCDC5	т	0.66	1.05 (1.03-1.07)	3.3E-05	1.05 (1.01-1.09)	6.3E-03	1.04 (0.98-1.11)	0.20
rs3736228	11q13.2	LRP5	т	0.15	1.09 (1.06-1.13)	1.4E-08	1.07 (1.02-1.13)	4.7E-03	1.02 (0.94-1.11)	0.61
rs1286083	14q32.12	RPS6KA5	т	0.81	1.05 (1.02-1.07)	7.2E-05	1.07 (1.03-1.12)	1.7E-03	0.99 (0.92-1.06)	0.74
rs227584	17q21.31	C17orf53	А	0.67	1.05 (1.03-1.07)	4.1E-05	1.04 (1.01-1.08)	2.1E-02	1.05 (0.99-1.12)	0.11
rs4796995	18p11.21	C18orf19	G	0.39	1.08 (1.06-1.1)	8.8E-13	1.08 (1.04-1.11)	1.5E-05	1.02 (0.97-1.08)	0.46

Supplementary Table 9	Weights for A	Illele Score Modeling
SNP	Allele1	Effect
rs6426749	G	2.75566397
rs1366594	С	2.10711923
rs3801387	A	1.99772615
rs4727338	G	1.98730776
rs17482952	G	1.95865719
rs7108738	т	1.73726641
rs6532023	G	1.54192161
rs736825	G	1.53931702
rs1566045	Т	1.47159749
rs3755955	A	1.45336531
rs12407028	C	1.39606416
rs2062377	A	1.30/41359
rc227E94	G	1.3022044
rs1346004	A 	1.33178001
rs100/81/6	G	1 336158/3
rs9533090	т	1 27364809
rs1286083	Ť	1 25541591
rs6959212	т	1.19811477
rs3736228	T	1.18248718
rs7932354	c	1.15904581
rs430727	Т	1.15123202
rs4790881	С	1.14341822
rs13336428	А	1.13299983
rs4792909	G	1.09653547
rs11623869	т	1.09132628
rs479336	т	1.08611708
rs13204965	С	1.08090789
rs7953528	т	1.07830329
rs7812088	G	0.98974698
rs17040773	С	0.91160906
rs4985155	A	0.89337688
rs4869742	Т	0.88295849
rs7751941	A	0.86212171
rs884205	A	0.85691252
rs1026364	G	0.84128493
rs2887571	A	0.8334/114
181053051	і т	0.8334/114
rc04660E6	1	0.01704330
rs7584262	A C	0.79901138
rs3790160	c	0.73970564
rs7084921	C	0.73449644
rs2016266	A	0.6797999
rs12821008	C	0.66156772
rs9921222	т	0.65896312
rs1564981	А	0.65635852
rs10416218	т	0.65375393
rs344081	С	0.65375393
rs163879	Т	0.65114933
rs7217932	G	0.64854473
rs7521902	А	0.64073094
rs3905706	Т	0.61468497
rs4233949	G	0.53915165
rs4796995	G	0.47664131
rs1864325	т	0.44278154
rs7017914	G	0.43236316
rs10226308	G	0.2891103
rs10835187	т	0.28390111
rs11755164	Т	0.20315859
rs13245690	G	0.1901356
rs7071206	C	0.14064826
rs1878526	A	0.06771953

Weights are based on the stage 2 meta-analysis effects sizes for FN-BMD and standarized using a mean centric calibration

Targeted (Lead	l) SNPs (i	identified in	utation)	Most significant SNPs (1000G Imputation)								
SNP rs#	Chr.	Position	Freq	Effect	SE	P-value	SNP rs#	Position	Freq	Effect	SE	P-value	$log10(P_{lead}/P_{1000G})$
rs1346004	2	166309292	0.51	-0.049	0.009	8.98E-08	rs28549203	166282329	0.31	-0.063	0.010	1.00E-09	-2.0
rs4727338	7	95958611	0.67	0.073	0.009	6.89E-15	rs4729260	95955854	0.68	0.079	0.010	1.40E-16	-1.7
rs7017914*	8	71753757	0.51	0.040	0.009	1.76E-05	rs3110251	72099528	0.52	-0.046	0.009	3.12E-07	-1.8
rs7932354	11	46678797	0.32	0.043	0.010	1.10E-05	rs12274785	46670855	0.70	-0.050	0.010	5.80E-07	-1.3
rs4796995	18	13698574	0.63	0.041	0.009	8.70E-06	rs12955116	13678383	0.33	-0.054	0.010	1.82E-07	-1.7

Supplementary Table 10 Associated top SNPs from FN-BMD association analysis using 1000G imputed genotypes (Pooled analysis)

Loci with a more significant marker (defined as change in significance of more than one order of magnitud) identified in regional imputation using P values from targeted snps are updated from meta-analysis of same studies that contributed to 1000G regiontal imputation.

*This locus was selected in the gender-stratified meta-analysis

Targeted (Lead) SNPs (io	dentified in	НарМа	ap Impu	tation)		Most s	significant SN	Ps (100	0G Impu	tation)		
SNP rs#	Chr.	Position	Freq	Effect	SE	P-value	SNP rs#	Position	Freq	Effect	SE	P-value	$log10(P_{lead}/P_{1000G})$
rs1878526*	2	118755068	0.23	0.038	0.011	9.02E-04	chr2:118804639	118804639	0.08	0.100	0.022	3.41E-06	-2.4
rs3801387	7	120762001	0.74	-0.075	0.011	4.26E-12	rs3779381	120754026	0.76	-0.082	0.011	2.03E-13	-1.3
rs1373004*	10	54097831	0.12	-0.075	0.015	5.92E-07	rs7902708	54109734	0.12	-0.082	0.015	5.68E-08	-1.0
rs10835187*	11	27462253	0.55	-0.039	0.009	2.53E-05	rs12270727	26672194	0.06	0.214	0.036	2.80E-09	-4.0
rs3736228	11	67957871	0.15	-0.073	0.013	1.89E-08	rs2291467	67973332	0.25	-0.069	0.011	5.14E-10	-1.6
rs12821008	12	47760872	0.39	0.049	0.010	1.02E-06	rs3741619	47675743	0.36	0.058	0.011	5.38E-08	-1.3
rs2016266	12	52014222	0.69	-0.058	0.010	1.13E-08	rs894736	52704433	0.60	0.061	0.010	2.49E-10	-1.7
rs10416218	19	38290967	0.73	-0.047	0.011	9.61E-06	rs12977993	38272293	0.26	0.057	0.011	3.24E-07	-1.5

Supplementary Table 11 Associated top SNPs from LS-BMD association analysis using 1000G imputed genotypes (Pooled analysis)

Loci with a more significant marker (defined as change in significance of more than one order of magnitud) identified in regional imputation using 1000Genomes. P values from targeted snps are updated from meta-analysis of same studies that contributed to 1000G regiontal imputation.

*These loci were selected in the gender-stratified meta-analysis

Supplementary Table 12 Predicted functional SNPs (imputed from 1000 Genomes Project) in LD (r2 > 0.8) with targeted SNP in each locus

Targeted	FNBMD	LSBMD				Distand	ce				FN	BMD	LSE	BMD		
SNPs	P-valu	Jes	Locus	Gene_Symbol	Functional SNP	(Kb)	r²	D'	Allele	Freq	Effect	P-value	Effect	P-value	Туре	Possible Functional Effects
rs12407028	7.89E-06	5.15E-12	1p31.3	hsa-mir-1262	rs2772297	4.37	1.00	1.00	t	0.40	-0.041	7.43E-06	-0.067	5.46E-12	INTRONIC	Promoter/regulatory region
rs4233949	1.96E-05	1.88E-12	2p16.2	SPTBN1	rs4305309	24.00	0.83	0.93	t	0.35	0.031	1.06E-03	0.069	1.64E-11	INTRONIC	Promoter/regulatory region
rs1026364	5.46E-05	1.22E-01	3q13.2	KIAA2018	rs9813630	7.4	0.91	1.00	а	0.66	-0.032	3.19E-04	-0.012	2.08E-01	SYNONYMOUS	Sense/synonymous; Splicing regulation
rs1026364	5.46E-05	1.22E-01	3q13.2	KIAA2018	rs9866806	9.9	0.91	1.00	с	0.35	0.035	1.69E-04	0.013	1.94E-01	NON_SYNONYMOUS	Missense (conservative); Splicing regulation
rs3755955	3.53E-07	9.29E-08	4p16.3	IDUA	rs3755955	0.00	1.00	1.00	а	0.16	-0.067	3.53E-07	-0.076	9.29E-08	NON_SYNONYMOUS	Missense (conservative)
rs3755955	3.53E-07	9.29E-08	4p16.3	IDUA	rs6815946	0.89	1.00	1.00	t	0.84	0.068	1.57E-07	0.079	1.74E-08	SYNONYMOUS_CODING	Sense/synonymous; Splicing regulation
rs3755955	3.53E-07	9.29E-08	4p16.3	IDUA	rs6848974	1.05	1.00	1.00	t	0.15	-0.061	1.25E-06	-0.063	3.77E-06	SPLICE_SITE	splicing site
rs3755955	3.53E-07	9.29E-08	4p16.3	IDUA	rs6831280	1.75	1.00	1.00	а	0.16	-0.069	1.18E-07	-0.079	1.88E-08	NON_SYNONYMOUS	Missense (conservative); Splicing regulation
rs4727338	6.89E-15	1.84E-12	7q21.3	FLJ42280	rs4729260	2.76	0.92	1.00	с	0.68	0.079	1.40E-16	0.079	3.48E-14	INTRONIC	Promoter/regulatory region
rs3801387	8.98E-11	4.26E-12	7q31.31	WNT16	rs3779381	7.98	0.87	1.00	а	0.76	-0.074	2.77E-12	-0.082	2.03E-13	INTRONIC	Promoter/regulatory region
rs7017914	1.76E-05	9.44E-01	8q13.3	LACTB2	rs13271442	6.0	0.97	1.00	t	0.49	0.043	1.37E-06	0.000	9.63E-01	WITHIN_NON_CODING_GENE	Promoter/regulatory region
rs7932354	1.10E-05	4.72E-05	11p11.2	F2	rs2070852	22.7	0.96	1.00	с	0.68	-0.044	6.23E-06	-0.044	1.89E-05	SPLICE_SITE	splicing site
rs3736228	2.38E-05	1.89E-08	11q13.2	LRP5	rs3736228	0.00	1.00	1.00	t	0.16	-0.052	2.38E-05	-0.073	1.89E-08	NON_SYNONYMOUS	Missense (conservative); Splicing regulation
rs2016266	1.26E-04	1.13E-08	12q13.13	ESPL1	rs1318648	57.41	0.93	1.00	а	0.65	-0.030	1.24E-03	-0.048	1.02E-06	NON_SYNONYMOUS	Aissense (non-conservative); Splicing regulation
rs2016266	1.26E-04	1.13E-08	12q13.13	ESPL1	rs1110720	45.63	0.96	1.00	а	0.65	-0.031	6.76E-04	-0.050	3.26E-07	SYNONYMOUS_CODING	Sense/synonymous; Splicing regulation
rs11623869	4.58E-08	7.13E-05	14q32.32	MARK3	rs2273699	39.84	0.96	1.00	а	0.64	0.049	2.08E-07	0.038	1.39E-04	SPLICE_SITE	splicing site
rs11623869	4.58E-08	7.13E-05	14q32.32	СКВ	rs1803283	102.6	1.00	1.00	t	0.65	0.047	3.44E-07	0.034	4.91E-04	SYNONYMOUS	Sense/synonymous; Splicing regulation
rs4985155	1.60E-03	7.08E-06	16p13.11	PDXDC1	rs7200543	0.5	0.89	1.00	а	0.70	-0.029	2.43E-03	-0.046	6.37E-06	SYNONYMOUS	Sense/synonymous; Splicing regulation
rs4985155	1.60E-03	7.08E-06	16p13.11	NTAN1	rs1136001	2.52	0.89	1.00	t	0.29	0.029	2.42E-03	0.046	6.83E-06	3PRIME_UTR	Missense (conservative); Splicing regulation
rs227584	1.17E-09	5.88E-08	17q21.31_1	C17orf53	rs227584	0.00	1.00	1.00	а	0.69	-0.061	1.17E-09	-0.057	5.88E-08	NON_SYNONYMOUS	Missense (conservative); Splicing regulation
rs227584	1.17E-09	5.88E-08	17q21.31_1	C17orf65/ASB16	rs7212573	28.73	1.00	1.00	а	0.69	-0.060	2.20E-09	-0.056	1.08E-07	NON_SYNONYMOUS	Aissense (non-conservative); Splicing regulation
rs227584	1.17E-09	5.88E-08	17q21.31_1	C17orf65/ASB16	rs7212854	28.9	0.83	1.00	а	0.72	-0.056	4.84E-08	-0.052	1.86E-06	NON_SYNONYMOUS	Aissense (non-conservative); Splicing regulation
rs227584	1.17E-09	5.88E-08	17q21.31_1	C17orf65/ASB16	rs7217858	29.0	0.93	1.00	t	0.70	-0.057	1.45E-08	-0.054	4.67E-07	NON_SYNONYMOUS	Missense (conservative)
rs227584	1.17E-09	5.88E-08	17q21.31_1	C17orf65/ASB16	rs3826412	29.6	1.00	1.00	t	0.69	-0.059	3.18E-09	-0.056	1.05E-07	SPLICE_SITE	splicing site
rs1864325	3.26E-03	1.09E-04	17q21.31_2	AC217771.1	rs12373123	53.77	1.00	1.00	t	0.79	0.032	3.58E-03	0.044	1.68E-04	NON_SYNONYMOUS	Aissense (non-conservative); Splicing regulation
rs1864325	3.26E-03	1.09E-04	17q21.31_2	AC217771.1	rs12373139	53.71	1.00	1.00	а	0.21	-0.032	4.00E-03	-0.044	1.89E-04	NON_SYNONYMOUS	Vissense (non-conservative); Splicing regulation
rs1864325	3.26E-03	1.09E-04	17q21.31_2	AC217771.1	rs12373142	53.64	1.00	1.00	с	0.79	0.032	3.48E-03	0.044	1.62E-04	NON_SYNONYMOUS	Aissense (non-conservative); Splicing regulation
rs1864325	3.26E-03	1.09E-04	17q21.31_2	MAPT	rs10445337	89.61	1.00	1.00	t	0.79	0.031	4.24E-03	0.045	1.23E-04	NON_SYNONYMOUS	Missense (conservative)
rs10416218	6.10E-05	9.61E-06	19q13.11	GPATCH1	rs2287679	1.6	1.00	1.00	t	0.73	-0.041	4.56E-05	-0.048	5.99E-06	NON_SYNONYMOUS	Missense (conservative); Splicing regulation
rs10416218	6.10E-05	9.61E-06	19q13.11	GPATCH1	rs10416265	6.2	1.00	1.00	а	0.72	-0.040	1.02E-04	-0.044	4.23E-05	NON_SYNONYMOUS	Missense (conservative)

P values from targeted snps are updated from meta-analysis of same studies that contributed to 1000G regiontal imputation. Boldface represent loci where a more significant marker (defined as change in significance of more than one order of magnitud) identified in regional imputation using 1000Genomes using pooled analysis on the same trait.

Supplementary Table 13 Correlation between BMD at femoral neck and lumbar spine and gene expression in trans-iliacal bone biopsies

			P value			
Locus	Gene	Probe	FN	r-FN	P value LS	r-LS
2p16.2	PSME4	212222_at	0.019	-0.255	6.30E-04	-0.365
10q21.1	DKK1	204602_at	1.30E-05	0.456	3.20E-04	0.383
17p13.3	C17orf91	214696_at	6.30E-04	-0.365	8.80E-04	-0.356
17q21.31_1	SOST	223869_at	4.80E-04	0.373	0.0069	0.292
17q21.31_1	DUSP3	201536_at	0.0051	-0.303	9.30E-04	-0.355

Transcripts with a P value < 0.001 at either the femoral neck (FN) or lumbar spine (LS) are shown, along with the respective Pearson correlation coefficient (r)

												Best SNP	
Locus	SNP	Allele ^a	Tissue (treatment) ^b	Gender	Gene	Probe	Effect ^c	P value	P adj ^d	Best SNP ^e	r2 ^f	Pvalue	P adj. ^g
4.26.42	6426740	6	Ether Line A.E.		14/4/7	NNA 020764		0.005.00		7524402		2 705 44	
1p36.12	rs6426749	G	FIDRODIASTS AE		WN14	NM_030761	-	9.00E-09	na	rs/524102	1	2.70E-11	na
	rs6426749	G	Osteoblasts (pge2)		WN14	NM_030761.3	-	2.60E-05	na	rs12/42/84	0.81	1.50E-05	na
	rs6426749	G	Osteoblasts (dex)		WNT4	NM_030761.3	-	5.30E-05	na	rs7524102	1	2.40E-05	na
	rs7521902	A	Adipose	females	WNT4	Contig30409_RC	-	1.20E-05	0.21	rs12042083	0.56	7.50E-06	0.12
2q13	rs17040773	C	Monocytes	mixed	ANAPC1	ILMN_1804812	+	3.60E-10	na	rs17040773	same SNP		na
	rs17040773	С	Adipose	mixed*	ANAPC1	NM_022662	+	1.90E-11	0.96	rs1548189	0.96	2.20E-13	0.0046
	rs17040773	С	Fibroblasts AE		ANAPC1	NM_022662	+	7.00E-06	na	rs1548189	0.96	2.40E-08	na
	rs17040773	С	Lymphoblasts AE	mixed	ANAPC1	NM_022662	+	1.50E-02	na	rs11689168	0.95	3.20E-07	na
2q32.2	rs11675051	G	Osteoblasts (bmp2)		MFSD6	NM_017694.2	-	5.40E-11	na	rs4638823	0.88	2.10E-11	na
	rs11675051	G	Osteoblasts (pge2)		MFSD6	NM_017694.2	-	7.70E-11	na	rs4597559	0.88	5.00E-11	na
	rs11675051	G	Osteoblasts (dex)		MFSD6	NM_017694.2	-	8.90E-11	na	rs4638823	0.88	2.90E-11	na
	rs11675051	G	Osteoblasts (pbs)		MFSD6	NM_017694.2	-	9.50E-10	na	rs17801596	0.78	8.60E-11	na
	rs11675051	G	Fibroblasts (eth)		MFSD6	NM_017694.3	-	9.20E-06	na	rs6756354	0.86	1.20E-06	na
	rs11675051	G	Fibroblasts (res)		MFSD6	NM_017694.3	-	3.30E-05	na	rs4343493	0.88	8.50E-07	na
	rs11675051	G	Fibroblasts (cho)		MFSD6	NM_017694.3	-	6.00E-05	na	rs4597559	0.88	1.40E-05	na
4q22.1	rs6532023	G	Adipose	mixed	SPP1	NM_000582	-	1.50E-05	0.48	rs1477603	0.66	2.80E-06	0.06
6q25.1	rs4869742	Т	Monocytes	mixed	C6orf97	ILMN_1772588	+	8.00E-27	na	rs6900089	0.19	6.20E-29	na
8q13.3	rs7017914	G	Whole blood	mixed*	LACTB2	NM_016027	+	1.40E-20	0.31	rs13253842	0.87	9.60E-21	0.19
	rs7017914	G	Adipose	mixed	LACTB2	NM_016027	+	3.10E-05	0.36	rs6994814	0.77	4.00E-06	0.033
	rs7017914	G	Lymphoblasts	mixed	LOC340435	XM_291285.1	+	3.50E-15	na	rs2732090	0.97	1.50E-15	na
	rs7017914	G	Lymphoblasts AE	mixed	XKR9	NM_001011720	+	1.20E-21	na	rs7013657	1	1.10E-22	na
	rs7017914	G	Fibroblasts AE		XKR9	NM_001011720	+	6.90E-18	na	rs13252719	1	5.30E-18	na
11p11.2	rs7932354	С	Adipose	mixed*	ARHGAP1	NM_004308	+	1.70E-11	0.81	rs2070852	1	1.30E-11	0.45
	rs7932354	С	Adipose	females	C11orf49	Contig32649_RC	+	4.90E-05	0.5	rs6485690	0.81	1.30E-05	0.091
	rs7932354	С	Adipose	mixed	LRP4	AB011540	+	1.20E-06	0.42	rs1060573	0.5	9.60E-09	0.0019
11p14.1_1	rs10835187	Т	Adipose	mixed*	LIN7C	NM_018362	-	2.80E-39	0.94	rs3763965	0.97	9.00E-43	5.10E-04
. –	rs10835187	т	Whole blood	mixed*	LIN7C	NM 018362	-	8.90E-16	0.78	rs3763965	0.97	2.60E-16	0.091
12q23.3	rs1053051	т	Adipose	mixed*	C12orf23		+	4.10E-13	na	rs1053051	same SNP		na
	rs1053051	т	Whole blood	mixed*	C12orf23		+	1.40E-08	0.79	rs7974499	0.79	7.40E-10	0.02
	rs1053051	т	Adipose	mixed	MTERFD3		+	1.00E-06	na	rs1053051	same SNP		na
14q32.32	rs11623869	т	Adipose	mixed*	C14orf172	 NM 152307	+	1.30E-13	0.96	rs2273700	0.96	1.90E-14	0.064
1	rs11623869	т	Whole blood	mixed*	MARK3	NM 002376	-	1.40E-26	0.62	rs3783402	0.96	4.00E-27	0.13
	rs11623869	т	Osteoblasts (bmp2)		MARK3	NM 002376.4	-	3.90E-04	na	rs879552	0.9	4.10E-05	na
16p13.11	rs4985155	A	Adipose	females	KIAA2013	NM 138346	+	6.90E-07	na	rs4985155	same SNP		na
-0010.11	rs4985155	A	Adipose	mixed*	NTAN1	NM 173474	+	1.30F-10	0.92	rs4985148	0.82	9.50F-12	0.029
17a21.31 1	rs227584**	Α	Monocytes	mixed	C17orf53	ILMN 1776490	+	5.30F-11	na	rs11079983	0.83	5.80F-14	
1,451.91_1	rs22758/**	Δ	Monocytes	mixed	C17orf65	ILMN 1676731	+	5.00F-19	na	rs3826412	same SND	3.00L 14	na
	13221304	A	wonocytes	IIIAEU	C1/01/05	121010121	т	J.00L-13	iia	133020412	Same SINP		iia

Supplementary Table 14	Probable BMD-SNP cis eQTLs; Significant correlation between BMD associated SNP	genotypes and gene expressions

												Best SNP	
Locus	SNP	Allele ^a	Tissue (treatment) ^b	Gender	Gene	Probe	Effect ^c	P value	P adj ^d	Best SNP ^e	r2 ^f	Pvalue	P adj. ^g
	rs227584	А	Adipose	mixed*	C17orf65	NM_178542	+	4.90E-18	0.29	rs721769	1	1.70E-18	0.089
	rs227584	А	Whole blood	mixed	C17orf65	NM_178542	+	4.70E-05	0.029	rs7089	0.93	3.90E-06	0.0021
	rs227584	А	Lymphoblasts	mixed	C17orf65	NM_178542.2	+	1.10E-04	na	rs7089	0.92	2.00E-05	na
	rs227584	А	Fibroblasts (eth)		TMUB2	NM_024107.2	+	4.00E-05	na	rs9910055	0.7	1.70E-06	na
	rs227584	А	Adipose	mixed	TMUB2	NM_177441	+	4.90E-05	na	rs227584	same SNP		na
	rs227584	А	Adipose	mixed*	UBTF	AF289595	+	9.00E-09	0.51	rs2071167	0.72	1.00E-10	0.0031
18q21.33	rs884205	А	Whole blood	females	TNFRSF11A	NM_003839	-	1.60E-06	na	rs884205	same SNP		na
	rs884205	А	Adipose	mixed	TNFRSF11A	NM_003839	-	1.70E-04	0.63	rs2957137	0.8	3.70E-05	0.082
19q13.11	rs10416218	Т	Adipose	mixed	RHPN2	NM_033103	+	2.80E-04	0.11	rs9304844	0.95	4.00E-05	0.013

Supplementary Table 14 Probable BMD-SNP cis eQTLs; Significant correlation between BMD associated SNP genotypes and gene expressions

Results are shown for SNP eQTLs with P value < 5 x 10-5 (either for the BMD SNP or the most significantly associated, and highly correlated, SNP) that cannot be explained by other non-correlated SNPs. Transcripts that are located within +/- 500 kb of the top BMD SNPs were included in the analysis. **a** The allele that associates with lowered BMD; **b** The tissue (adipose, whole blood), cell type (monocytes) or cell lines (lymphoblasts, primary human fibroblasts, primary human osteblasts) analysed and their treatment: cholesterol (cho), resveratrol (res), ethanol (eth), bone morphogenetic protein BMP-2 (bmp2), dexamethasone (dex), prostaglandin E2 (pge2), and control PBS (pbs). Allelic expression analysis in lymphoblastoid cell lines is indicated by AE; **c** Direction of effect of the allele that associates with lowered BMD; **d** P-value of the BMD SNP after conditioning on the best SNP associated with the transcript; **e** SNP with the strongest association with the transcript in the region; **f** Correlation between the BMD SNP and best SNP associated with the transcript; **g** P-value of the best SNP after conditioning on the BMD SNP; * significant associated SNP correlation also observed for females and/or males for the transcript; ** proxy, rs3826412[T], used for expression correlation analysis

Locus	SNP	Allele ^a	Tissue (treatment) ^b	Gender	Gene	Probe	Effect ^c	P value	P adj ^d	Best SNP ^e	r2 ^f	Best SNP Pvalue	P adj. ^g
1p31.3	rs12407028	С	Whole Blood	mixed*	WLS	NM_024911	-	1.60E-07	1.60E-04	rs12065581	0.07	8.50E-51	4.90E-47
1p36.12	rs6426749	G	Osteoblasts (bmp2)		WNT4	NM_030761.3	-	1.50E-04	na	rs17837965	0	3.10E-05	na
	rs7521902	А	Osteoblasts (dex)		ELA3B	NM_007352.2	-	5.00E-05	na	rs16826658	0.51	3.50E-06	na
	rs7521902	А	Adipose	mixed*	HSPC157	NM_014179	-	1.70E-21	4.40E-04	rs3765351	0.22	1.70E-133	9.10E-104
	rs7521902	А	Whole Blood	mixed*	HSPC157	NM_014179	-	2.60E-15	0.01	rs3765351	0.22	9.10E-94	1.70E-75
2q24.3	rs1346004	А	Adipose	mixed*	GALNT3	NM_004482	-	1.40E-11	0.0016	rs11694833	0.03	1.10E-38	4.10E-29
	rs1346004	А	Adipose	mixed*	TTC21B	NM_024753	+	1.60E-05	0.84	rs9677856	0.19	2.40E-34	3.20E-29
2q32.2	rs11675051	G	Lymphoblasts AE	mixed	TMEM194B	NM_001142645	+	3.00E-10	na	rs10165399	0.43	5.70E-12	na
6p21.1	rs11755164	т	Adipose	mixed*	SUPT3H	NM_003599	+	4.60E-14	0.0082	rs2396373	0.27	1.20E-19	4.00E-08
	rs11755164	т	Whole Blood	mixed*	SUPT3H	NM_003599	+	2.50E-06	0.53	rs9349303	0.3	9.10E-17	1.40E-11
	rs4869742	т	Whole Blood	mixed*	C6orf97	NM_025059	+	2.80E-08	6.20E-05	rs852003	0.04	2.60E-15	6.20E-12
	rs7751941	А	Adipose	mixed*	C6orf97	NM_025059	+	1.00E-05	0.51	rs7776340	0.33	4.40E-13	1.40E-08
	rs7751941	А	Whole Blood	mixed*	C6orf97	NM_025059	+	1.50E-05	0.48	rs852003	0.24	2.60E-15	4.60E-11
7q31.31	rs3801387	А	Adipose	females	WNT16	NM_016087	-	9.00E-06	0.35	rs10231005	0.27	1.60E-10	5.20E-06
	rs13245690	G	Adipose	mixed*	C7orf58	NM_024913	-	4.00E-10	0.53	rs2222543	0.37	1.80E-27	9.50E-18
8q13.3	rs7017914**	G	Monocytes	mixed	LACTB2	ILMN_1660635	-	9.40E-28	na	rs13271014	0.1	3.80E-104	na
10q24.2	rs7084921**	Т	Monocytes	mixed	CWF19L1	ILMN_1651886	-	8.80E-14	na	rs11597086	0.39	8.20E-50	na
	rs7084921	С	Adipose	mixed*	CWF19L1	NM_018294	-	1.90E-22	0.64	rs11597086	0.38	2.50E-68	1.40E-40
	rs7084921	С	Whole Blood	mixed	CWF19L1	NM_018294	-	2.90E-07	0.4	rs11597086	0.38	3.00E-22	5.10E-16
	rs7084921	С	Fibroblasts (cho)		CWF19L1	NM_018294.3	-	1.50E-05	na	rs4462272	0.65	3.30E-09	na
11p14.1_2	rs163879	Т	Whole Blood	mixed	DCDC5	AB040926	+	1.80E-05	0.55	rs2122681	0.13	9.80E-19	2.10E-14
11q13.2	rs3736228	т	Adipose	mixed*	SAPS3	Contig52814_RC	+	7.30E-11	0.54	rs10896337	0.43	1.90E-32	1.40E-21
	rs3736228	т	Whole Blood	mixed	SAPS3	Contig52814_RC	+	2.40E-08	0.4	rs10896339	0.42	3.70E-25	9.80E-18
	rs3736228	т	Adipose	mixed	SAPS3	NM_018312	+	8.00E-07	0.12	rs10896347	0.47	1.90E-08	0.0022
12q13.12	rs12821008	С	Whole Blood	mixed*	CCDC65	NM_033124	-	3.10E-08	0.29	rs1054376	0.05	3.30E-91	4.60E-81
12q23.3	rs1053051	т	Whole Blood	mixed*	AK055712	Contig10844_RC	+	9.00E-06	0.045	rs10746071	0.78	1.30E-10	5.80E-07
	rs1053051	т	Adipose	mixed*	AK055712	Contig10844_RC	+	2.70E-13	0.2	rs10778515	0.6	3.20E-16	2.20E-04
13q14.11	rs9533090	т	Whole Blood	mixed*	AKAP11	NM_144490	+	7.30E-06	0.15	rs3783192	0.22	1.70E-19	4.20E-15
	rs9533090	т	Adipose	mixed	AKAP11	NM_144490	+	6.60E-07	0.15	rs7318683	0.18	1.40E-31	1.50E-25
	rs7326472	А	Adipose	mixed	AKAP11	NM_144490	+	1.50E-06	0.0075	rs7318683	0.06	1.40E-31	2.70E-27
14q32.32	rs11623869*	G	Monocytes	mixed	BAG5	ILMN_2361695	-	2.70E-12	na	rs7148456	0.18	9.60E-24	na
	rs11623869*	G	Monocytes	mixed	MARK3	ILMN_1704795	-	2.10E-08	na	rs975892	0.15	2.10E-38	na
	rs11623869	т	Whole Blood	mixed	BAG5	NM_004873	+	6.00E-06	0.23	rs752624	0.14	3.50E-17	1.20E-12
	rs11623869	т	Adipose	mixed*	C14orf153	NM_032374	+	2.10E-07	1.40E-02	rs2403197	0.19	3.50E-14	2.80E-09
	rs11623869	т	Whole Blood	mixed*	KLC1	NM_005552	-	3.90E-05	0.32	rs3212090	0.22	3.90E-22	3.20E-18
	rs11623869	т	Adipose	mixed*	MARK3	Contig43834_RC	-	2.10E-47	2.30E-07	rs4906319	0.15	1.90E-147	6.60E-89
	rs11623869	т	Whole Blood	mixed*	MARK3	Contig43834_RC	-	1.10E-68	2.60E-15	rs6575982	0.15	1.30E-147	7.60E-80
	rs11623869	т	Lymphoblasts AE	mixed	BAG5	NM_001015049	-	3.30E-06	na	rs942863	0.56	1.20E-08	na

Supplementary Table 15	Non-BMD SNP cis eQTLs; Significant correlation between non-associated SNP genotypes and gene expressions
------------------------	--

Locus	SNP	Allele ^a	Tissue (treatment) ^b	Gender	Gene	Probe	Effect ^c	P value	P adj ^d	Best SNP ^e	r2 ^f	Best SNP Pvalue	P adj. ^g
16p13.11	rs4985155	А	Adipose	females	PDXDC1	D87438	-	2.20E-05	0.48	rs1136001	0.78	5.20E-07	0.0072
16p13.3_1	rs9921222	Т	Monocytes	mixed	AXIN1	ILMN_1766185	-	1.10E-14	na	rs1204042	0.07	5.40E-114	na
	rs9921222	т	Monocytes	mixed	NME4	ILMN_1800634	+	3.90E-23	na	rs763151	0.14	3.20E-204	na
	rs9921222	т	Monocytes	mixed	TMEM8	ILMN_1741371	-	7.90E-08	na	rs3830160	0.18	2.80E-80	na
	rs9921222	т	Adipose	mixed*	AXIN1	NM_181050	-	1.80E-06	0.12	rs214252	0.11	2.90E-22	3.80E-17
	rs9921222	т	Osteoblasts (dex)		DECR2	NM_020664.3	+	5.80E-06	na	rs1698231	0.1	1.60E-10	na
17p13.3	rs4790881	С	Whole Blood	mixed*	SRR	NM_021947	+	8.40E-09	0.37	rs17834563	0.06	4.60E-71	5.50E-61
17q21.31_1	rs4792909	G	Adipose	mixed*	MPP3	NM_001932	+	6.30E-15	0.92	rs17674998	0.14	4.20E-60	4.60E-42
19q13.11	rs10416218	Т	Adipose	mixed*	GPATCH1	NM_018025	-	4.20E-19	0.16	rs7256470	0.66	1.60E-22	8.50E-05
	rs10416218	т	Adipose	mixed*	WDR88	NM_173479	-	1.40E-06	0.12	rs10423969	0.52	6.70E-16	6.80E-11
20p12.2	rs3790160	С	Whole Blood	mixed	JAG1	NM_000214	-	2.60E-05	0.073	rs6077861	0.22	3.50E-09	8.20E-06

Supplementary Table 15 Non-BMD SNP cis eQTLs; Significant correlation between non-associated SNP genotypes and gene expressions

Results are shown for SNP eQTLs with P value < 5 x 10-5 that can be be explained by other non-correlated and non-associated SNPs. Transcripts that are located within +/- 500 kb of the top BMD SNPs were included in the analysis. **a** The allele that associates with lowered BMD; **b** The tissue (adipose, whole blood), cell type (monocytes) or cell lines (lymphoblasts, primary human fibroblasts, primary human osteblasts) analysed and their treatment: cholesterol (cho), resveratrol (res), ethanol (eth), bone morphogenetic protein BMP-2 (bmp2), dexamethasone (dex), prostaglandin E2 (pge2), and control PBS (pbs). Allelic expression analysis in lymphoblastoid cell lines is indicated by AE; **c** Direction of effect of the allele that associates with lowered BMD; **d** P-value of the BMD SNP after conditioning on the best SNP associated with the transcript; **e** SNP with the strongest associated SNP correlation also observed for females and/or males for the transcript; ****** proxy SNPs used for expression correlation analysis: rs12675271 for rs7017914, rs11190378 for rs7084921, and rs17679475 for rs11623869.

SNP	Grail SNP P-value	Candidate Gene
rs3736228	2.80E-10	LRP5
rs2062377	3.17E-07	TNFRSF11B
rs2016266	3.55E-07	SP7
rs11755164	3.59E-07	RUNX2
rs9533090	4.14E-07	TNFSF11
rs6426749	8.04E-07	WNT4
rs884205	8.99E-07	TNFRSF11A
rs2887571	1.48E-05	WNT5B
rs7217932	2.04E-05	SOX9
rs6532023	2.17E-05	MEPE
rs3801387	3.66E-05	WNT16
rs9921222	4.04E-05	AXIN1
rs1864325	4.35E-05	WNT3
rs6959212	1.50E-04	SFRP4
rs7953528	3.27E-04	PTHLH
rs430727	3.57E-04	CTNNB1
rs10048146	8.76E-04	FOXL1
rs7108738	9.00E-03	SOX6
rs12821008	0.02	DHH
rs13336428	0.02	CLCN7
rs9466056	0.02	SOX4
rs1366594	0.05	MEF2C
rs7017914	0.08	LACTB2
rs3790160	0.08	JAG1
rs3905706	0.12	MPP7
rs4869742	0.15	C6orf97
rs7932354	0.17	DGKZ
rs10416218	0.17	GPATCH1
rs479336	0.18	DNM3
rs3755955	0.22	DGKQ
rs12407028	0.22	GPR177
rs7851693	0.23	FUBP3
rs4233949	0.24	SPTBN1
rs7084921	0.26	СНИК
rs1566045	0.31	CYLD
rs17040773	0.42	ANAPC1
rs1026364	0.44	NAT13
rs1878526	0.46	INSIG2
rs13204965	0.49	C6orf173
rs11623869	0.50	MARK3
rs4727338	0.54	SLC25A13
rs4796995	0.60	C18orf19
rs10835187	0.61	LIN7C
rs163879	0.72	DCDC1
rs4790881	0.73	MNT
rs4985155	0.76	PDXDC1
rs1373004	0.76	MBL2
rs227584	0.78	HDAC5
rs7812088	0.83	ABCF2
rs1053051	0.85	C12orf23
rs344081	0.87	TIPARP
rs7071206	0.87	KCNMA1
rs1346004	0.89	FAM130A2
rs1286083	0.91	RPS6KA5
rs7584262	0.95	LOC91461

Supplementary Table 16. Candidate Genes selected by GRAIL

Boldface indicates significant relationships amongst loci (GRAIL P < 0.01)

						Knockout mouse		LD functional			
						with skeletal	Monogenic syndrome with	variant(s) 1000	GRAIL		
Locus	SNP	MAF	Candidate gene	Closest gene	eQTL	phenotype (MGI)	skeletal phenotype (OMIM)	Genome Project	Priority	Bone-active pathway	Score
1p31.3	rs12407028	0.39	WLS	YES		MGI:1915401				Wnt	3
1p36.12	rs6426749	0.17	ZBTB40	YES							1
1p36.12	rs7521902	0.31	WNT4	YES	NM_030761				YES	Wnt	4
1q24.3	rs479336	0.26	DNM3	YES							1
2n16.2	rs4733949	0.38	SPTRN1	YES				rs4305309			2
2n21	rs7584262	0.23	PKDCC	YES		MGI-2147077		101000000			2
2p21 2n13	rs17040773	0.23	ΑΝΔΡC1	YES	II MN 1804812	11101.214/07/					2
2q15 2q14 2	rs1878526	0.23	INSIG2	YES	1004012						1
2024.2	rs1346004	0.22	GALNT3	VES		MGI-894695	MIM-211900				3
2q24.5 3n22 1	rs/130727	0.45	CTNNR1	VES		MGI:88276	101101.211500		VES	W/nt	1
3013.2	rs1026364	0.47	KIAA2018	VES		11101.00270		rs9813630	125	·····	2
3025 31	rs344081	0.30	I FKR1	VES				135015050			1
Jq25.51	rc3755955	0.15		VES		MGI-96/18		rc68/1897/			3
4p10.5	rs6532023	0.10	MEDE	VES		MGI:213738/		130040374			2
4922.1	rs6522023	0.34	SDD1	115	NM 000582	MGI-08280			VES	Endochondral Ossification	2
4922.1	rs6522023	0.34	IRCD		11110_000382	MGI:06380			TLJ	Endocrionarai Ossineation	4
4q22.1 Eq14.2	rc1266E04	0.34	MEEOC	VEC		WIG1.90389				Endochondral Ossification	2
5q14.5 6n21 1	rc11755164	0.47	DI INY2	TL5		MGI-00820			VES	Endochondral Ossification	2
6p21.1	r:0466056	0.40	SOV4			10101.33823			TLJ	Endocrionarai Ossincation	0
0µ22.5	rc12204065	0.36	30A4 BCDO2	VEC		MGI:1020020				\M/nt	2
6q22.32	1513204903	0.24	ECD1	TES		MGI:1920030				WIIL	3
0q23.1 7p14.1	134609742	0.52				10101.1552407			VEC	\A/pt	1
7p14.1 7p14.1	1510220308	0.10	SFRP4	VEC					TES	WIIL	2
7µ14.1 7~21.2	150959212	0.34	STARDSINL	TES							1
7q21.5 7a21.21	134727330	0.55	SLCZSAIS	TES VEC				*******	VEC	\A/pt	1
7431.31	153601367	0.20	WIN110	TES				153779361	TES	vviit	4
/q36.1	rs/812088	0.12	ABCFZ	YES	NNA 016027			***12271442			1
8q13.3	rs/01/914	0.49	LACIB2	VEC	NIVI_016027	MCI:100507	NUN4-CO2000	rs13271442	VEC		2
8q24.12	rs2062377	0.41	INFRSF11B	YES		MGI:109587	101101:602080		YES	UPG/RANK/RANKL	5
9q34.11	rs/851693	0.37	FUBP3	YES							1
10p11.23	rs3905706	0.23	MPP7	YES		NOL 4220040					1
10q21.1	rs1373004	0.12	DKKI	VEC		MGI:1329040				vvnt	2
10q22.3_1	rs/0/1206	0.24	KCNMA1	YES							1
10q24.2	rs7084921	0.40	CPN1	YES							1
11p11.2	rs/932354	0.33	LRP4	VEC	AB011540	MGI:2442252	MIM:604270				3
11p14.1_1	rs10835187	0.46	LIN/C	YES	NM_018362						2
11p14.1_2	rs163879	0.34	DCDC5	YES							1
11p15.2	rs/108/38	0.18	SOX6	YES		MGI:98368			YES	Endochondral Ossification	4
11q13.2	rs3/36228	0.15	LRP5	YES		MGI:1278315	MIM:259770,MIM:607634	rs3/36228	YES	Wnt	6
12p11.22	rs7953528	0.18	PTHLH			MGI:97800	MIM:613382		YES	Endochondral Ossification	4
12p13.33	rs2887571	0.24	WNT5B						YES	Wnt	2
12q13.12	rs12821008	0.40	DHH	YES						Hedgehog	2
12q13.13	rs2016266	0.31	SP7	YES		MGI:2153568	MIM:613849		YES	MSC differentiation	5
12q13.13	rs736825	0.44	HOXC6	YES		MGI:96197				Wnt	3
12q23.3	rs1053051	0.49	C12orf23	YES	NM_152261						2
13q14.11	rs9533090	0.48	TNFSF11			MGI:1100089	MIM:259710		YES	OPG/RANK/RANKL	4
14q32.12	rs1286083	0.20	RPS6KA5	YES							1
14q32.32	rs11623869	0.34	MARK3	YES	NM_002376			rs2273699			3

						Knockout mouse		LD functional			
						with skeletal	Monogenic syndrome with	variant(s) 1000	GRAIL		
Locus	SNP	MAF	Candidate gene	Closest gene	eQTL	phenotype (MGI)	skeletal phenotype (OMIM)	Genome Project	Priority	Bone-active pathway	Score
16p13.11	rs4985155	0.35	NTAN1	YES	NM_173474			rs1136001			3
16p13.3_1	rs9921222	0.46	AXIN1	YES		MGI:1096327			YES	Wnt	4
16p13.3_2	rs13336428	0.44	CLCN7			MGI:1347048	MIM:611490				2
16q12.1	rs1566045	0.20	CYLD			MGI:1921506					1
16q24.1	rs10048146	0.20	FOXL1	YES		MGI:1347481			YES	TGF-beta	4
17p13.3	rs4790881	0.33	SMG6	YES							1
17q21.31_1	rs227584	0.33	C17orf53		ILMN_1776490			rs227584			2
17q21.31_1	rs4792909	0.37	SOST	YES		MGI:1921749	MIM:269500			Wnt	4
17q21.31_2	rs1864325	0.22	WNT3				MIM:273395		YES	Wnt	3
17q24.3	rs7217932	0.46	SOX9	YES		MGI:98371	MIM:608160		YES	Endochondral Ossification	5
18p11.21	rs4796995	0.39	C18orf19	YES							1
18q21.33	rs884205	0.25	TNFRSF11A	YES	NM_003839	MGI:1314891	MIM:602080		YES	OPG/RANK/RANKL	6
19q13.11	rs10416218	0.28	GPATCH1	YES				rs2287679			2
20p12.2	rs3790160	0.50	JAG1	YES							1
Xp22.31	rs5934507	0.27	FAM9B	YES							1

Aggregated evidence derived from human (OMIM) and mouse genetic (MGI) databases with that derived from our data (gene proximity to the associated variant, eQTL, LD with putative functional variants and pathway involvement). We prioritized 60 candidate genes likely to be underlying the GWAS signals coming from the 56 BMD loci together with a score on potential biological relevance. Of these 60 genes, 13 contained human mutations associated with monogenic skeletal syndromes while 27 genes had a knock-out mouse presenting with skeletal defects (11 genes had both). 10 of the 26 genes contained functional variants in LD with the GWAS SNP, 11 of the 14 genes contained eQTL transcripts, 18 genes annotated in the GRAIL analysis and 24 genes are members of a recognized biologic pathway relevant to bone biology.

Boldface indicates novel loci. eQTL and markers in LD with a putative functional variant are only shown for those related to the reported candidate gene in this table. For eQTLs the transcript associated with the given SNP is displayed. The score was generated by adding a point for each line of evidence (range 0-6).

Supplementary Table 18A: Study design

	Study	_						Sample QC	_		
Short name 1 AFOS	Full name Amish Family Osteoporosis Study	Study design Cohort/ Founder population	Study base Population-based	Country of origin United States of America	City/region of origin Lancaster County, Pennsylvania	Ethnicity (es) Old Order Amish (European Ancestry)	<u>Call rate</u> > 98%	Other exclusions 1) missing covariate data; 2) genotype data not imputed at time of analysis.	Total sample size with GWA and BMD and/or fracture data available 918	Short Study Description The AFOS study was designed to identify genetic determinants of osteoporosis in the Old Order Amish (OOA) population from Lancaster County, PA USA. The OOA population from Lancaster County, PA USA. The OOA population is a closed, Caucasian founder population made up of large families and the OOA population lives a relatively homogenous lifestyle.	References [PMID:14969401] (Streeten, 2004 Reduced incidence of hip fracture in the Old Order Amish); [PMID:16939402] (Streeten, 2006 Quantitative trait loci for BMD identified by autosome-wide linkage scan to chromosomes 7q and 21q in men from the Amish Family Osteoporosis Study}
2 AOGC	Anglo-Australasian Osteoporosis Genetics Consortium	Extreme truncate selection	e Population-based, clinical-based	Australia, New Zealand, Unite Kingdom	d Brisbane, Sydney, Dubbo, Perth, Melbourne, Geelong, Hobart, Sheffield, Kiel Paris, Berlin, Aberdeen, Hereford	North-western European	> 98%	 missing DNA; gender mismatch with typed X-linked markers; excess autosomal heterozygosity dyulpicates and/or 1st or 2nd degree relatives ethnic outliers missing body weight and height. 	1,955	A consortium of investigators who have collected unrelated individuals with extreme BMD phenotypes (z scores +1.5 to +4; or -1.5 to -4) as a powerful strategy for gene discovery in quantitative traits.	[PMID: 18021006] [Sims, 2008 Genetic analyses in a sample of individuals with high or low BMD shows association with multiple Wnt pathway genes}; [PMID: 21533022] [Duncan, 2011 Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk}
3 CHS	Cardiovascular Health Study	Cohort	Population-based	United States of America	Sacramento, Pittsburgh	European American	> 95%	 presence at study baseline of coronary heart disease, congestive heart failure, peripheral vascular disease, valvular heart disease, stroke or transient ischemic attack; missing DNA; non-Gaucasian ethnicity; gender mismatch; discordance with prior genotyping. 	· 3,291	A population-based cohort study of risk factors for coronary heart disease and stroke in adults 265 years conducted across four field centers. The original predominantly Caucasian cohort was recruited in 1989-1990 from random samples of the Medicare eligibility lists, genotyping was performed at the General Clinical Research Center's Phenotyping/Genotyping Laboratory at Cedars Sinai using the Illumina 370CNV BeadChip system on 3980 CHS participants who were free of CVD at baseline, consented to genetic testing, and had DNA available for genotyping.	[PMID: 20031568] [Fried, 2009 Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: Design of prospective meta-analyses of genome-wide association studies from 5 cohorts}
4 DeCODE	DeCODE Genetics Study	Cross-sectional	Population-based, clinical-based	Iceland	NA	North-western European	≥91%	 missing BMD measurement; missing body weight and height. 	7,605	The study includes 40,000 individuals taking part in various disease projects	[PMID: 18445777] [Styrkarsdottir, 2008 Multiple genetic loci for bone mineral density and fractures]; [PMID: 19079262] [Styrkarsdottir, 2009 Multiple genetic loci for bone mineral density and fractures]
S ERF	Erasmus Rucphen Family	Cohort	Family-based isolate	The Netherlands	Rucphen	North-western European	> 95%	1) gender mismatch; 2) ethnic outliers; 3) Missing phenotype data; 4) high IBS; 5) excess heterozygosity.	1,602	A family-based cohort study that is embedded in the Genetic Research in Isolated Populations (GRIP) program in the South West of the Netherlands. The aim of this program was to identify genetic risk factors in the development of complex disorders. For the ERF study. 22 families that had at least five children baptized in the community church between 1850-1900 were identified with the help of genealogical records. All living descendants of these couples and their spouses were invited to take part in the study. Data collection started in June 2002 and was finished in February 2005	[PMID: 15054401] {Aulchenko, 2004 Linkage disequilibrium in young genetically isolated Dutch population

Supplementary Table 18A: Study design

Stage 1		Study	_						Sample QC	-		
Shor	rt name	: Full name	Study design	Study base	Country of origin	City/region of origin	n Ethnicity (es)	Call rate	e Other exclusions	Total sample size with GWA and BMI and/or fracture data available	D Short Study Description	References
6 EPI	CNOR	Europen Prospective Investigation into Cancer, Norfolk study	Cohort	Population-based	United Kingdom	Norfolk	European	≥ 97.7%	 missing DNA; Missing body weight and height; Jigender mismatch with typed X-linked markers; Heteroxygosity <23% or >30%; >5.0% discordance in SNP pairs with r2= 1 in HapMap; ethnic utiliers; related individuals and duplicates. 	249	A random sample of 1,511 men and women in the top decade of age in the 25,000 participant EPIC- Norfolk prospective study were recruited into a bone fragility study with DXA measurements. GWA data were available for 249 participants with BMD measurements who had been entered into a GWAS investigation of obesity.	[PMID: 12753873] {Kaptoge, 2003 Effects of gender, anthropometric variables, and aging on the evolution of hip strength in men and womer aged over 65}; [PMID: 10466767] {Day, 1999 EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer}; [PMID: 19079261] {Willer, 2009 Six new loci associated with body mass index highlight a neuronal influence on body weight regulation};
7	FHS	Framingham Heart Study	Cohort	Population-based, family-based	United States of America	Framingham	European American	≥ 97%	1. autosomal heterozygosity <0.26 or > 0.30; 2. ethnic outliers (using Eigenstrata).	3,886	The Framingham Osteoporosis Study is an ancillary study of the parent, Framingham Study. The Framingham Study is a family based, multigenerational cohort study initiated originally to study the risk factors for cardiovascular disease	[PMID: 14819398] {Dawber, 1551 Epidemiological approaches to heart disease: the Framingham Study}; o [PMID: 474565] {Kannel, 1979 An investigation of coronary heart disease in families. The Framingham offspring study} [PMID: 17372189] {Splansky, 2007 The Third Generation Cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination]
8 G	OOD	Gothenburg Osteoporosis and Obesity Determinants Study	Cohort	Population-based	Sweden	Gothenburg	Northern European	≥ 97.5%	 excess autosomal heterozygosity > 0.336*FDR>0.1%; duplicates and/or 1st or 2nd degree relatives using IBS probabilities >97% from PLINK; thnic outliers using IBS distances > 3SD from PLINK. 	938	A study intiated to determine both environmental and genetic factors involved in the regulation of bone and fat mass.	[PMID: 16007330] Lorentzon, M. et al Free testosterone is a positive whereas free estradiol is a negative predictor of cortical bone size in young Swedish men-The GODD Study. J Bone Miner Res 20, 1334-1341 (2005).
9 H	ABC	Health Aging and Body Composition	Cohort	Population-based	United States of America	Pittsburgh, PA; Memphis, TN	European American	≥ 97%	 missing DNA; 1st or 2nd degree relatives; missing body weight and height; missing body weight and height; ethnic outliers. 	1,649	A population-based, propsective cohort study of well-functioning, unrelated men and women aged 7 and older. It was initiated to assess changes in body composition.	[PMID: 12028178] 70 [Visser, 2002 Leg muscle mass and y composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study]; [PMID: 16043679] [Strotmeyer, 2005 Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study]; [PMID:] [Strotmeyer, 2004 Diabetes is associated independently of body composition with BMD and bone volume in older white and black men and women: The Health, Aging, and Body Composition Study]
10 H	IKOS	Hong Kong Osteoporosis Study	Case-control	Population-based, clinical-based	China	Hong Kong	Southern Chinese of Han origin	≥ 95%	 missing DNA; gender mismatch with typed X-linked markers; autosomal heterozygosity ≤ 27% or ≥ 31%; being related or identical to other individuals in the sample. 	800	A sample of 800 unrelated subjects with extreme BMD phenotype ($2 \cdot \operatorname{score} \le -1.28$ or $\ge +1.0$ at either lumbar spine or femoral neck) were selected from a growing database of Hong Kong Southern Chinese (more than 7,000 volunteers)	[PMID:20096396] {Kung, 2010 Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow up replication studies};

Supplementary Table 18A: Study design

Stage 1: GWAS BIVD Discovery Study		_						Sample QC				
	Short name	Full name	Study design	Study base	Country of origin	Citv/region of origin	Ethnicity (es)	Call rate	Other exclusions	Total sample size with GWA and BMI and/or fracture data available) Short Study Description	References
11	Indiana	Indiana Genetics of Bone Fragility Study	Cross-sectional	Population-based, family-based, clinical- based	United States of America	Indianapolis, IN	European American	> 98%	 history of chronic disease, taking medications known to affect bone mass or metabolism, weight >136 kg; irregular menses or a history of pregnancy or lactation within three months prior to enrollment; familial relationships that could not be unambiguouxly determined (n=14); Three pairs of sisters (n=6 samples) were removed from further analysis due to evidence of substantial admixture with other populations. 	1,487	A study designed to identify genetic factors underlying peak bone mineral density variation in normal premenopausal women as a risk factor for osteoporotic fracture. The GWAS sample consists primarily of white sibling pairs and sibships, with subjects aged 20-40 years, with similar samples of men and African-American subjects collected as well.	[PMID: 20164292] {Koller, 2010 Genome-wide association study of bone mineral density in premenopausal European-American women and replication in African-American women}
12	ORCADES	The Orkney Complex Disease Study	Cohort	Population-based, family-based	United Kingdom	Orkney	North-western European	≥ 95%	 Gender mismatch; Ethnic outliers using IBS distances >3SD from PLINK; Missing weight or height; Excess autosomal heterozygosity. 	427	The ORCADES study is an ongoing family-based genetic epidemiology collection in the isolated Scottish archipelago of Orkney	[PMID:20418889] [Uiu, 2010 Meta-analysis and imputation refines the assotiation of 15q25 with smoking quantity]; [PMID:2001084] [Repapi, 2010 Genome-wide association study identifies five loci associated with lung function]; [PMID:19060911] [Aulchenko, 2009 Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts];
13	RS-I	Rotterdam Study-I	Cohort	Population-based	The Netherlands	Rotterdam	North-western European	≥ 97.5%	1) missing DNA; 2) gender mismatch with typed X-linked markers; 3) excess autosomal heterozygosity > 0.336°r;DR>0.15¢; 4) duplicates and/or 1st or 2nd degree relatives using IBS probabilities >97% from PLINK; 5) ethnic outliers using IBS distances > 3SD from PLINK; 6) missing body weight and height.	5,746	A prospective population-based cohort study of chronic disabiling conditions in Dutch elderly individuals aged 55 years and over. The RS-III cohort included individuals aged 45 years and over.	[PMID:19700477] [Estrada, 2009 GRIMP: a web- and grid- based tool for high-speed analysis of large- scale genome-wide association using imputed dats; [PMID:19728115] [Hofman, 2009 The Rotterdam Study: 2010 objectives and design update]; [PMID:1833235] [Hofman, 1920 Determinants of disease and disability in the elderly: the Rotterdam Edderds Study
14	RS-II	Rotterdam Study-III	Cohort	Population-based	The Netherlands	Rotterdam	North-western European	≥ 97.5%		2,157		Eldeny study;
15	RS-III	Rotterdam Study-III	Cohort	Population-based	The Netherlands	Rotterdam	North-western European	≥ 97.5%		1,212		
16	TUK-1	TwinsUK	Cohort	Population-based, family-based	United Kingdom	NA	North-western European	≥ 95%	 autosomal heterozygosity <0.33 or > 0.37; ethnic outliers (using STRUCTURE); missing BMD or weight measurements. 	1,511	TwinsUK is a population-based registry of British Twins representative of the general British population.	[PMID: 19841454] (Richards, 2009 Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture}; [PMID: 18455228] (Richards, 2008 Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study)
17	TUK-23	TwinsUK	Cohort	Population-based, family-based	United Kingdom	NA	North-western European	≥95%		2,801		

Supplementary Table 18B: Study-specific descriptive statistics

					Ν	/len					Wo	omen		
Study	Trait	Assessment method	Ν	mean	sd	median	min	max	N	mean	sd	median	min	max
1 4605	Age (vrs)	Questionnaire	443	51 3	15 5	51 5	20.2	95.1	475	52.2	14.6	53.7	18.6	92 7
1 4 05	BMI (kg/m ²)	Calculated	443	26.4	3.7	26.1	18.3	43.6	475	28.4	5.6	27.8	16.7	49.3
	Weight (kg)	Measured	443	77.9	12.2	76.8	50.9	125.4	475	72.2	14.5	71.1	37.8	120.4
	Height (cm)	Measured	443	171.5	6.4	172.1	154.2	193.5	475	159.5	5.9	160.0	137.6	175.5
	LS-BMD (g/cm2)	Hologic 4500	443	1.0	0.1	1.0	0.6	1.4	475	0.9	0.2	0.9	0.4	1.4
	FN-BMD (g/cm2)	Hologic 4500	443	0.9	0.1	0.8	0.5	1.3	475	0.8	0.1	0.8	0.4	1.4
2 AOGC	Age (yrs)	Questionnaire	0	NA	NA	NA	NA	NA	1,051	70.4	8.3	71.0	48.0	86.0
high BMD group	BMI (kg/m ²)	Measured	0	NA	NA	NA	NA	NA	1,044	30.1	5.5	29.4	16.2	48.3
	Weight (kg)	Measured	0	NA	NA	NA	NA	NA	1,047	77.5	14.7	76.0	44.0	134.7
	Height (cm)	Measured	0	NA	NA	NA	NA	NA	1,044	160.5	6.2	160.2	139.1	180.0
	LS-BMD (g/cm2)	Both Lunar and Hologic	0	NA	NA	NA	NA	NA	618	1.3	0.2	1.2	0.8	2.1
	FN-BMD (g/cm2)	Both Lunar and Hologic	0	NA	NA	NA	NA	NA	1,021	0.9	0.1	0.9	0.6	1.8
AOGC	Age (yrs)	Questionnaire	0	NA	NA	NA	NA	NA	900	68.7	8.8	68.0	50.0	86.0
low BMD group	BMI (kg/m²)	Measured	0	NA	NA	NA	NA	NA	893	24.3	4.8	23.4	14.8	48.5
	Weight (kg)	Measured	0	NA	NA	NA	NA	NA	894	61.5	13.7	59.3	34.5	136.0
	Height (cm)	Measured	0	NA	NA	NA	NA	NA	893	158.8	7.3	159.0	127.5	188.0
	LS-BMD (g/cm2)	Both Lunar and Hologic	0	NA	NA	NA	NA	NA	552	0.9	0.2	0.9	0.5	1.5
	FN-BMD (g/cm2)	Both Lunar and Hologic	0	NA	NA	NA	NA	NA	865	0.6	0.1	0.6	0.3	1.0
3 CHS	Age (yrs)	Questionnaire	340	77.0	4.8	76.0	70.0	93.0	568	76.3	4.2	75.0	69.0	93.0
	BMI (kg/m²)	Measured	340	26.3	3.8	26.1	11.1	41.4	568	26.0	5.1	25.8	7.5	44.6
	Weight (kg)	Measured	340	78.5	12.2	78.1	34.1	116.8	568	65.8	13.7	64.9	22.3	116.4
	Height (cm)	Measured	340	173	6.4	172	152	193	568	159	6.0	159	142	183
	LS-BMD (g/cm2)	Whole Body Scan	340	1.1	0.2	1.1	0.6	2.6	568	0.9	0.2	0.9	0.4	3.3
	FN-BMD (g/cm2)	Measured	340	0.8	0.1	0.8	0.4	1.4	568	0.6	0.1	0.6	0.3	1.1
4 DeCODE	Age (yrs)	NationalRegistry	1,136	66.1	14.2	69.2	20.1	96.1	6,469	59.7	13.8	59.9	20.0	97.8
	BMI (kg/m²)	Calculated	1,136	26.7	4.1	26.5	13.9	42.5	6,461	26.3	4.8	25.6	13.5	59.7
	Weight (kg)	Measured	1,136	83.4	14.4	83.0	38.4	129.5	6,461	71.1	13.4	69.7	30.0	129.3
	Height (cm)	Measured	1,136	176.5	6.7	176.0	148.5	196.0	6,469	164.4	6.2	164.5	116.5	188.0
	LS-BMD (g/cm2)	Hologic	1,135	1.0	0.2	1.0	0.5	1.7	6,461	0.9	0.2	0.9	0.4	1.8
	FN-BMD (g/cm2)	Hologic	1,115	0.8	0.1	0.9	0.4	1.3	6,279	0.7	0.1	0.6	0.2	1.4
5 ERF	Age (yrs)	Questionnaire	1,419	50.6	14.9	50.9	17.6	88.6	1,815	50.6	15.9	50.7	16.7	95.7
	BMI (kg/m²)	Measured	1,223	27.1	3.9	26.8	15.9	42.4	1,517	26.4	4.7	25.7	15.5	45.6
	Weight (kg)	Measured	1,232	83.3	14.0	81.8	41.9	154.7	1,532	69.4	13.6	67.4	42.1	161.0
	Height (cm)	Measured	1,232	174.8	7.2	174.7	152.2	196.5	1,533	161.8	6.5	161.6	141.0	182.8
	LS-BMD (g/cm2)	GE-lunar DPX-L	1,215	1.2	0.2	1.2	0.6	1.8	1,504	1.1	0.2	1.1	0.6	1.8
	FN-BMD (g/cm2)	GE-lunar DPX-L	1,207	1.0	0.1	1.0	0.5	1.7	1,512	0.9	0.1	0.9	0.5	1.3
6 EPIC Norfolk	Age (yrs)	Questionnaire	109	72.3	3.2	71.8	67.4	78.4	111	72.4	3.0	72.8	67.5	78.7
	BMI (kg/m²)	Measured	109	28.1	4.0	28.1	19.0	39.3	111	29.6	4.5	29.5	18.4	41.0
	Weight (kg)	Measured	109	82.7	12.9	82.8	56.4	128.5	111	74.9	12.5	74.4	46.8	104.0
	Height (cm)	Measured	109	171.5	5.3	171.7	154.9	188.9	111	159.0	5.7	159.1	144.9	177.2
	LS-BMD (g/cm2)	NA	NA 100	NA	NA 0.1	NA	NA	NA	NA	NA 07	NA 0.1	NA	NA	NA 1.0
	FN-BIVID (g/cm2)	HOIOGIC QUK 1000W	109	0.8	0.1	U.8	0.5	1.3	111	0.7	0.1	0.7	0.5	1.0
7 FHS	Age (yrs)	Questionnaire	1,548	64.5	10.9	64.0	35.0	92.0	2,081	64.9	11.5	65.0	29.0	96.0
	BMI (kg/m²)	Measured	1,540	28.4	4.4	27.9	17.1	53.4	2,060	27.3	5.5	26.4	15.4	58.2
	Weight (kg)	Measured	1,544	86.0	14.9	84.4	46.3	170.1	2,066	69.8	15.0	67.6	36.3	158.8
	Height (cm)	Measured	1,540	174	7	174	152	200	2,060	160	7	160	138	183

Supplementary Table 18B: Study-specific descriptive statistics

					Ν	Лen			Women					
Study	Trait	Assessment method	N	mean	sd	median	min	max	N	mean	sd	median	min	max
	LS-BMD (g/cm2)	GE-lunar DPX-L	1,492	1.3	0.2	1.3	0.7	2.4	2,008	1.1	0.2	1.1	0.5	2.0
	FN-BMD (g/cm2)	GE-lunar DPX-L	1,531	1.0	0.1	1.0	0.5	1.7	2,043	0.8	0.2	0.8	0.1	1.4
8 GOOD	Age (vrs)	Questionnaire	938	18.9	0.6	18.8	18.0	20.1	0	NA	NA	NA	NA	NA
	BMI (kg/m ²)	Measured	938	22.4	3.2	21.9	16.1	41.6	0	NA	NA	NA	NA	NA
	Weight (kg)	Measured	938	73.9	11.6	72.0	51.3	127.0	0	NA	NA	NA	NA	NA
	Height (cm)	Measured	938	182	7.0	182	161	203	0	NA	NA	NA	NA	NA
	LS-BMD (g/cm2)	GE_Lunar_Prodigy	938	1.2	0.2	1.2	0.8	1.7	0	NA	NA	NA	NA	NA
	FN-BMD (g/cm2)	GE_Lunar_Prodigy	938	1.2	0.2	1.2	0.8	1.8	0	NA	NA	NA	NA	NA
9 HABC	Age (vrs)	Questionnaire	879	73.9	29	74.0	69.0	80.0	784	73.6	2.8	73.0	69.0	80.0
5 HADE	BMI (kg/m ²)	Measured	879	27.1	3.7	26.7	17.6	44.2	784	26.1	4 5	25.6	15.6	44 7
	Weight (kg)	Measured	879	81.6	12.4	80.0	52.2	134.5	784	66.4	12.1	65.1	40.8	123.0
	Height (cm)	Measured	879	173.6	6.4	173.4	151.1	194.8	784	159.4	5.8	159.6	141.6	175.6
	LS-BMD (g/cm2)	Hologic QDR 4500	871	1.1	0.2	1.1	0.6	2.4	778	0.9	0.2	0.9	0.6	1.7
	FN-BMD (g/cm2)	Hologic QDR 4500	869	0.8	0.1	0.8	0.4	1.3	776	0.7	0.1	0.7	0.3	1.1
10.11805	A ma (1 ma)	Questionnaire	0	NIA	NIA	NIA	NIA	NA	800	49.0	15.0	50.0	20.0	84.0
IU HKUS	Age (yrs)	Questionnaire	0	NA	NA NA	NA	NA NA	NA	800	48.9	15.0	50.0	20.0	84.0 40 E
	Meight (kg)	Measured	0	NA	NΑ	NA	NA	NA	800	54.7	3.9 10.2	53.2	33.5	40.5 93.5
	Height (cm)	Measured	0	NΔ	NΔ	NΔ	NA	NA	800	155	6.7	156	127	175
	$I_{S-BMD} (g/cm^2)$	Hologic- Delphi W	0	NΔ	NA	NΔ	NΔ	NA	800	0.9	0.7	0.9	0.3	1.6
	FN-BMD (g/cm2)	Hologic- Delphi W	0	NA	NA	NA	NA	NA	800	0.7	0.2	0.7	0.3	1.9
											•			
11 Indiana	Age (yrs)	Questionnaire	0	NA	NA	NA	NA	NA	1,481	33.1	7.2	33.3	20.0	50.7
	BMI (kg/m²)	Measured	0	NA	NA	NA	NA	NA	1,476	25.6	5.9	24.1	15.7	57.3
	Weight (kg)	Measured	0	NA	NA	NA	NA	NA	1,476	70.0	16.6	66.0	41.2	166.0
	Height (cm)	Measured	0	NA	NA	NA	NA	NA	1,476	165.5	6.1	165.3	146.8	192.3
	LS-BIVID (g/cm2)	GE_Lunar_Prodigy	0	NA	NA	NA	NA	NA	1,479	1.3	0.1	1.3	0.9	1.8
	FIN-BIVID (g/cIIIZ)	GE_LUNAL_PIOURY	0	NA	NA	NA	INA	NA	1,479	1.0	0.1	1.0	0.0	1.0
12 ORCADES	Age (yrs)	Questionnaire	194	57.7	13.5	58.9	24.5	86.8	233	58.8	13.0	61.0	23.6	81.7
	BMI (kg/m²)	Measured	194	27.8	4.4	27.2	16.8	47.7	233	27.7	5.2	26.5	18.5	47.2
	Weight (kg)	Measured	194	84.8	14.3	83.3	42.0	147.5	233	71.5	13.7	69.3	43.0	115.4
	Height (cm)	Measured	194	174.7	6.6	175.2	157.9	198.6	233	160.7	6.2	160.9	139.5	181.0
	LS-BMD (g/cm2)	Hologic QDR 4500	194	1.1	0.2	1.1	0.7	1.6	233	1.0	0.2	1.0	0.6	1.4
	FN-BMD (g/cm2)	Hologic QDR 4500	192	0.8	0.1	0.8	0.6	1.3	229	0.8	0.1	0.7	0.5	1.0
13 RS-I	Age (yrs)	Questionnaire	2,427	68.1	8.2	67.1	55.0	97.8	3,547	70.3	9.6	69.4	55.0	99.2
	BMI (kg/m²)	Measured	2,372	25.7	3.0	25.6	14.2	38.2	3,372	26.7	4.1	26.3	15.4	59.5
	Weight (kg)	Measured	2,375	78.6	10.7	77.8	41.0	122.3	3,383	69.6	11.3	68.7	40.1	146.5
	Height (cm)	Measured	2,372	174.8	6.8	174.6	151.0	198.0	3,375	161.3	6.6	161.5	101.0	191.5
	LS-BMD (g/cm2)	GE-lunar DPX-L	2,116	1.2	0.2	1.2	0.5	2.0	2,798	1.0	0.2	1.0	0.5	1.7
	FN-BMD (g/cm2)	GE-lunar DPX-L	2,106	0.9	0.1	0.9	0.4	1.4	2,799	0.8	0.1	0.8	0.4	1.5
14 RS-II	Age (vrs)	Questionnaire	785	63.7	6.8	61.5	55.1	89.3	902	63.8	7.4	61.4	55.1	92.3
	BMI (kg/m²)	Measured	785	26.9	3.3	26.8	16.8	40.5	902	27.4	4.4	26.8	16.7	45.5
	Weight (kg)	Measured	785	83.5	11.4	82.5	54.0	126.8	902	72.8	12.5	71.2	44.1	125.3
	Height (cm)	Measured	785	176.0	6.5	175.9	156.8	203.0	902	162.9	6.2	163.0	141.5	189.6
	LS-BMD (g/cm2)	GE-lunar DPX-L	781	1.2	0.2	1.2	0.7	1.9	898	1.1	0.2	1.1	0.5	2.0
	FN-BMD (g/cm2)	GE-lunar DPX-L	779	1.0	0.1	1.0	0.6	1.6	888	0.9	0.1	0.9	0.5	1.4
15 86 111	A go (1 mo)	Questienneire	529	FC 1		FC 3	45.0	84.2	693	FC 1	Γ 4	FC C	45.0	97.0
T2 K2-III	Age (yrs)	Questionnaire	528	28.0	5.5	50.3 27 2	45.9 10 F	84.2	683 200	50.1 27 c	5.4	50.0 26 7	45.8 14.0	87.9 10 0
	bivii (Kg/III⁻)	Moosured	525	28.0	4.0	27.3	19.5	40.7	083	27.0	5.0	20.7	14.0	48.2
	WEIGHT (KG)	wiedsureu	323	03.1	14.1	0/./	00.0	149.9	005	13.2	14.5	/5.1	55.0	157.0

Supplementary Table 18B: Study-specific descriptive statistics

			Men							Women						
Study	Trait	Assessment method	N	mean	sd	median	min	max	N	mean	sd	median	min	max		
	Height (cm)	Measured	525	178.8	6.7	178.6	160.5	197.5	683	165.0	6.2	164.8	146.5	184.5		
	LS-BMD (g/cm2)	GE-lunar DPX-L	437	1.2	0.2	1.2	0.8	1.8	583	1.2	0.2	1.2	0.7	1.9		
	FN-BMD (g/cm2)	GE-lunar DPX-L	511	1.0	0.1	1.0	0.6	1.5	666	0.9	0.1	0.9	0.6	1.5		
16 TUK-1	Age (yrs)	Questionnaire	0	NA	NA	NA	NA	NA	1,523	49.8	13.1	51.2	16.6	80.9		
	BMI (kg/m²)	Measured	0	NA	NA	NA	NA	NA	1,523	25.2	4.8	24.2	17.4	40.1		
	Weight (kg)	Measured	0	NA	NA	NA	NA	NA	1,523	67.5	12.7	65.2	35.1	128.3		
	Height (cm)	Measured	0	NA	NA	NA	NA	NA	1,523	162.1	6.3	162.0	148.0	177.0		
	LS-BMD (g/cm2)	Hologic QDR 4500W	0	NA	NA	NA	NA	NA	1,517	1.0	0.2	1.0	0.6	1.8		
	FN-BMD (g/cm2)	Hologic QDR 4500W	0	NA	NA	NA	NA	NA	1,487	0.8	0.1	0.8	0.3	1.3		
17 TUK-23	Age (yrs)	Questionnaire	373	49.8	14.6	50.1	18.3	81.4	2,439	50.0	13.8	51.8	16.2	82.1		
	BMI (kg/m²)	Measured	365	25.8	3.3	25.7	19.1	35.2	2,359	25.4	4.7	24.6	17.7	41.4		
	Weight (kg)	Measured	373	80.4	11.8	79.8	40.5	122.7	2,439	67.6	13.0	65.5	40.0	166.0		
	Height (cm)	Measured	365	175.1	7.1	175.0	161.0	191.0	2,359	162.2	6.3	162.0	149.0	177.0		
	LS-BMD (g/cm2)	Hologic QDR 4500W	371	1.0	0.2	1.0	0.6	1.5	2,427	1.0	0.1	1.0	0.5	1.6		
	FN-BMD (g/cm2)	Hologic QDR 4500W	368	0.9	0.1	0.9	0.5	1.3	2,404	0.8	0.1	0.8	0.4	3.6		
Supplementary Table 18C: Study descriptives fracture

Stage 1: GWAS BMD Discovery

				Men	v	Vomen
Study	Trait	Assessment method	Fracture N	Non-fracture N	Fracture N	Non-fracture N
1 AFOS	All fractures	NA	NA	NA	NA	NA
	Non-vertebral fractures	NA	NA	NA	NA	NA
	Vertebral fractures	NA	NA	NA	NA	NA
2 4060	All fractures	Interview with questionnaire	NA	NA	/131	1 224
2 4000	Non-vertebral fractures	Badiographic	NΔ	NΔ	294	1,224
	Vertebral fractures	ΝΔ	NA	NA	2J4 NA	1,224 NA
	Vertebrarmactures			NA .	INA.	NA .
3 CHS	All fractures	NA	NA	NA	NA	NA
	Non-vertebral fractures	NA	NA	NA	NA	NA
	Vertebral fractures	NA	NA	NA	NA	NA
4 DeCODE	All fractures	Medical records, radiograhic documentation, questionnaire	532	6,890	1,453	7,673
	Non-vertebral fractures	NA	NA	NA	NA	NA
	Vertebral fractures	NA	NA	NA	NA	NA
5 FRF	All fractures	Interview	594	721	470	1 141
J EN	Non-vertebral fractures	ΝΔ	NA	NA	NA	ΝΔ
	Vertebral fractures	ΝΔ	NΔ	NΔ	NΔ	NΔ
	Vertesiai mactares				10/1	
6 EPICNOR	All fractures	Medical records	143	1,478	228	1,703
	Non-vertebral fractures	Medical records	119	1,502	203	1,728
	Vertebral fractures	NA	NA	NA	NA	NA
7 FHS	All fractures	Self-report and medical records	583	1,351	937	1,431
	Non-vertebral fractures	Medical records	401	1,153	738	1,352
	Vertebral fractures	Radiographic	48	1,506	77	2,013
8 6000	All fractures	Radiographic doc	304	687	NΔ	NΔ
0 0000	Non-vertebral fractures	NA	504 NA	NA	NA	NA
	Vertebral fractures	ΝΔ	NA	NA	NA	NA
		14/1	INA.	110	11/1	117
9 HABC	All fractures	Radiographic	109	769	199	584
	Non-vertebral fractures	Radiographic	88	790	165	618
	Vertebral fractures	NA	NA	NA	NA	NA

Supplementary Table 18C: Study descriptives fracture

Stage 1: GWAS BMD Discovery

				Men	v	Vomen
Study	Trait	Assessment method	Fracture N	Non-fracture N	Fracture N	Non-fracture N
10 HKOS	All fractures	Medical records, Radiographic and Questionnaire	NA	NA	79	627
	Non-vertebral fractures	NA	NA	NA	NA	NA
	Vertebral fractures	NA	NA	NA	NA	NA
11 Indiana	All fractures	NA	NA	NA	NA	NA
	Non-vertebral fractures	NA	NA	NA	NA	NA
	Vertebral fractures	NA	NA	NA	NA	NA
12 ORCADES	All fractures	NA	NA	NA	NA	NA
	Non-vertebral fractures	NA	NA	NA	NA	NA
	Vertebral fractures	NA	NA	NA	NA	NA
13 RS-I	All fractures	Medical records	227	2,151	753	2,615
	Non-vertebral fractures	Medical records	174	2,201	622	2,761
	Vertebral fractures	Medical records and Radiographic	128	1,184	201	1,470
14 RS-II	All fractures	Medical records	41	941	88	1,080
	Non-vertebral fractures	Medical records	33	951	71	1,102
	Vertebral fractures	Medical records and Radiographic	9	975	22	1,151
15 RS-III	All fractures	NA	NA	NA	NA	NA
	Non-vertebral fractures	NA	NA	NA	NA	NA
	Vertebral fractures	NA	NA	NA	NA	NA
16 TUK-1	All fractures	Medical records, Radiographic and Questionnaire	NA	NA	332	1,337
	Non-vertebral fractures	Medical records and Radiographic	NA	NA	48	1,621
	Vertebral fractures	NA	NA	NA	NA	NA
17 TUK-23	All fractures	Medical records, Radiographic and Questionnaire	52	406	475	2,416
	Non-vertebral fractures	Medical records and Radiographic	1	457	72	2,819
	Vertebral fractures	NA	NA	NA	NA	NA

Supplementary Table 18D: Genotyping/Imputation

Stage 1: GWAS BMD Discovery

	Genotyping							Imputa	tion	Association analyses					
Cohort	Platform	Genotyne calling algorithm		Inclusion cri	iteria	SNPs that met QC	Imputation software		Inclusion criteria	Analyses software	No. analyzed SNPs	Mon	Women	λ	λ
Conort	Flation	Genotype cannig algorithm	MAF	Call rate*	p for HWE	criteria	iniputation software	MAF	Imputation quality*	Analyses software	NO. analyzeu SNFS	WIEII	women	LSBMD	FNBMD
1 AFOS	Affymetrix / 500K or 6.0	Birdseed	≥1%	≥ 95.0%	> 10 ⁻⁶	338,598	MACH	≥1%	MACH R2 ≥ 0.3	MMAP (J. O'Connell)	2,543,013	443	475	1.06	1.07
	Illumina Infinium II 370CNVQuad (n=1882);	BeadStudio	≥ 1%	≥ 98%	> 10 ⁻⁷	289,499	MACH	≥ 1%	MACH R2 ≥ 0.3	MACH2DAT	2,543,887	0	1,955	1.01	1.02
2 AOGC	HumHap300 (n=140), 370CNVDuo (n=4) and 610Quad (n=10)														
3 CHS	Illumina 370CNV	BeadStudio	> 1%	≥97%	> 10 ⁻⁵	306,655	BimBam	≥1%	$(O/E)\sigma^2$ ratio ≥ 0.3	R	2,335,99	347	563	1.03	0.98
4 DeCODE	Illumina HH300 and 370CNV	BeadStudio	> 1%	> 96%	> 10 ⁻⁶	281,410	IMPUTE	≥1%	Prop_info >0.4	SNPTEST	2,454,808	1,136	6,469	1.00	1.00
5 EPICNOR	Afffymetrix 500K	BRLMM	≥1%	≥ 90%	> 10 ⁻⁶	397,438	IMPUTE	≥1%	Prop_info >0.4	SNPTEST	2,313,843	109	111	-	1.00
6 ERF	Ilumina 318K, 370K, Afymetrix 250K	Beadstudio, BRLMM	> 1%	> 98%	> 10 ⁻⁶	487,573	MACH	≥1%	MACH R2 ≥ 0.3	ProbABEL	2,543,887	887	1,178	1.07	1.02
7 FHS	Affymetrix 500K Dual GeneChip + 50K gene- centered MIP set	BRLMM	≥1%	≥ 97%	≥ 10 ⁻⁶	378,163	MACH	≥1%	$(O/E)\sigma^2$ ratio ≥ 0.3	Kinship R-Package	2,471,285	1,554	2,090	1.03	1.02
8 GOOD	Illumina / HumanHap 610 Quad	Beadstudio Genecall	≥1%	≥ 98%	> 10 ⁻⁶	521,160	MACH	≥1%	MACH R2 ≥ 0.3	MACH2QTL via GRIMP	2,543,887	938	0	0.99	1.01
9 HABC	Illumina/ Human 1M-Duo	Beadstudio	≥1%	≥97%	> 10 ⁻⁶	914,263	MACH	≥1%	MACH R2 ≥ 0.3	SNPTEST	2,543,887	871	778	1.00	1.01
10 HKOS	Illumina / Human610-Quad	Illumina's GenomeStudio	≥1%	≥ 95%	> 10 ⁻⁴	488,853	IMPUTE	≥1%	Prop_info >0.4	SNPTEST	2,329,916	0	778	1.00	1.01
11 Indiana	Illumina 610Quadv1_B	Beadstudio v3.2.32	≥1%	≥ 95%	> 10 ⁻⁴	553,331	IMPUTE	≥1%	Prop_info >0.4	Merlin	2,626,037	0	1,487	1.01	0.99
12 ORCADES	Illumina / HumanHap 300K V.2	Beadstudio Genecall	≥1%	≥ 98.0%	> 10 ⁻⁶	306,207	MACH	≥1%	MACH R2 ≥ 0.3	R, GenABEL, ProbABEL	2,543,887	194	233	1.00	1.01
13 RS-I	Illumina / HumanHap 550K V.3 /HumanHap 550 V.3 DUO;	Beadstudio Genecall	≥1%	≥ 97.5%	> 10 ⁻⁶	512,349	MACH	≥1%	MACH R2 ≥ 0.3	MACH2QTL via GRIMP	2,543,887	2,378	3,368	1.07	1.05
14 RS-II	Illumina / HumanHap 550K V.3 /HumanHap 550 V.3 DUO;	Beadstudio Genecall	≥1%	≥ 97.5%	> 10 ⁻⁶	466,389	MACH	≥1%	MACH R2 ≥ 0.3	MACH2QTL via GRIMP	2,543,887	982	1,168	1.01	1.00
15 RS-III	Illumina / HumanHap610	Beadstudio Genecall	≥1%	≥ 97.5%	> 10 ⁻⁶	514,073	MACH	≥1%	MACH R2 ≥ 0.3	MACH2QTL via GRIMP	2,543,887	517	695	1.00	1.00
16 TUK-1	Illumina HumanHap 300 & 550. Illumina HumanCNV370 Duo	Beadstudio Genecall	≥1%	≥ 95%	> 10 ⁻⁶	313,575	IMPUTE	≥1%	Prop_info >0.4	GenABEL	2,561,701	0	1,511	1.01	1.01
17 TUK-23	Illumina 610k	Beadstudio Genecall	≥1%	≥ 95%	> 10 ⁻⁶	545,026	IMPUTE	≥1%	Prop_info >0.4	GenABEL	2,561,701	375	2,426	0.99	1.08

Supplementary Table 19A: Study design

Stage 2: In-silico Replication BMD Loci and Fracture association

	Study	_						Sample QC			
Short na	me Full name	Study design	Study base	Country of origin	City/region of origin	Ethnicity	Call rate	Other exclusions	Total sample size with available GWA and BMD and/or fracture data	Short Study Description	References
1 AGES	Age, Gene/Environment Susceptibility Reykjavik Study	Cohort	Population-based	Iceland	Reykjavik	Northern European	>97%	a) mismatch with genotypes from other experiments;a) missing height and weight.	3,185	The Age Gene/Environment Susceptibility-Reykjavik Study orginally comprised a random sample of 30,795 men and women born in 1907-1935 and living in Reykjavik in 1967. A total of 19,381 people attended, resulting in a 71% recruitment rate. The study sample was divided into six groups by birth year and birth date within month. One group was designated for longitudinal follow up and was examined in all stages; another was designated as a control group and was not included in examinations until 1991. Other groups were invited to participate in specific stages of the study. Between 2002 and 2006, the AGES-Reykjavik study re-examined 5,764 survivors of the original cohort who had participated before in the Reykjavik Study.	[PMID: 17351290] [Harris, 2007 Age, Gene/Environment Susceptibility:Reykjavik Study: multidisciplinary applied phenomics}
2 DeCODE insilico re	DeCODE Genetics Study ep (replication set)	Case-control	Population-based, clinical-based	Iceland	NA	North-western European	≥ 98%	 missing body weight and height; missing age at fracture; missing ever/never fracture information. 	2,878	The study includes 40,000 individuals taking part in various disease projects	[PMID: 18445777] [Styrkarsdottir, 2008 Multiple genetic loci for bone mineral density and fractures}; [PMID: 19079262] [Styrkarsdottir, 2009 Multiple genetic loci for bone mineral density and fractures}
3 PROSPER PHASE	V The PROpective Study of Pravastatin in the Elderly at Risk	Cohort, randomized- controled trial	Clinical-based	The Netherlands/ United Kingdom /Ireland	Leiden/ Glasgow/ Cork	European	≥ 97.5%	 missing DNA; gender mismatch with typed X-linked markers; excess autosomal heterozygosity > 0.336~FDR>0.1%; d) duplicates and/or 1st or 2nd degree relatives using IBS probabilities >97% from PLINK; ethnic outliers using IBS distances >35D from PLINK; Missing body weight and height. 	5,242	A randomized controlled clinical trial to test the effect of pravastatin on cardiovascular outcomes in the elderly at risk.	[PMID: 12457784] (Shepherd, 2002 Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial}
4 WGHS	Women's Genome Health Study	Cohort	Population-based	North America, primarily US	NA	European	≥ 98%	Self-reported European ancestry confirmed by idenity-by-state analysis using ancestry informative SNPS in PLINK.	22,330	A population-based cohort derived from the approximately 72% of women who provided a blood sample in the Women's Health Study, a trial of asplin and vitamin E in prevention of cardiovascular disease and cancer among middle- aged, female health care professionals. The WGHS now has over 15 years of follow-up for incident clinical events, including bone fracture.	[PMID: 18070814] (Ridker, 2008 Women's Genome Health Study Working Group. Rationale, design, and methodology of the Women's Genome Health Study: a genome-wide association study of more than 25,000 initially healthy american women)
5 WHI GeC - Hip Fra GWAS	HIP Women's Health Initiative Genet Curre Components of HIP Fracture (GecHIP) Consortium - Hip Fracture Fracture Fracture	tic Case-control	Population-based	United States	Multi-center (n=40)	Caucasian	> 95%	1) low call rate (<= 95%) 2) low agreement rate with duplicate sample (both samples dropped) 3) duplicate sample 4) identical twins and 1st degree relatives (sample w/i lower call rate dropped) 5) chomosomal abnormalities (excessive CNV) 6) Missing body weight and height	4,656	Hip fracture portion of GeCHIP. This is a case control sample from the Women's Health Initiative. All hip fractures in the WHI clinical Trial (CT) and Observational Study (OS) through Aug2007 were selected and matched to controls. In the OS, controls were matched on on age ($4/-1yr$), race/ethnicity (exact), enrollment date ($4/-365$ days) and current HT use at baseline (exact). For the CT age ($4/-1yr$), race/ethnicity (exact), earliest randomization date ($4/-365$ days), HT use (active vs. placebo, or if not enrolled current HT use at baseline; exact) and CaD use (active vs. placebo vs. not enrolled; exact). Controls were excluded if they self-reported a prior history of postmenopausal fracture (age >= 55 years)	[PMID: 9492970] (1998, Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group}

Supplementary Table 19A: Study design

	Study	_						Sample QC			
Short name	Full name CV risk in Young Finns Study	Study design	Study base	Country of origin	City/region of origin Multicentre	Ethnicity North-western	Call rate > 95%	Other exclusions 1) missing DNA;	Total sample size with available GWA and BMD and/or fracture data 1,586	Short Study Description One of the largest follow-up studies into	References [PMID: 18263651]
			·			European		2) Missing body weight.		cardiovascular risk from childhood to adulthood. The main aim of the Young Finns Study is to determine the contribution made by childhood lifestyle, biological and psychological measures to the risk of cardiovascular diseases in adulthood.	{Raitakari, 2008 Cohort profile: the cardiovascular risk in Young Finns Study}

					N	/len		Women						
Study	Trait	Assessment method	N	mean	sd	median	min	max	N	mean	sd	median	min	max
1 AGES	Age (yrs)	Questionnaire	1,351	76.5	5.3	76.0	67.0	94.0	1,865	76.3	5.6	76.0	66.0	95.0
	BMI (kg/m²)	Measured	1,351	27.0	3.8	26.7	15.9	40.6	1,865	27.2	4.9	26.8	14.8	48.5
	Weight (kg)	Measured	1,351	83.2	13.3	81.6	42.0	144.7	1,865	70.5	13.3	69.3	37.2	128.3
	Height (cm)	Measured	1,351	175.4	6.2	175.2	153.1	196.4	1,865	160.9	5.8	160.9	139.3	182.6
	LS-BMD (g/cm2)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	FN-BMD (g/cm2)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2 DoCODE incilico	Ago (urc)	NationalPogistry	027	E4 9	16.2	E1 6	20.2	80.0	2.046	E7 1	14.2	EC 9	20.0	01 7
2 Decode inslitto	Age (yrs)	Calaulated	032	54.6	10.5	34.0	20.5	89.0	2,046	57.1	14.5	25.8	20.0	91.7
	BIVII (Kg/m ⁻)	Calculated	831	26.4	3.7	26.1	16.6	42.0	2,045	25.9	4.5	25.2	16.2	47.2
	vveight (kg)	Measured	831	84.1	13.4	82.7	46.6	129.3	2,045	70.2	12.9	68.1	34.5	124.2
	Height (cm)	Measured	831	178.5	6.5	178.5	155.0	203.0	2,045	164.7	6.0	165.0	133.0	185.0
	LS-BMD (g/cm2)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	FN-BMD (g/cm2)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Ago (urc)	Questionnaire	2 5 2 4	75.0	2.2	74 5	70.2	02.2	2 719	75 7	2.4	75.4	60.4	82.4
5 PROSPER/PHASE	Age (yrs)	Moscurod	2,324	75.0	3.5	74.3	15.2	65.5 4E 1	2,710	73.7	3.4	75.4	15.6	65.4 E0.1
	Divil (Kg/III)	Measured	2,324	20.0	11.0	20.3	13.2	43.1	2,710	27.1	4.7	20.7	15.0	128.0
	Weight (kg)	Measured	2,524	172.1	67	172.0	40.0	127.0	2,710	159.9	12.7	150.0	125.0	138.0
	Height (Chi)	NA	2,524	1/2.1	0.7	172.0	145.0	198.0	2,710	130.0	0.0	159.0	155.0	180.0
	LS-BIVID (g/CIIIZ)	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	INA NA	NA	NA
	FIN-BIVID (g/cm2)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4 WGHS	Age (vrs)	Questionnaire	NA	NA	NA	NA	NA	NA	22 330	54 1	71	52.0	38.0	89.0
	BMI (kg/m ²)	Questionnaire	NA	NA	NA	NA	NA	NA	22,330	25.9	5.0	24.9	14.2	59.6
	Weight (kg)	Questionnaire	NA	NA	NA	NA	NA	NA	22 330	70.0	14.2	68.0	38.6	175 1
	Height (cm)	Questionnaire	NA	NA	NA	NA	NA	NA	22,330	164	6.0	165	13	201
	IS-BMD (g/cm2)	NΔ	NΔ	NΔ	NA	NΔ	NA	NΔ	NA	NΔ	NA	NΔ	NΔ	NΔ
	EN-BMD (g/cm2)	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NA	NΔ	NΔ	NA	NΔ
	(8/ 6/12)									101				
WHI GeCHIP	_													
- Hip Fracture														
5 GWAS	Age (vrs)	Questionnaire	NA	NA	NA	NA	NA	NA	4.656	69.0	6.5	70.0	50.0	79.0
	BMI (kg/m ²)	Measured	NA	NA	NA	NA	NA	NA	4,655	27.0	5.5	26.0	13.4	69.4
	Weight (kg)	Measured	NA	NA	NA	NA	NA	NA	4,656	70.5	14.9	68.1	37.5	171.5
	Height (cm)	Measured	NA	NA	NA	NA	NA	NA	4 656	161.6	6.5	161 5	116.0	183.4
	IS-BMD (g/cm2)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	EN-BMD (g/cm2)	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NA	NΔ	NΔ	NA	NΔ
	114 51415 (6/ 6112)	N/A	104		11/4	114	11A	NA			nn-	1075	in A	
	Age (vrs)	Questionnaire	185	37 5	5.0	37.0	27.0	46.0	228	37.6	5 2	37.0	27.0	46.0
0 113	DMI (kg/m ²)	Moscurod	103	37.5	J.U 1 1	37.0	17.0	40.0	200	37.0	5.2	37.0	16.6	40.0
	Divil (Kg/III ⁻)	Maggurad	100	20.4	4.1	20.1	17.9	41.2	220	25.5	5.2	24.2	10.0	50.0 166.0
	vveignt (kg)	ivieasured	180	85./	15.2	84.0	54.0	136.0	228	/0.5	15.2	00.0	47.0	100.0
	Height (cm)	ivieasured	180	1/9.9	6.5	180.0	164.0	197.0	228	166.3	5.6	166.0	151.0	184.0
	LS-BIVID (g/cm2)	Prodigy	185	1.2	0.2	1.2	0.8	1./	238	1.2	0.2	1.2	0.8	1.6
	FN-BMD (g/cm2)	Prodigy	185	1.0	0.2	1.0	0.7	1.9	238	1.0	0.1	1.0	0.6	1.4

Supplementary Table 19C: Study descriptives fracture

Study				Men	1	Nomen
Study	Trait	Assessment method	Fracture N	Non-fracture N	Fracture N	Non-fracture N
1 AGES	All fractures	Medical and radiographic records	448	892	1,011	834
	Non-vertebral fractures	NA	NA	NA	NA	NA
	Vertebral fractures	NA	NA	NA	NA	NA
2 DeCODE insilico	All fractures	Medical records, radiograhic documentation, questionnaire	532	6,980	1,878	7,864
	Non-vertebral fractures	Medical records, questionnaire	276	418	1,785	3,736
	Vertebral fractures	NA	NA	NA	NA	NA
3 PROSPER/PHASE	All fractures	Medical records	117	2,407	309	2,409
	Non-vertebral fractures	NA	NA	NA	NA	NA
	Vertebral fractures	NA	NA	NA	NA	NA
4 WGHS	All fractures	Questionnaire	NA	NA	1,795	20,535
	Non-vertebral fractures	NA	NA	NA	NA	NA
	Vertebral fractures	NA	NA	NA	NA	NA
WHI GeCHIP						
- Hip Fracture			NA	NA	2,166	2,490
5 GWAS	All fractures	Medical records				
	Non-vertebral fractures	Medical records	NA	NA	2,166	2,490
	Vertebral fractures	NA	NA	NA	NA	NA
6 YFS	All fractures	Medical records	96	603	106	781
	Non-vertebral fractures	Medical records	NA	NA	NA	NA
	Vertebral fractures	Medical records and Radiographic	NA	NA	NA	NA

Supplementary Table 19D: Genotyping/Imputation

		Genotypin	g					Imputation	on	As	sociation and	alyses	
Cabort		Construes colling	Inc	usion crit	eria_	SNDs mosting OC	Imputation	Inc	lusion criteria	Analyses	No.		
Conort	Platform	algorithm	MAF	Call rate*	P for HWE	criteria	software	MAF	Imputation quality*	software	analyzed SNPs	Men	Women
1 AGES	Illumina Hu370CNV	BEadstudio Genecall	≥1%	>97%	> 10 ⁻⁶	329,804	MACH	≥1%	MACH R2 ≥ 0.3	ProbABEL	82	1,340	1,845
2 DeCODE insilico	Illumina HH300 and 370CNV	BeadStudio	> 1%	> 96%	> 10 ⁻⁶	281,410	IMPUTE	≥1%	MACH R2 ≥ 0.3	SNPTEST	82	1,136	6,469
3 PROSPER/PHASE	Illumina Beadchip 660K-quad	Beadstudio Genecall	≥1%	≥ 97.5%	> 10 ⁻⁶	557,192	MACH	≥1%	MACH R2 ≥ 0.3	PLINK	82	2,524	2,718
4 WGHS	Illumina/HumanHap300 Duo Plus	Beadstudio v3.3	> 1%	≥98%	> 10 ⁻⁶	339,596	MACH	≥1%	MACH R2 ≥ 0.3	ProbAbel	82	0	22,330
5 WHI GeCHIP - Hip Fracture GWAS	Illumina HumanHap 550K, Illumina HumanHap 610K	Beadstudio Gencall	> 0.5%	> 95%	> 10 ⁻⁶	499,982	MACH	≥1%	MACH R2 ≥ 0.3	R	82	0	4,656
6 YFS	Illumina Custom BeadChip Human670K	Illumina	>1%	> 95%	> 10 ⁻⁶	546,677	MACH	≥1%	MACH R2 \geq 0.3	ProbABEL	82	1,123	1,319

Supplementary Table 20A: Study design

	Study	_							
Short name	Full name	Study design	Study base	Country of origin	City/region of origin	Ethnicity	Total sample size with DNA and BMD and/or fracture data available	Short Study Description	References
1 AOGC-GOS	Anglo-Australasian Osteoporosis Genetics Consortium - Geelong Osteoporosis Study	Population cohort, and case/control for fracture cases	Population based, clinical-based	Australia	Geelong	Caucasian (North-west European)	2,922	Population-based BMD cohort (from electoral rolls and case-control for fracture cases; all drawn from Geelong general population of men and women	 PMID: 19707703] (Henry, 2010 Bone mineral density reference ranges for Australian men: Geelong Osteoporosis Study); [PMID: 11090233] (Henry, 2000 Prevalence of osteoporosis in Australian women: Geelong Osteoporosis Study)
2 AOGC-SHEFFIELD	Anglo-Australasian Osteoporosis Genetics Consortium - Sheffield	Cohort	Population-based	UK	Sheffield	Caucasian (North-west European)	4,014	Large population-based cohort of community- dwelling elderly women aged ≥ 75 years	[PMID: 17042717] {McCloskey, 2007 Clodronate reduces the incidence of fractures in community- dwelling elderly women unselected for osteoporosis: results of a double-blind, placebo-controlled randomized study}
3 APOSS	Aberdeen Prospective Osteoporosis Screening Study	Cohort	Population-based	UK	Aberdeen	North-western European	3,268	APOSS is a longitudinal population-based study of osteoporotic fracture risk assessment in Caucasian women aged 45-54 years of age at baseline.	[PMID: 16355284] {Macdonald, 2006 Large-scale population- based study shows no evidence of association between common polymorphism of the VDR gene and BMD in British women}
4 AROS	Aarhus Osteoporosis Study	Case-control	Clinical-based	Denmark	Aarhus	Northern European	801	Case-control study	[PMID: 20508921] {Harsløf, 2010 Genotypes and haplotypes of the estrogen receptor genes, but not the retinoblastoma-interacting zinc finger protein 1 gene are associated with osteoporosis]
5 AUSTRIOS-A	Austrios A "Young cohort"	Cohort	Population-based	Austria	Graz	Central European	805	Men and women with and without osteoporosis	[PMID: 16299058] {Gugatschka, 2002 Molecularly-defined lactose malabsorption, milk consumption and anthropometric differences in adult males}; [PMID: 14753735] {Obermayer-Pietsch, 2004 Genetic predisposition for adult lactose intolerance and relation to diet, bone density, and bone fractures}
6 AUSTRIOS-B	Austrios B "old cohort"	Cohort	Clinical-based	Austria	Graz	Central European	2,064	95 nursing homes in Austria, patients had to be relatively healthy	[PMID: 16735485] {Dobnig, 2006 Type 2 diabetes mellitus in nursing home patients: effects on bone turnover, bone mass and fracture risk}
7 BARCOS	Barcelona Cohorte Osteoporosis	Cohort	Population-based	Spain	Barcelona	Mediterranean European	1,453	The Barcelona is a cohort study of unrelated women aged 44 years and over that were recruited from the Menopausal Unit of the Hospital del Mar, Barcelona. All of the participants were consecutive unselected, postmenopausal women who had presented to the outpatient clinic for a baseline visit due to menopause.	[PMID: 17878995] d [Bustamante, 2007 Promoter 2 -1025 T/C , polymorphism in the RUNX2 gene is , associated with femoral neck bmd in Spanish postmenopausal women]; [PMID: 17984249] {Bustamante, 2007 Polymorphisms in the interleukin-6 receptor gene are associated with bone mineral density and body mass index in Spanish postmenopausal women}

	Study	_					Total complete		
					City/region of		with DNA and BMD and/or fracture		
Short name	Full name	Study design	Study base	Country of origin	origin	Ethnicity	data available	Short Study Description	References
8 CABRIO-C	Cantabria-Camargo	Cross-sectional	Community-based	Spain	Santander	Caucasian (Spanish)	1,450	Community-based study designed to evaluate the prevalence of metabolic bone diseases in postmenopausal women and men older than 50 attended at a primary care center in Northern Spain.	 [PMID: 20594548] {Olmos, 2010 Bone turnover markers in Spanish adult men The Camargo Cohort Study]; [PMID: 19737549] {Martinez, 2009 Bone turnover markers in Spanish postmenopausal women: the Camargo cohort study}
9 CABRIO-CC	Cantabria Osteoporosis Case-control	Case-control, cross-sectional	Clinic-based plus volunteers	Spain	Santander	Caucasian (Spanish)	2,321	Clinic-based study of control individuals and patients with osteoporosis living in Cantabria, a region in Northern Spain	[PMID: 17118999] {Riancho, 2007 Identification of an aromatase haplotype that is associated with gene expression and postmenopausal osteoporosis}; [PMID: 17218734] {Zarrabeitia, 2007 Adiposity, estradiol, and genetic variants of steroid-metabolizing enzymes as determinants of bone mineral density}
10 CAIFOS	Calcium Intake Fracture Outcome Study	Cohort, randomized- controled trial	Population-based	Australia	Perth	Caucasian	1,347	Randomized-controled trial and cohort study	[PMID: 16636212] {Prince, 2006 Effects of calcium supplementation on clinical fracture and bone structure: results of a 5-year, double- blind, placebo-controlled trial in elderly women}
11 Calex-family	Calex-family study	Cohort	Population-based, fami	Finland	Jyväskylä and its surrondings	North European	647	The Calex-family study is a family-based study to study Fractures in Puberty - Causes and Implications in Old Age	[PMID: 19171028] {Cheng, 2009 Trait-specific tracking and determinants of body composition: a 7- year follow-up study of pubertal growth in girls]; [PMID: 19481189] {Cheng, 2009 Low volumetric BMD is linked to upper-limb fracture in pubertal girls and persists into adulthood: a seven-year cohort study]; [PMID: 20200961] {Wang, 2010 Familial resemblance and diversity in bone mass and strength in the population are established during the first year of postnatal life}
12 CaMos	Canadian Multicentre Osteoporosis Study	Cohort	Population-based	Canada	Vancouver, Calgary, Saskatoon, Hamilton, Toronto, Kingston, Québec City, Halifax, St John's	North-western European	2,321	The CaMos Study is a population-based, randomly selected, prospective cohort study from 9 Canadia cities followed for 14 years for osteoporosis- related traits and outcomes.	[PMID: 11199195] a {Tenenhouse, 2000 Estimation of the prevalence of low bone density in Canadian women and men using a population-specific DXA reference standard: the Canadian Multicentre Osteoporosis Study (CaMos)}; [PMID: 17129177] {Richards, 2007 Changes to osteoporosis prevalence according to method of risk assessment} [PMID: 17242321] {Richards, 2007 Effect of selective serotonin reuptake inhibitors on the risk of fracture}

	Study	_							
Short name	Full name	Study design	Study base	Country of origin	City/region of origin	Ethnicity	Total sample size with DNA and BMD and/or fracture data available	Short Study Description	References
13 DECODErep	DeCODE Genetics Study	Cross-sectional	Iceland	NA	NĂ	North-western European	3,138	The study includes 40,000 individuals taking part in various disease projects	[PMID: 18445777] {Styrkarsdottir, 2008 Multiple genetic loci for bone mineral density and fractures}; [PMID: 19079262] {Styrkarsdottir, 2009 Multiple genetic loci for bone mineral density and fractures}
14 DOES	Dubbo Osteoporosis Epidemiology Study	Cohort	Population-based, family-based	Australia	Sydney (Dubbo)	Mainly Caucasian	1,457	A cohort study of approximately 2/3rds of the men and women in Dubbo, aged 60 years or older from 1989 every 2 years to the present. Data collected include BMD, life style, medical assessment, medication use and a wide range of health conditions and outcomes. It has been extended recently to include any person older than 20 years	[PMID: 19190316] {Bluc, 2009 Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women}; [PMID: 19419321] {Frost, 2009 Timing of repeat BMD measurements: development of an absolute risk-based prognostic model}
15 DOPS	Danish Osteoporosis Prevention Study	Cohort	Population-based	Denmark	\arhus, Odense, Cop։	Northern European	1,716	Population-based study of perimenopausal women. The women were followed for 10 years. App. 35% were treated with HRT	[PMID: 10340280] {Mosekilde, 1999 The Danish Osteoporosis Prevention Study (DOPS): project design and inclusion of 2000 normal perimenopausal women}
16 EDOS	Edinburgh Osteoporosis Study	Cross-sectional	Clinical-based	UK	Edinburgh and Lothian	British (white caucasian)	2,020	Clinical referral population of patients assessed for evaluation of osteoporosis	None
17 EPICNOR	Europen Prospective Investigation into Cancer, Norfolk study	Cohort	Population-based	UK	Norfolk	European	1,399	A random sample of 1,511 men and women in the top decade of age in the 25,000 participant EPIC- Norfolk prospective study were recruited into a bone fragility study with DXA measurements. GWA data were available for 249 participants with BMD measurements who had been entered into a GWAS investigation of obesity.	[PMID: 12753873] {Kaptoge, 2003 Effects of gender, anthropometric variables, and aging on the evolution of hip strength in men and women aged over 65}; [PMID: 10466767] {Day, 1999 EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer}; [PMID: 19079261] {Willer, 2009 Six new loci associated with body mass index highlight a neuronal influence on body weight regulation};

Supplementary Table 20A: Study design

	Study								
Short name 18 EPOLOS	Full name Early risk identification and effective	Study design Cross-sectional	Study base Population-based	Country of origin Poland	City/region of origin Warsaw, Lodz,	Ethnicity Central European	Total sample size with DNA and BMD and/or fracture data available 715	Short Study Description The EPOLOS Study is a population-based, cross-	References [PMID: 20502405]
	prevention of osteoporosis based bon fractures in Polish population.	e			Poznan, Krakow, Wroclaw, Bydgoszcz			sectional study of unrelated men and women aged 19-81 years, initiated to identify early risk and effective prevention of osteoporosis based bone fractures in Polish population.	(Skowrońska-Jóźwiak, 2010 Comparison of selected methods for fracture risk assessment in postmenopausal women: analysis of the Łódź population in the EPOLOS study); [PMID: 20502404] (Skowrońska-Jóźwiak, 2010 Effect of sex, age, and anthropometric parameters on the size and shape of vertebrae in densitometric morphometry: results of the EPOLOS study); [PMID: 19396748] (Skowrońska-Jóźwiak, 2009 Identification of vertebral deformities in the Polish population by morphometric X-ray absorptiometry - results of the EPOLOS study}
19 EPOS	European Prospective Osteoporosis Study	Cohort	Population-based	Europe	18 centres across 13 countries in Europe	European	2,092	EPOS was an extension of the European Vertebral Osteoporosis Study (EVOS) study and aimed to quantify incidence of vertebral and non-vertebral fractures. EVOS had recruited some 17,342 men and women aged over 50 years from 36 centres in 19 European countries. Each centre had recruited a random sample of up to 300 men and 300 women from population registers stratified into six 5-year age bands: 50-54, 70-74 and 75+. A total of 7,273 participants from 31 EVOS centres took part in the EPOS follow up study.	[PMID: 8797123] {O'Neill, 1996 The prevalence of vertebral deformity in european men and women: the European Vertebral Osteoporosis Study}; [PMID: 10824241] {Ismail, 2000 Validity of self-report of fractures: results from a prospective study in men and women across Europe. EPOS Study Group. European Prospective Osteoporosis Study Group}; [PMID: 11918229] {EPOS study group, 2002 Incidence of vertebral fracture in europe: results from the European Prospective Osteoporosis Study (EPOS)}
20 FLOS	FLORENCE study	Cohort	Population-based	Italy	Florence	Southern European	1,000	The FLOS Study is a population-based cohort study of unrelated men and women aged 50 years and over, collected to perform genetic studies in osteoporosis.	[PMID: 11344237] {Masi, 2001 Polymorphism of the aromatase gene in postmenopausal Italian women: distribution and correlation with bone mass and fracture risk}
21 Geos	Quebec sample	Cohort	Population-based	Canada	Quebec	North-western European	2,379	Population-based sample collected for the sudy of bone mineral variation. Only women from 18 to 84 years	[PMID: 19821770] [Effassihi, 2010 Association with replication between estrogen-related receptor gamma (ESRRgamma) polymorphisms and bone phenotypes in women of European ancestry}

Supplementary Table 20A: Study design

	Study	_							
Short name	Full name	Study design	Study base	Country of origin	City/region of origin	Ethnicity	Total sample size with DNA and BMD and/or fracture data available	Short Study Description	References
22 GEVUR	Institute of Biochemistry and Genetics Ufa Scientific Centre RAS	Case-control	Population-based, clinical-based	Russia	Ufa	Russians, Tatars	999	The GEVUR Study is case-control and population- based, prospective cohort study of unrelated women aged 50 years and over, men with osteoporotic fractures and helthy men	[PMID: 15657606] {Laan, 2005 X-chromosome as a marker for population history: linkage disequilibrium and haplotype study in Eurasian populations}; [PMID: 16465065] {Kutuev, 2006 From East to West: patterns of genetic diversity of populations living in four Eurasian regions}; [PMID:18619040] {Selezneva, 2008 Association of polymorphisms and haplotypes in the 5' region of COLIA1 gene with the risk of osteoporotic fractures in Russian women from Volga-Ural region}
23 GROS	GENETIC ANALYSIS OF OSTEOPOROSIS IN GREECE	Cohort, case- control	Population-based, clinical-based	GREECE	ATHENS	GREEK	606	The GROS study is a population-based, prospective cohort study of unrelated Greek men and women aged 43 years and over who visited the Department of Orthopaedic Surgery, University Hospital of Thessalia, Larissa, Greece.	None
24 HCS	Hertfordshire Cohort Study	Cohort	Population-based	UK	Hertfordshire county	Caucasian	2,927	The Hertfordshire Cohort Study is a population- based cohort study of men and women born between 1931 and 1939 in the county of Hertfordshire, UK. It was initiated to evaluate interactions between the genome, the intrauterine and early postnatal development, and adult diet and lifestyle in the aetiology of chronic disorders in later life.	[PMID: 15964908] {Syddall, 2005 Cohort Profile: The Hertfordshire Cohort Study}
25 HK	Chinese Community Elderly Men and Women Cohorts	Cohort	Population-based	Hong Kong, China	Hong Kong, China	Chinese	3,872	Two thousand Chinese men and women living in the community, aged 65 years and above, were recruited by posting public advertisements at community centers for the elderly and housing estates in Hong Kong since 2001.	[PMID: 20949110;] {Styrkarsdottir, 2010 European bone mineral density loci are also associated with BMD in East-Asian populations}; [PMID: 19766747] {Tang, 2010 Sex-specific effect of Pirin gene on bone mineral density in a cohort of 4000 Chinese}
26 KorAMC	Korean osteoporosis study at Asan Medical Center	Cross-sectional	Clinical-based	Korea	Seoul	East Asian, Korean	1,397	KorAMC study is a hospital registered, cross- sectional study of postmenopausal Korean women.	[PMID: 17620055] {Koh, 2007 Association of FLT3 polymorphisms with low BMD and risk of osteoporotic fracture in postmenopausal women}
27 LASA	Longitudinal Aging Study Amsterdam	Cohort	Population-based	The Netherlands	Amsterdam, Zwolle, Oss and surroundings	North-western European	956	LASA is an ongoing multidisciplinary cohort study on predictors and consequences of changes in physical, cognitive, emotional and social functioning in older persons.	[PMID: 11927198] {Deeg, 2002 Attrition in the Longitudinal Aging Study Amsterdam: The effect of differential inclusion in side studies}
28 ManMc	Manitoba McGill Fracture Study	Cross-Sectional	Population-based	Canada	Winnipeg	Caucasian (97%)	1,105	The Manitoba-McGill Fracture Study is a populatio based sample of women experiencing a validated clinical hip or forearm fracture requiring orthopedic intervention.	n [PMID: 21124974] {Ladouceur, 2010 An Efficient Paradigm for Genetic Epidemiology Cohort Creation}

	Study	_							
Short name 29 MrOS Sweden	Full name MrOS Sweden	Study design Cohort	Study base Population-based	Country of origin Sweden	City/region of origin Gothenburg, Uppsala and Malmö	Ethnicity Northern European	Total sample size with DNA and BME and/or fracture data available 2,922	Short Study Description The Osteoporotic Fractures in Men (MrOS) study is a multicenter, prospective study including 3,014 elderly men in Sweden, Hong Kong (~2,000), and the United States (~6,000). The MrOS Sweden cohort consist of three sub-cohorts from three different Swedish cities (n=1,005 in Malmô, n=1,010 in Göteborg, and n=999 in Uppsala). Study subjects (men aged 69–80 years) were randomly identified using national population registers, contacted and asked to participate. To be eligible for the study, the subjects had to be able to walk without assistance, provide self-reported data, and sign an informed consent; there were no other exclusion criteria. The study was approved by the ethics committees at the Universities of Gothenburg, Lund, and Uppsala. Informed consent was obtained from all study participants.	References [PMID: 16598372] {Mellström, 2006 Free testosterone is an independent predictor of BMD and prevalent fractures in elderly men: MrOS Sweden}
30 NOSOS	North of Scotland Osteoporosis Study	Cohort	Population-based	UK	Aberdeen, Dingwall	North-western European	1,293	NOSOS is a population-based osteoporosis screening programme of postmenopausal females aged 60-82 years of age at baseline.	[PMID: 18633668] {Mavroeidi, 2009 Physical activity and dietary calcium interactions in bone mass in Scottish postmenopausal women}; [PMID: 20966103] {Judson, 2010 The Functional ACTN3 577X Variant Increases the Risk of Falling in Older Females: Results From Two Large Independent Cohort Studies}
31 OAS	Odense Androgen Study	Cohort	Population-based	Denmark	Odense	Scandinavians	600	Population-based study on Danish men aged 60-74 years. Follow-up on incident clinical fractures (from inclusion until dec 2010)	Clinicaltrials.gov identifier: NCT00155961
32 OSTEOS	Osteoporosis: SNPs To Environment Study	Cross-sectional	Population-based	Greece	Athens	Mediterranean	629	OSTEOS is a cross-sectional study of unrelated women, aimed to assess genetic and enrironmental factors, especially nutrition, and their possible interactions on BMD	[PMID: 21115334] (Stathopoulou, 2010 The role of vitamin D receptor gene polymorphisms in the bone mineral density of Greek postmenopausal women with low calcium intake}; [PMID: 20630166] (Stathopoulou, 2010 Low-density lipoprotein receptor-related protein 5 polymorphisms associate with bone mineral density in Greek postmenopausal women. An interaction with calcium intake}
33 PERF	Prospective Epidemiological Risk Factor	Randomized- controled trial	Clinical-based	Denmark	Copenhagen	North-western European	3,973	The Prospective Epidemiological Risk Factor (PERF) Study is based on subjects who were screened for or enrolled into RCT to identify genetic and other risk factors of diseases in the elderly	[PMID: 17109061] {Bagger, 2006 Links between cardiovascular disease and osteoporosis in postmenopausal women: serum lipids or atherosclerosis per se?}

	Study	_							
Short name	Full name	Study design	Study base	Country of origin	City/region of origin	Ethnicity	Total sample size with DNA and BMD and/or fracture data available	Short Study Description	References
34 SLO-PREVAL	Prevalence of osteoporosis in Slovenia	Cross-sectional	Population-based	Slovenia	Ljubljana	Central European	716	SLO-PREVAL study is a cross-sectional study where premenopausal women aged between 35-50 years and postmenopausal women and men aged over 50 years were included to perform genotype- phenotype association studies.	[PMID:12213850] {Arko, 2002 Sequence variations in the osteoprotegerin gene promoter in patients with postmenopausal osteoporosis}; [PMID:18502820] {Mencej, 2008 Tumour necrosis factor superfamily member 11 gene promoter polymorphisms modulate promoter activity and influence bone mineral density in postmenopausal women with osteoporosis}; [PMID:19781675] {Trošt 2010 A microarray based identification of osteoporosis-related genes in primary culture of human osteoblasts}
35 UFO-1	The Umeå Fracture and Osteoporosis Study	Nested case- cohort	Population-based	Sweden	Umeå	Caucasians	4,317	The UFO study is a nested case-control study investigating associations between genes, lifestyle and osteoporotic fractures. The study is based on the prosepctive and populationbased Northern Sweden Health and Disease Study cohort. initiated	[PMID: 20464545] {Englund, 2010 Physical activity in middle- aged women and hip fracture risk: the UFO study}; [PMID:14660243]
UFO-2		Cohort					2,022	to assess risk factors for diabetes and cardiovascular disesase.	[Hallmans, 2003 Cardiovascular disease and diabetes in the Northern Sweden Health and Disease Study Cohort - evaluation of risk factors and their interactions]
36 WHI GeCHIP - BMD	Women's Health Initiative Genetic Components of HIP Fracture (GeCHIP) Consortium - BMD	Quasi-case- control.	Population-based	United States	Multi-center (n=3)	Caucasian	3,923	BMD portion of GeCHIP. This is a subsample of the Women's Health Initiative BMD cohort (n=11,488) Measurements were made at 3 of 40 US clinical centers (Pittsburgh PA, Birmingham AL, and Tucson/Phoenix AZ). Women (n=4000) were selected from the WHI BMD cohort with the best/worst hip-Z-score (baseline) and best/worst physical functioning score (last available RAND36)	[PMID: 14519707] . {Cauley, 2003 Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women's Health Initiative randomized trial}

Stage 2: De-novo genotyping Replication BMD Loci and Fracture association	
---	--

					M	/len		Women						
Study	Trait	Assessment method	N	mean	sd	median	min	max	N	mean	sd	median	min	max
1 AOGC-GOS	Age (yrs)	Questionnaire	1,322	59.3	17.9	60.4	20.0	94.0	1,600	54.3	19.6	54.1	20.3	95.5
	BMI (kg/m²)	Calculated	1,319	27.2	4.3	26.8	17.1	49.7	1,598	26.7	5.3	25.7	15.9	53.8
	Weight (kg)	Measured	1,319	82.8	14.4	81.5	41.8	154.7	1,598	68.8	14.4	66.6	35.3	138.9
	Height (cm)	Measured	1,321	174.2	7.2	174.3	153.6	201.0	1,598	160.5	7.0	160.9	132.3	186.0
	LS-BMD (g/cm2)	Lunar	1,310	1.3	0.2	1.2	0.6	2.1	1,598	1.1	0.2	1.1	0.6	1.9
	FN-BMD (g/cm2)	Lunar	1,255	1.0	0.2	1.0	0.5	1.5	1,575	0.9	0.2	0.9	0.5	1.4
2 AOGC-SHEFFIELD	Age (yrs)	Questionnaire	0	NA	NA	NA	NA	NA	3,979	80.1	4.0	79.0	74.3	100.0
	BMI (kg/m ²)	Calculated	0	NA	NA	NA	NA	NA	3,971	26.8	4.4	26.3	15.1	47.1
	Weight (kg)	Measured	0	NA	NA	NA	NA	NA	4,008	65.1	11.3	64.3	35.8	116.3
	Height (cm)	Measured	0	NA	NA	NA	NA	NA	3,971	155.9	6.0	155.7	134.3	178.0
	LS-BMD (g/cm2)	Hologic QDR4500A	0	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA
	FN-BMD (g/cm2)	Hologic QDR4500A	0	NA	NA	NA	NA	NA	4,001	0.6	0.1	0.6	0.3	1.0
3 48055		Questionnaire	0	NA	NA	NA	NA	NA	3 768	48 5	2.4	/19 1	11.7	56.3
3 Ar 033	RMI (kg/m ²)	Calculated	0	NA	NA	NA	NA	NA	3 261	46.J 25.4	2.4	24.5	15.2	56.0
	Weight (kg)	Measured	0	NΔ	NΔ	NΔ	NΔ	NA	3 264	66.0	12.0	63 5	40.0	146.0
	Height (cm)	Measured	0	NA	NA	NA	NA	NA	3 264	161 3	59	161.0	136.0	185.0
	IS-BMD (g/cm2)	Norland	0	NA	NA	NA	NA	NA	3 264	11	0.2	101.0	0.6	2.0
	EN-BMD (g/cm2)	Norland	0	NA	NA	NA	NA	NA	3 263	0.0	0.2	1.0	0.5	2.0
	TN-DIVID (g/cm2)	Norland	0	114	114	NA	114	100	3,203	0.5	0.1	0.5	0.5	1.4
4 AROS	Age (yrs)	Social security	176	54.3	15.7	55.0	19.0	85.0	621	61.8	12.9	65.0	20.0	87.0
	BMI (kg/m²)	Calculated	143	25.2	3.7	24.7	17.4	36.5	547	24.4	4.1	23.9	15.7	51.2
	Weight (kg)	Measured	145	78.1	12.4	76.2	54.5	119.0	551	63.8	11.0	62.8	38.6	118.4
	Height (cm)	Measured	144	176.2	7.4	176.0	158.0	203.0	548	161.7	6.7	162.0	143.0	194.0
	LS-BMD (g/cm2)	Hologic and Norland	173	0.9	0.2	0.9	0.5	1.4	603	0.8	0.2	0.8	0.5	1.5
	FN-BMD (g/cm2)	Hologic and Norland	173	0.7	0.1	0.7	0.5	1.2	600	0.7	0.1	0.6	0.3	1.1
5 AUSTRIOS-A	Age (yrs)	Questionnaire	271	56.6	12.0	58.0	22.0	77.0	534	47.1	15.8	45.5	18.0	85.0
	BMI (kg/m ²)	Calculated	268	26.7	3.6	26.0	18.9	37.8	496	23.7	3.9	22.8	16.0	39.0
	Weight (kg)	Measured	268	83.4	12.1	82.0	58.0	125.0	496	63.9	10.6	62.0	36.0	106.0
	Height (cm)	Measured	268	176.7	6.6	177.0	160.0	197.0	496	164.2	6.3	164.0	148.0	183.0
	LS-BMD (g/cm2)	Hologic	262	1.0	0.2	1.0	0.7	1.5	522	0.9	0.1	0.9	0.5	1.7
	FN-BMD (g/cm2)	Hologic	265	0.8	0.1	0.8	0.6	1.2	522	0.7	0.1	0.7	0.3	1.2
6 ALISTRIOS-B	Age (vrs)	Questionnaire	327	84.3	57	85.0	69.0	101.0	1 737	83.9	6.2	85.0	68.0	103.0
0 /10011100 0	BMI (kg/m ²)	Calculated	311	25.1	4.0	24.7	15.0	37.3	1 637	25.7	4.8	25.2	13.8	46 1
	Weight (kg)	Measured	314	68.2	12.5	67.0	39.0	113.0	1,648	60.4	12.2	60.0	31.0	111.0
	Height (cm)	Measured	312	164.9	8.2	166.0	140.0	185.0	1.645	153.3	7.4	154.0	125.0	198.0
	LS-BMD (g/cm2)	NA	0	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA
	FN-BMD (g/cm2)	NA	0	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA
7 BARCOS	Age (yrs)	Questionnaire	0	NA	NA	NA	NA	NA	1,451	65.5	9.1	65.0	35.0	100.0
	ымі (kg/m²)	Calculated	0	NA	NA	NA	NA	NA	1,441	26.4	4.1	26.0	17.3	52.3
	weight (kg)	Measured	U	NA	NA	NA	NA	NA	1,443	65.0	10.5	64.0	41.0	134.0
	Height (cm)	Measured	0	NA	NA	NA	NA	NA	1,442	156.8	6.3	156.0	135.0	180.0
	LS-BMD (g/cm2)	Hologic	0	NA	NA	NA	NA	NA	1,443	0.9	0.1	0.8	0.5	1.4
	FN-BMD (g/cm2)	Hologic	0	NA	NA	NA	NA	NA	1,351	0.7	0.1	0.7	0.4	1.2
8 CABRIO-C	Age (vrs)	Questionnaire	543	63.9	8.5	63.0	50.0	92.0	907	62.0	9.8	59.0	42.0	94.0
	BMI (kg/m ²)	Calculated	543	28.7	3.2	28.5	18.8	41.0	887	28.3	4.7	27.6	17.7	47,1
	Weight (kg)	Measured	543	81.5	11.0	80.0	44.5	118.4	887	68.7	12.0	67.0	42.0	119.0
	Height (cm)	Measured	543	168.2	6.1	168.0	150.0	189.0	889	155.9	6.0	156.0	138.0	188.0
	LS-BMD (g/cm2)	Hologic	535	1.0	0.2	1.0	0.6	1.7	896	0.9	0.1	0.9	0.6	1.4
	FN-BMD (g/cm2)	Hologic	529	0.8	0.1	0.8	0.4	1.2	897	0.7	0.1	0.7	0.4	1.1
									_	_				
9 CABRIO-CC	Age (yrs)	Questionnaire	538	73.3	11.9	74.0	39.0	100.0	1,771	74.5	12.3	75.0	43.0	104.0

Stage 2: De-novo genotyping Replication BMD Loci and Fracture association	
---	--

					r	Vien			Women					
Study	Trait	Assessment method	N	mean	sd	median	min	max	N	mean	sd	median	min	max
	BMI (kg/m²)	Calculated	326	28.1	3.5	27.9	17.1	41.8	991	27.1	4.2	26.8	16.0	45.8
	Weight (kg)	Measured	326	78.1	11.4	78.0	46.0	137.0	995	65.0	10.4	64.0	36.0	110.0
	Height (cm)	Measured	326	166.7	6.8	167.0	145.0	192.0	992	154.7	6.1	155.0	138.0	178.0
	LS-BMD (g/cm2)	Hologic	279	1.0	0.1	1.0	0.5	1.4	923	0.8	0.2	0.8	0.5	1.4
	FN-BMD (g/cm2)	Hologic	280	0.8	0.1	0.8	0.5	1.3	926	0.7	0.1	0.7	0.4	1.1
10 CAIEOS	Age (vrs)	Questionnaire	0	NA	NA	NA	NA	NA	1 347	80.2	27	80.0	75.0	87.0
20 0/11/00	BMI (kg/m ²)	Measured	0	NA	NA	NA	NA	NA	1 135	27.2	47	26.8	15.7	48.2
	Weight (kg)	Measured	0	NA	NA	NA	NA	NA	1 135	67.6	12.1	65.9	39.6	114.4
	Height (cm)	Measured	0	NA	NA	NA	NA	NA	1 137	157.5	6.0	158.0	115.0	178.0
	IS-BMD (g/cm2)	Hologic	0	NA	NA	NA	NA	NA	1 082	1.0	0.2	0.9	0.5	17
	FN-BMD (g/cm2)	Hologic	0	NA	NA	NA	NA	NA	1,043	0.7	0.1	0.7	0.4	1.1
11 CALEX	Age (yrs)	Questionnaire	190	55.2	15.1	52.3	19.9	87.3	457	46.0	19.0	47.4	18.0	91.7
	BMI (kg/m²)	Measured	190	26.3	3.3	26.1	18.3	37.0	457	25.3	4.5	24.6	16.0	47.2
	Weight (kg)	Measured	190	81.4	10.7	80.8	56.8	108.6	457	68.1	12.3	66.5	46.1	127.0
	Height (cm)	Measured	190	175.9	6.5	176.0	154.0	194.0	457	164.2	6.2	164.0	148.0	180.0
	LS-BMD (g/cm2)	Lunar	189	1.2	0.2	1.2	0.8	1.9	451	1.2	0.2	1.2	0.7	1.8
	FN-BMD (g/cm2)	Lunar	189	1.0	0.2	1.0	0.7	1.5	450	1.0	0.1	1.0	0.6	1.5
12 CAMOS	Age (vrs)	Questionnaire	705	65.4	16.6	69.0	18.0	95.0	1 616	67.3	14.0	70.0	18.0	00.0
12 CAIVIOS	BMI (kg/m ²)	Measured	703	26.9	3.8	26.6	18.0	40.6	1,010	26.9	5 2	26.2	16.5	64 3
	Weight (kg)	Measured	701	20.5	12 /	20.0	10.0	126.5	1,000	69.4	13.7	67.4	28.2	158.5
	Height (kg)	Measured	701	174.1	7 1	174.0	151.0	108.0	1,001	160.6	£4	160.0	141.0	182.0
	IS-BMD (g/cm2)	Hologic or Lupar	701	10	0.2	10	151.0	150.0	1,000	1.0	0.4	100.0	0.5	16
	ES-BIND (g/cm2)	Hologic or Lunar	703	0.8	0.2	0.8	0.0	1.0	1,005	0.7	0.2	0.7	0.5	1.0
	(g/ ciriz)	The fore of Earlah	701	0.0	0.1	0.0	0.5		2,000	0.7	0.1	0.7	0.1	1.5
13 DECODErep	Age (yrs)	National registry	910	55.5	16.3	55.6	20.3	89.0	2,228	57.5	14.3	57.7	20.0	97.0
	BMI (kg/m²)	Measured	910	26.4	3.7	26.2	16.6	42.0	2,228	25.9	4.5	25.3	14.8	47.2
	Weight (kg)	Measured	910	84.3	13.5	83.0	46.6	129.3	2,228	70.1	12.7	68.5	34.5	124.2
	Height (cm)	Measured	910	178.5	6.5	178.5	155.0	203.0	2,228	164.7	5.9	165.0	133.0	185.0
	LS-BMD (g/cm2)	Hologic	779	1.0	0.2	1.0	0.6	1.6	1,877	1.0	0.2	1.0	0.5	1.6
	FN-BMD (g/cm2)	Hologic	763	0.8	0.2	0.8	0.4	1.3	1,857	0.8	0.1	0.7	0.4	1.2
		o				75.0	<i>c</i>			76.0	6.9		60 0	
14 DOES	Age (yrs)	Questionnaire	569	75.6	5.5	75.0	61.0	90.0	888	76.2	6.3	76.0	60.0	99.0
	Bivii (Kg/m²)	Measured	569	26.7	4.0	26.3	17.7	44.4	888	26.1	5.0	25.8	14.3	56.0
	vveignt (kg)	Measured	569	76.4	15.2	171.0	45.0	128.0	000	157.0	13.1	159.0	33.0	126.0
	IS BMD (a/cm2)	IviedSulleu	509	171.5	0.5	171.0	134.0	190.0	000	10	0.1	138.0	139.0	1 0
	EN PMD (g/cm2)	Lunar DPX and Prodigy	507	1.5	0.2	1.5	0.7	2.1	200	1.0	0.2	1.0	0.4	1.0
	TIN-DIVID (g/cIII2)	Lunai DEX and Frodigy	557	0.9	0.2	0.9	0.4	1.5	072	0.7	0.1	0.7	0.4	1.1
15 DOPS	Age (yrs)	Social security	0	NA	NA	NA	NA	NA	1,716	50.6	2.8	50.5	43.7	59.0
	BMI (kg/m ²)	Calculated	0	NA	NA	NA	NA	NA	1,715	25.0	4.3	24.2	12.8	48.3
	Weight (kg)	Measured	0	NA	NA	NA	NA	NA	1,715	67.7	11.8	65.6	34.0	135.5
	Height (cm)	Measured	0	NA	NA	NA	NA	NA	1,715	164.5	6.0	164.5	147.0	189.0
	LS-BMD (g/cm2)	Hologic	0	NA	NA	NA	NA	NA	1,710	1.0	0.1	1.0	0.6	1.6
	FN-BMD (g/cm2)	Hologic	0	NA	NA	NA	NA	NA	1,702	0.8	0.1	0.8	0.5	1.3
16 EDOS	Age (yrs)	Questionnaire	370	62.4	13.6	62.4	18.3	93.1	1,645	66.2	12.4	67.6	20.5	94.3
	BMI (kg/m²)	Measured	354	26.4	5.3	26.0	14.9	51.6	1,603	26.0	5.1	25.1	14.9	52.5
	Weight (kg)	Measured	354	77.3	17.2	76.0	40.6	144.8	1,603	65.1	13.7	63.2	40.0	128.9
	Height (cm)	Measured	357	170.6	8.8	171.0	100.8	200.0	1,631	158.0	7.1	158.0	128.5	190.0
	LS-BMD (g/cm2)	Hologic	353	0.9	0.2	0.8	0.4	1.6	1,613	0.8	0.2	0.8	0.4	1.5
	FN-BMD (g/cm2)	Hologic	309	0.7	0.1	0.7	0.3	1.2	1,453	0.6	0.1	0.6	0.3	1.2
17 EBIC Norfelk	Age (vrs)	Questionnaire	680	72 5	3.1	72 1	66.9	70.3	710	72 /	3.2	72.3	60.0	85.0
17 EPIC NOTIOIK	Age (yrs) BMI (kg/m²)	Measured	680	72.5	3.1	72.1	17.5	79.5	719	72.4	5.2	72.5	17.8	65.U 45.7
	BIVII (Ng/III)	wiedbulleu	000	20.0	5.5	20.7	17.5	33.2	/10	20.0	4.5	20.4	11.0	45.7

Stage 2: De-novo	genotyping	Replication	BMD Loci	and Fracture	association

					Ν	/len		Women						
Study	Trait	Assessment method	N	mean	sd	median	min	max	N	mean	sd	median	min	max
	Weight (kg)	Measured	680	79.6	10.9	78.8	48.0	128.5	710	67.9	11.3	66.8	43.0	105.5
	Height (cm)	Measured	680	172.3	6.3	172.0	153.0	196.0	714	159.1	5.9	159.0	139.0	178.0
	LS-BMD (g/cm2)	NA	0	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA
	FN-BMD (g/cm2)	Hologic QDR 1000W	674	0.8	0.1	0.8	0.5	1.5	698	0.7	0.1	0.7	0.3	1.1
8 EPOLOS	Age (yrs)	Questionnaire	317	50.4	16.5	50.9	19.8	80.9	398	55.5	15.6	58.5	20.0	81.6
	BMI (kg/m ²)	Measured	317	26.6	4.0	26.3	17.1	39.4	397	26.7	4.9	26.4	16.4	40.9
	Weight (kg)	Measured	317	80.0	12.7	80.0	48.0	120.0	397	68.0	12.3	67.0	40.0	109.0
	Height (cm)	Measured	317	173.3	7.4	173.0	151.0	190.0	398	159.6	6.4	160.0	128.0	176.0
	LS-BMD (g/cm2)	Lunar DPX	297	1.1	0.2	1.0	0.5	2.1	367	1.0	0.2	1.0	0.5	1.7
	FN-BMD (g/cm2)	Lunar DPX	298	0.9	0.2	0.9	0.4	1.6	366	0.8	0.1	0.8	0.4	1.2
9 EPOS	Age (vrs)	Questionnaire	719	62.9	8.2	62.5	43.9	90.4	1.373	63.4	8.8	62.6	40.5	95.0
	BMI (kg/m ²)	Measured	661	27.6	3.7	27.4	18.2	41.4	1.176	27.5	4.7	27.0	16.8	52.9
	Weight (kg)	Measured	661	78.7	11.5	78.7	47.0	120.0	1.177	68.1	11.5	67.0	41.3	115.0
	Height (cm)	Measured	661	168.9	7.3	169.0	145.0	188.0	1,179	157.4	6.9	157.0	136.0	186.0
	LS-BMD (g/cm2)	Hologic (7 centres)	001	100.5		105.0	1.0.0	100.0	1,1,5	10/11	0.5	10/10	19010	100.0
		/Lunar (5 centres)	238	1.0	0.2	1.0	0.6	1.6	482	0.9	0.2	0.9	0.5	1.6
		/Sopha (1 centre) /Norland (2 centres)	200	2.0	0.2	2.0	0.0	1.0		0.5	0.2	0.5	0.0	1.0
	FN-BMD (g/cm2)	Hologic (7 centres) /Lunai	513	0.8	0.1	0.8	0.4	1.4	926	0.7	0.1	0.7	0.3	1.3
0 FLOS	Age (vrs)	Questionnaire	161	53.9	14.7	56.0	20.0	78.0	839	60.9	12.0	62.0	19.0	89.0
	BMI (kg/m ²)	Measured	161	26.2	3.6	26.0	18.5	54.1	839	24.1	3.5	23.9	15.0	44.2
	Weight (kg)	Measured	161	80.8	13.6	80.0	60.0	185.0	839	61.8	93	60.3	37.0	116 (
	Height (m)	Measured	161	175.6	7.0	176.0	156.0	192.0	839	160.0	67	160.0	138.0	181 (
	IS-BMD (g/cm2)	Hologic	158	10	0.1	10	0.7	16	835	0.9	0.7	0.9	0.4	16
	FN-BMD (g/cm2)	Hologic	139	0.8	0.2	0.8	0.3	1.1	781	0.7	0.2	0.7	0.3	1.3
	Ago (vrc)	Quartiannaira	0	NA	NA	NA	NA	NA	2 270	E2 9	0.6	E4.0	19.0	84.0
1 0105	Age (yrs)	Moscurod	0	NA	NA	NA	NA	NA	2,375	25.8	J.0	25.0	15.0	4.0
	Meight (kg)	Measured	0	NA	NA	NA	NA	NA	2,372	23.8	4.0	23.0	10.2	40.7
	Height (kg)	Measured	0	NA	NA	NA	NA	NA	2,374	158.6	60	159.0	130.0	19/ 0
	IS-BMD (g/cm2)	lupar	0	NA	NA	NA	NA	NA	2,377	1 1	0.0	1 1	130.0	1 9
	EN-BMD (g/cm2)	Lunar	0	NA	NΔ	NΔ	NΔ	NA	2,377	1.1	0.2	0.9	0.0	1.0
	THE BIND (B/CITZ)	Lunui	0	na.	1104	NA	11/4	na	2,570	0.5	0.1	0.5	0.4	1.4
2 GEVUR	Age (yrs)	Questionnaire	134	59.2	12.9	59.0	19.0	83.0	839	62.2	8.2	61.0	40.0	85.0
	BMI (kg/m²)	Measured	96	26.2	4.9	25.2	15.4	40.6	830	27.8	4.9	27.3	14.2	45.2
	Weight (kg)	Measured	96	76.2	14.0	76.0	49.0	120.0	830	70.6	13.2	70.0	40.0	128.0
	Height (cm)	Measured	97	170.8	7.5	170.0	156.0	192.0	833	159.3	6.3	159.0	134.0	185.0
	LS-BMD (g/cm2)	Hologic	105	0.9	0.2	0.9	0.4	1.4	194	0.9	0.2	0.9	0.5	1.4
	FN-BMD (g/cm2)	Hologic	99	0.9	0.2	0.8	0.3	1.2	373	0.8	0.2	0.8	0.3	1.3
3 GROS	Age (yrs)	Questionnaire	83	70.2	12.8	72.0	43.0	90.0	523	69.1	11.7	70.0	43.0	95.0
	BMI (kg/m ²)	Measured	83	26.3	3.9	26.0	17.3	37.9	521	27.5	4.7	27.0	16.4	45.8
	Weight (kg)	Measured	83	71.5	12.3	71.0	40.0	120.0	521	71.7	10.9	69.0	40.0	112.0
	Height (cm)	Measured	83	164.8	10.4	167.0	121.0	182.0	523	161.8	7.3	162.0	146.0	182.0
	LS-BMD (g/cm2)	Varius (Lunar, Hologic)	21	0.9	0.2	0.9	0.5	1.5	272	0.8	0.2	0.8	0.5	1.5
	FN-BMD (g/cm2)	Varius (Lunar, Hologic)	6	0.8	0.2	0.9	0.5	1.0	55	0.8	0.1	0.8	0.5	1.2
4 HCS	Age (vrs)	Questionnaire	1.571	65.7	2.9	65.8	59.2	72.6	1.356	66.7	2.7	66.5	60.9	73 1
	BMI (kg/m ²)	Measured	1.562	27 1	37	26.8	16.1	49.2	1 354	27 5	4.8	27.0	15.2	, J.1 48 1
	Weight (kg)	Measured	1 563	87 4	12.6	81.0	45 5	144 5	1 354	71.2	12.0	70.0	40.0	125 5
	Height (cm)	Measured	1 564	174.1	65	174 3	149.6	195.6	1 354	160.9	59	160.8	140.9	180.9
	IS-BMD (g/cm2)	Hologic	495	11	0.2	11	0.7	16	440	0.9	0.2	0.9	0.4	1 4
	EN_RMD (g/cm2)	Hologic	495	1.1	0.2	1.1	0.7	1.0	440	0.5	0.2	0.5	0.4	1.4
	FIN-BIVID (g/Cm2)	noiogic	495	0.9	0.1	0.0	0.5	1.5	440	0.7	0.1	0.7	0.5	1.1

Stage 2: De-novo genotyping Replication BMD Loci and Fracture association	
---	--

		_			Ν	/len			Women					
Study	Trait	Assessment method	N	mean	sd	median	min	max	N	mean	sd	median	min	max
5 HK	Age (yrs)	Questionnaire	1,888	72.4	5.0	72.0	65.0	92.0	1,984	72.6	5.4	72.0	65.0	98.0
	BMI (kg/m²)	Measured	1,888	23.5	3.1	23.5	13.1	36.3	1,984	23.9	3.5	23.7	12.7	40.3
	Weight (kg)	Measured	1,888	62.4	9.4	62.4	35.9	103.1	1,984	54.5	8.5	54.2	28.8	89.0
	Height (cm)	Measured	1,888	163.1	5.8	163.1	141.9	187.2	1,984	150.9	5.3	150.8	133.7	170.3
	LS-BMD (g/cm2)	Hologic	1,853	0.9	0.2	0.9	0.4	1.6	1,934	0.8	0.1	0.7	0.3	1.3
	FN-BMD (g/cm2)	Hologic	1,884	0.7	0.1	0.7	0.4	1.1	1,977	0.6	0.1	0.6	0.3	1.0
	A == ()	0	0						1 207	F0 F	7.4	50.0	45.0	07.0
6 KORAIVIC	Age (yrs)	Questionnaire	0	NA	NA	NA	NA	NA	1,397	59.5	7.4	59.0	45.0	87.0
	BIVII (kg/m²)	Measured	0	NA	NA	NA	NA	NA	1,397	23.4	2.8	23.3	14.4	35.5
	Weight (kg)	Measured	0	NA	NA	NA	NA	NA	1,397	56.2	7.2	56.0	27.0	86.0
	Height (cm)	Measured	0	NA	NA	NA	NA	NA	1,397	155.0	5.3	155.0	121.0	1/1.0
	LS-BIVID (g/cm2)	Hologic, QDR4500A,	0						1 207		0.2			4.5
		ExpertXL,	0	NA	NA	NA	NA	NA	1,387	0.9	0.2	0.9	0.4	1.5
		ProdigyAdvance												
	FN-BMD (g/cm2)	Hologic, QDR4500A, Expe	0	NA	NA	NA	NA	NA	1,387	0.7	0.1	0.7	0.3	1.1
7 LASA	Age (vrs)	Questionnaire	464	72.4	6.5	72.2	61.9	85.6	485	72.6	6.6	72.1	61.8	85.3
	BMI (kg/m ²)	Measured	438	25.8	3.2	25.9	17.4	39.1	441	27.8	4.5	27.4	16.9	45.8
	Weight (kg)	Measured	440	77.9	11.3	77.0	47.0	119.0	449	71.6	12.0	70.5	42.0	120.5
	Height (cm)	Measured	438	173.4	6.7	173.4	156.4	195.3	442	160.5	6.3	160.4	141.9	177.6
	IS-BMD (g/cm2)	Hologic ODB 2000	253	1.0	0.2	1.0	0.5	1.8	262	0.9	0.2	0.9	0.6	14
	FN-BMD (g/cm2)	Hologic QDR 2000	252	0.7	0.1	0.7	0.3	1.1	251	0.7	0.1	0.6	0.4	1.0
	10/ 1													
3 MANMC	Age (yrs)	Questionnaire	0	NA	NA	NA	NA	NA	1,105	56.4	8.6	57.0	27.0	86.0
	BMI (kg/m ²)	Measured	0	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA
	Weight (kg)	Measured	0	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA
	Height (cm)	Measured	0	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA
	LS-BMD (g/cm2)	NA	0	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA
	FN-BMD (g/cm2)	NA	0	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA
	10/ 1													
9 MrOS Sweden	Age (yrs)	Questionnaire	2,922	75.4	3.2	75.4	69.9	81.0	0	NA	NA	NA	NA	NA
	BMI (kg/m ²)	Measured	2,922	26.4	3.5	26.2	13.3	44.6	0	NA	NA	NA	NA	NA
	Weight (kg)	Measured	2,922	80.7	12.1	79.9	37.0	138.3	0	NA	NA	NA	NA	NA
	Height (cm)	Measured	2,922	174.8	6.5	174.6	145.2	199.4	0	NA	NA	NA	NA	NA
	LS-BMD (g/cm2)	Hologic (Gothenburg),												
	10, ,	Lunar (Uppsala and	2,893	1.2	0.2	1.1	0.6	2.0	0	NA	NA	NA	NA	NA
	FN-BMD (g/cm2)	Hologic (Gothenburg) Lui	2 814	0.9	01	0.8	04	14	0	NA	NA	NA	NA	NA
		Hologie (Gothenburg), Eur	2,014	0.5	0.1	0.0	0.4	1.4	0	144	11/4	na	na.	n/A
NOSOS	Age (yrs)	Questionnaire	0	NA	NA	NA	NA	NA	1,268	69.7	5.5	69.3	60.2	82.2
	BMI (kg/m ²)	Measured	0	NA	NA	NA	NA	NA	1,291	27.0	4.6	26.6	16.2	55.2
	Weight (kg)	Measured	0	NA	NA	NA	NA	NA	1,291	67.8	12.3	66.5	40.0	132.5
	Height (cm)	Measured	0	NA	NA	NA	NA	NA	1,293	158.4	6.0	158.0	131.0	177.0
	LS-BMD (g/cm2)	Lunar	0	NA	NA	NA	NA	NA	1,278	1.1	0.2	1.1	0.5	1.8
	FN-BMD (g/cm2)	Lunar	0	NA	NA	NA	NA	NA	1,243	0.8	0.1	0.8	0.4	1.3
OAS	Age (yrs)	Questionnaire	600	68.1	4.2	68.0	60.0	76.0	0	NA	NA	NA	NA	NA
	BMI (kg/m²)	Measured	593	27.6	4.0	27.2	15.7	54.3	0	NA	NA	NA	NA	NA
	Weight (kg)	Measured	593	83.7	12.5	82.5	48.0	137.9	0	NA	NA	NA	NA	NA
	Height (cm)	Measured	593	174.3	6.7	174.3	128.4	191.8	0	NA	NA	NA	NA	NA
	LS-BMD (g/cm2)	Hologic	589	1.0	0.2	1.0	0.6	1.6	0	NA	NA	NA	NA	NA
	FN-BMD (g/cm2)	Hologic	584	0.8	0.1	0.8	0.5	1.2	0	NA	NA	NA	NA	NA
007500			~							cc -			25.5	
OSTEOS	Age (yrs)	Questionnaire	0	NA	NA	NA	NA	NA	626	60.5	10.4	60.0	35.0	90.0
	BIVII (kg/m²)	Measured	0	NA	NA	NA	NA	NA	627	27.4	5.0	26.3	17.4	46.7
	Weight (kg)	Measured	0	NA	NA	NA	NA	NA	627	66.8	11.7	65.0	42.0	119.5
	Height (cm)	Measured	0	NA	NA	NA	NA	NA	628	156.2	7.0	156.0	130.0	176.0

Stage 2: De-novo	genotyping Replice	cation BMD Loci	and Fracture a	association

			Men					Women						
Study	Trait	Assessment method	N	mean	sd	median	min	max	N	mean	sd	median	min	max
	LS-BMD (g/cm2)	Lunar	0	NA	NA	NA	NA	NA	599	1.0	0.2	1.0	0.4	1.6
	FN-BMD (g/cm2)	Lunar	0	NA	NA	NA	NA	NA	342	0.8	0.1	0.8	0.5	1.1
33 DERE		Questionnaire	0	NΔ	NΔ	NΔ	NΔ	NΔ	3 927	64.1	79	64.9	45.2	80.8
55 T EIG	BMI (kg/m ²)	Measured	0	NΔ	NΔ	NA	NA	NA	3 973	25.2	3.4	24.9	14.9	43.8
	Weight (kg)	Measured	0	NΔ	NΔ	NA	NA	NA	3 973	66.1	9.7	65.2	36.1	116.6
	Height (cm)	Measured	0	NA	NA	NA	NA	NA	3 973	161.8	6.0	162.0	134.3	190.0
	IS-BMD (g/cm2)	Lunar Hologic	0	NA	NA	NA	NA	NA	3 927	0.9	0.0	0.9	0.4	15
	ES BMD (g/cm2)	Lunar, Hologic	0	NA	NA	NA	NA	NA	3,915	0.7	0.1	0.7	0.3	1.1
	(8/ 6/12)	zanal, noiogie							5,515	0.7	0.1	0.7	0.5	
34 SLOPREVAL	Age (yrs)	Questionnaire	123	67.9	6.5	66.0	55.0	89.0	593	62.1	10.6	62.0	38.0	93.0
	BMI (kg/m²)	Measured	123	27.7	3.9	27.4	19.6	43.4	593	26.9	4.5	26.0	18.9	44.9
	Weight (kg)	Measured	123	81.6	12.6	80.0	55.0	130.0	593	69.1	12.2	67.0	45.0	115.0
	Height (cm)	Measured	123	171.7	6.3	171.0	159.0	192.0	593	160.4	6.3	160.0	137.0	181.0
	LS-BMD (g/cm2)	Hologic	123	1.0	0.2	1.0	0.7	1.5	588	0.9	0.2	0.8	0.4	1.5
	FN-BMD (g/cm2)	Hologic	96	0.8	0.2	0.8	0.5	1.3	566	0.7	0.1	0.7	0.3	1.2
35 UFO-1	Age (yrs)	Questionnaire	1,011	54.2	7.7	59.7	29.5	71.5	3,306	58.6	7.6	59.9	29.6	76.9
	BMI (kg/m²)	Measured	997	26.4	3.6	25.9	17.3	55.8	3,175	25.5	4.2	24.8	10.1	62.5
	Weight (kg)	Measured	998	82.4	12.7	81.0	40.0	163.2	3,187	68.0	11.6	66.0	25.0	164.0
	Height (cm)	Measured	997	176.6	6.3	176.0	152.0	197.0	3,200	163.4	5.9	163.0	122.0	191.0
	LS-BMD (g/cm2)	Lunar	0	NA	NA	NA	NA	NA	385	1.0	0.2	0.9	0.4	1.6
·	FN-BMD (g/cm2)	Lunar	0	NA	NA	NA	NA	NA	415	0.8	0.1	0.8	0.5	1.2
LIFO-2		Questionnaire	421	48.2	10.3	50.0	24.0	70.0	1 601	53.3	10.2	54.0	19.0	80.0
01012	$RMI (kg/m^2)$	Measured	421	25.9	3.2	25.5	18.7	41.6	1,001	25.3	43	24.6	14.3	46.6
	Weight (kg)	Measured	421	82.1	11.4	81.0	51.0	129.0	1,001	68.1	12.1	66.0	36.0	127.0
	Height (cm)	Measured	421	177.9	61	178.0	152.0	198.0	1 601	164.0	61	164.0	130.0	190.0
	IS-BMD (g/cm2)	lunar	0	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA
	FN-BMD (g/cm2)	Lunar	0	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA
	(0, 0112)		-						-					
WHI GeCHIP -														
36 BMD	Age (yrs)	Questionnaire	0	NA	NA	NA	NA	NA	3,929	64.5	7.1	65.0	50.0	79.0
	BMI (kg/m²)	measured	0	NA	NA	NA	NA	NA	3,908	27.7	6.0	26.5	14.3	67.9
	Weight (kg)	measured	0	NA	NA	NA	NA	NA	3,923	72.4	16.5	69.4	36.0	176.5
	Height (cm)	measured	0	NA	NA	NA	NA	NA	3,910	1.6	0.1	1.6	1.0	1.9
	LS-BMD (g/cm2)	Hologic QDR 2000, 2000+, or 4500W	0	NA	NA	NA	NA	NA	3,761	1.0	0.2	1.0	0.5	1.8
	FN-BMD (g/cm2)	Hologic QDR 2000, 2000+	0	NA	NA	NA	NA	NA	3,929	0.7	0.1	0.7	0.4	1.3

Stage 2: De-novo genotyping Replication BMD Loci and Fracture association

				Men		Women	
Study	Trait	Assessment method	Fracture N	Non-fracture N	Fracture N	Non-fracture N	
1 AOGC-GOS	All fractures	Questionnaire, radiography	335	670	239	1,093	
	Non-vertebral fractures	Questionnaire, radiography	74	670	167	1,093	
	Vertebral fractures	NA	NA	NA	NA	NA	
2 AOGC-SHEFFIELD	All fractures	Questionnaire, radiography lateral morphometry	NA	NA	1,373	2,013	
	Non-vertebral fractures	Questionnaire, radiography	NA	NA	955	2,027	
	Vertebral fractures	Radiography lateral morphometry	NA	NA	565	3,411	
3 APOSS	All fractures	Self-reported	NA	NA	560	2,275	
	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	NA	NA	NA	NA	NA	
4 AROS	All fractures	Radiographic	64	38	271	92	
	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	Radiographic	64	38	271	92	
5 AUSTRIOS-A	All fractures	Medical records, radiograhic	118	125	116	378	
	Non-vertebral fractures	Medical records, radiograhic	118	123	105	389	
	Vertebral fractures	NA	NA	NA	NA	NA	
6 AUSTRIOS-B	All fractures	Medical records, radiograhic	144	183	816	921	
	Non-vertebral fractures	Medical records, radiograhic	32	295	273	1,464	
	Vertebral fractures	Radiographic	128	199	675	1,062	
7 BARCOS	All fractures	Medical records, radiograhic documentation	NA	NA	179	1,258	
	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	NA	NA	NA	NA	NA	
8 CABRIO-C	All fractures	Patient-referred, medical records	131	412	210	697	
	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	Radiographic documentation	68	438	127	747	
9 CABRIO-CC	All fractures	Patient-referred, medical records	176	364	946	829	
	Non-vertebral fractures	Patient-referred, medical records	133	378	658	925	
	Vertebral fractures	Radiographic documentation	25	30	195	324	
10 CAIFOS	All fractures	Self-reported	NA	NA	749	598	
	Non-vertebral fractures	Self-reported	NA	NA	179	1,168	
	Vertebral fractures	Radiographic	NA	NA	428	600	

			Men		Women		
Study	Trait	Assessment method	Fracture N	Non-fracture N	Fracture N	Non-fracture N	
11 CALEX	All fractures	Questionnaire, medical records,	41	110	72	201	
		radiograhic documentation	41	110	72	301	
	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	NA	NA	NA	NA	NA	
12 CAMOS	All fractures	Medical records, radiograhic documentation	98	559	312	1,226	
	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	NA	NA	NA	NA	NA	
13 DECODEren	All fractures	NA	NA	NA	NA	NA	
10 010001100	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	NA	NA	NA	NA	NA	
14 DOES	All fractures	X-ray reports	141	373	405	462	
	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	NA	NA	NA	NA	NA	
15 DOPS	All fractures	Radiographic	NA	NA	425	1,291	
	Non-vertebral fractures	Radiographic	NA	NA	239	1,477	
	Vertebral fractures	Radiographic	NA	NA	108	1,605	
16 EDOS	All fractures	Medical records, radiograhic documentation	286	38	1,270	159	
	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	NA	NA	NA	NA	NA	
17 EPICNOR	All fractures	Medical records	78	602	157	562	
	Non-vertebral fractures	Medical records	77	603	150	569	
	Vertebral fractures	NA	NA	NA	NA	NA	
18 EPOLOS	All fractures						
		Self -reports (fractures data from questionnaire filled in by physician)	109	208	139	259	
	Non-vertebral fractures						
		Self -reports (fractures data from	109	208	139	259	
		questionnaire filled in by physician)					
	Vertebral fractures	NA	NA	NA	NA	NA	
19 EPOS	All fractures						
		Self-report, questionnaire, medical records, radiograhic documentation	214	505	517	856	

			Men		Women		
Study	Trait	Assessment method	Fracture N	Non-fracture N	Fracture N	Non-fracture N	
	Non-vertebral fractures						
		Self-report, questionnaire, medical	124	595	403	970	
		records, radiograhic documentation					
	Vertebral fractures	Radiographic documentation	112	607	201	1,172	
20 FLOS	All fractures	Medical records, radiograhic	00	70	110	701	
		documentation	65	70	110	721	
	Non-vertebral fractures	Medical records, radiograhic	83	78	72	767	
		documentation	05	70	72	707	
	Vertebral fractures	Radiographic documentation	5	156	68	771	
21 GEOS	All fractures	Self-report	NA NA		110	1,799	
	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	NA	NA	NA	NA	NA	
22 GEV/UP	All fractures	Medical records, radiographic					
22 GEVON	All fractures	documentation	61	99	346	493	
	Non-vertebral fractures	Medical records, radiographic					
		documentation	52	108	324	515	
	Vertebral fractures	NA	NA	NA	NA	NA	
23 GROS	All fractures Medical records, radiographic						
25 61(05	Airmactures	documentation	54	26	340	125	
	Non-vertebral fractures	Medical records, radiograhic					
		documentation	49	31	313	154	
	Vertebral fractures	Radiographic documentation	5	75	28	435	
24 HCS	All fractures	Self-report	103	1,399	253	1,036	
	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	NA	NA	NA	NA	NA	
25.111/							
25 HK	All fractures	decumentation	316	1,572	478	1,506	
	Non-vertebral fractures	NA	NA	NA	NA	NΛ	
	Vertebral fractures	NA	NA	NA	NA	NA	
	Vertebrarnactures		110	INA.	NA .	NA .	
26 KorAMC	All fractures	Self-report and radiographic	NA	NA	171	1,226	
	Non-vertebral fractures	Self-report and radiographic	NA	NA	101	1,193	
	Vertebral fractures	NA	NA	NA	NA	NA	
27 LASA	All fractures	Self-report, GP questionnaire	150	314	176	309	
	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	Radiographic documentation (Genant	t) 117	137	121	132	

			Men		Women		
Study	Trait	Assessment method	Fracture N	Non-fracture N	Fracture N	Non-fracture N	
28 MANMC	All fractures	Medical records, Surgical Report, ICD- 9 Codes	NA	NA	848	0	
	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	NA	NA	NA	NA	NA	
29 MrOS Sweden	All fractures	Questionnaire, radiographic documentation	1255	1255 1,651		NA	
	Non-vertebral fractures	Radiographic documentation	157	2,765	NA	NA	
	Vertebral fractures	Radiographic documentation	309	2,613	NA	NA	
30 NOSOS	All fractures	Self-report	NA	NA	385	843	
	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	NA	NA	NA	NA	NA	
31 OAS	All fractures	Incident clinical fractures+ baseline vertebral fractures	97	503	NA	NA	
	Non-vertebral fractures	Incident clinical fractures	24	576	NA	NA	
	Vertebral fractures	Radiographic documentation	77	523	NA	NA	
32 OSTEOS	All fractures	NA	NA	NA	NA	NA	
	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	NA	NA	NA	NA	NA	
33 PERF	All fractures	Medical records, radiograhic documentation	NA	NA	1,051	2,405	
	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	NA	NA	NA	NA	NA	
34 SLOPREVAL	All fractures	Medical records	14	56	77	116	
	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	NA	NA	NA	NA	NA	
35 UFO-1	All fractures	Medical records, radiograhic documentation	493	518	1,691	1,615	
	Non-vertebral fractures	Medical records, radiograhic documentation	493	518	1,691	1,615	
	Vertebral fractures	NA	NA	NA	NA	NA	
UFO-2	All fractures	Medical records, radiograhic documentation	10	411	181	1,420	
	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	NA	NA	NA	NA	NA	

			Men		Women		
Study	Trait	Assessment method	Fracture N	Non-fracture N	Fracture N	Non-fracture N	
36 WHI GeCHIP - BMD	All fractures	NA	NA	NA	NA	NA	
	Non-vertebral fractures	NA	NA	NA	NA	NA	
	Vertebral fractures	NA	NA	NA	NA	NA	

Supplementary Table 20D: De-novo Genotyping QC

					Genotyp	otyping							
	Cohort	Genotyping Center	Genotyped SNPs	Sample Call rate	Samples meeting QC criteria	MAF	SNP Call rate	P for HWE	SNPs that met QC criteria				
1	AOGC-GOS	AOGC	74	80%	2635	> 1%	>90%	> 10 ⁻⁶	72				
2	AOGC-SHEFFIELD	AOGC	74	80%	3817	> 1%	>90%	> 10 ⁻⁶	71				
3	APOSS	KBIO	82	80%	3066	> 1%	>90%	> 10 ⁻⁶	82				
4	AROS	KBIO	96	80%	789	> 1%	>90%	> 10 ⁻⁶	96				
5	AUSTRIOS-A	KBIO	82	80%	638	> 1%	>90%	> 10 ⁻⁶	49				
6	AUSTRIOS-B	KBIO	82	80%	834	> 1%	>90%	> 10 ⁻⁶	49				
7	BARCOS	KBIO	96	80%	1422	> 1%	>90%	> 10 ⁻⁶	96				
8	CABRIO-C	KBIO	96	80%	1361	≥1%	>90%	> 10 ⁻⁶	96				
9	CABRIO-CC	KBIO	82	80%	2178	> 1%	>90%	> 10 ⁻⁶	82				
10	CAIFOS	KBIO	96	80%	1321	> 1%	>90%	> 10 ⁻⁶	96				
11	CALEX	KBIO	82	80%	645	> 1%	>90%	> 10 ⁻⁶	82				
12	CAMOS	KBIO	96	80%	2342	> 1%	>90%	> 10 ⁻⁶	96				
13	DECODErep	DECODE	95	80%	2620	> 1%	>90%	> 10 ⁻⁶	95				
14	DOES	DECODE	95	80%	1347	> 1%	>90%	> 10 ⁻⁶	90				
15	DOPS	KBIO	96	80%	1670	> 1%	>90%	> 10 ⁻⁶	96				
16	EDOS	KBIO	96	80%	1996	> 1%	>90%	> 10 ⁻⁶	96				
17	EPICNOR	KBIO	82	80%	1377	≥1%	>90%	> 10 ⁻⁶	82				
18	EPOLOS	KBIO	82	80%	688	> 1%	>90%	> 10 ⁻⁶	81				
19	EPOS	KBIO	82	80%	2003	≥1%	>90%	> 10 ⁻⁶	82				
20	FLOS	KBIO	96	80%	726	> 1%	>90%	> 10 ⁻⁶	96				
21	GEOS	KBIO	82	80%	2232	> 1%	>90%	> 10 ⁻⁶	87				

Supplementary Table 20D: De-novo Genotyping QC

					Genotyp	oing			
	Cohort	Genotyping Center	Genotyped SNPs	Sample Call rate	Samples meeting QC criteria	MAF	SNP Call rate	P for HWE	SNPs that met QC criteria
22	GEVUR	KBIO	96	80%	756	> 1%	>90%	> 10 ⁻⁶	96
23	GROS	KBIO	96	80%	459	> 1%	>90%	> 10 ⁻⁶	96
24	HCS	KBIO	82	80%	2824	> 1%	>90%	> 10 ⁻⁶	82
25	НК	DECODE	95	80%	3772	> 1%	>90%	> 10 ⁻⁶	94
26	KorAMC	DECODE	95	80%	1390	> 1%	>90%	> 10 ⁻⁶	95
27	LASA	KBIO	82	80%	891	> 1%	>90%	> 10 ⁻⁶	82
28	MANMC	KBIO	82	80%	1007	> 1%	>90%	> 10 ⁻⁶	82
29	MrOS Sweden	KBIO	96	80%	2477	> 1%	>90%	> 10 ⁻⁶	87
30	NOSOS	KBIO	82	80%	1191	> 1%	>90%	> 10 ⁻⁶	82
31	OAS	KBIO	96	80%	581	> 1%	>90%	> 10 ⁻⁶	96
32	OSTEOS	KBIO	0	Failed	Failed	Failed	Failed	Failed	Failed
33	PERF	DECODE	95	80%	3346	> 1%	>90%	> 10 ⁻⁶	95
34	SLO-PREVAL	KBIO	96	80%	677	> 1%	>90%	> 10 ⁻⁶	93
35	UFO	KBIO	82	80%	5921	> 1%	>90%	> 10 ⁻⁶	82
36	WHI GeCHIP - BMD	WHI	67	98%	3923	>0.5%	>98%	> 10 ⁻⁶	67

Supplementary Figures

Supplementary Figure 1. Quantile-quantile (Q-Q) plots. A) femoral neck BMD. B) and lumbar spine BMD. The plots compare additive model statistics to those expected under the null distribution using fixed-effects for all analyzed HapMap CEU imputed SNPs passing quality control criteria in the studies (red dots) and after adjustment for 82 SNPs selected for replication(black dots).

Supplementary Figure 2. Manhattan plots. Plots display loci associated at genome-wide significant level with femoral neck BMD (a) and lumbar spine BMD and (b) for all SNPs analyzed using fixed-effects.

Supplementary Figure 3. Regional plots. Regional association plot for each of the 32 novel (A. 1q24.3, B. 2p21, C. 2q13, D. 2q14.2, E. 3q13.2, F. 3q25.31, G. 4p16.3, H. 6p21.1, I. 6p22.3, J. 7q31.31, K. 7q36.1, L. 8q13.3, M. 9q34.11, N. 10p11.23, O. 10q21.1, P. 10q22.3_1, Q. 10q24.2, R. 11p14.1_1, S. 12p11.22, T. 12p13.33, U. 12q13.12, V. 12q23.3, W. 14q32.12, X. 16p13.11, Y. 16p13.3_1, Z. 16p13.3_2, AA. 16q12.1, AB. 17p13.3, AC. 17q24.3, AD. 18p11.21, AE. 19q13.11, AF. Xp22.31) and 24 previously reported loci (BA. 1p31.3, BB. 1p36.12, BC. 2p16.2, BD. 2q24.3, BE. 3p22.1, BF. 4q22.1, BG. 5q14.3, BH. 6q22.32, BI. 6q25.1, BJ. 7p14.1, BK. 7q21.3, BL. 8q24.12, BM. 11p11.2, BN. 11p14.1_2, BO. 11p15.2, BP. 11q13.2, BQ. 12q13.13, BR. 13q14.11, BS. 14q32.32, BT. 16q24.1, BU. 17q21.31_1, BV. 17q21.31_2, BW. 18q21.33, BX. 20p12. 2). SNPs are plotted by position in a 1Mb window against association with BMD (-log10 P). Plot highlighting the most significant SNP in the stage 1 BMD meta-analysis. Blue peaks indicate recombination rates. The SNPs surrounding the most significant SNP are color coded to reflect their LD with this SNP (from pairwise r² values from the HapMap CEU). Genes, exons and the direction of transcription from the UCSC genome browser are noted.

H 6p21.1

position on chr6 (Mb)

7q31.31

1 11 1

121.5

(cM//

J

Affy500 || | | || || || || || || || || ||

120

HapMap

position on chr7 (Mb)

121

120.5

150.5

position on chr7 (Mb)

151

151.5

150

10p11.23

N

T 12p13.33

(cM//

rate

(cM/Mb

16p13.11

10

0.8

0.6

0.4

0.2

8

6

4

2

0

log10(p-value)

Х HapMap

(cM/I

AF

75

BB

HapMap Handler and the second s

Illu318

1p36.12

100

80

60

40

20

(cM/I

BD 2q24.3

BH 6q22.32

BL 8q24.12

BP 11q13.2

85

84.5

85.5 position on chr16 (Mb) 86

80

BX 20p12.2

Supplementary Figure 4. Regional plots. Regional association plot for each of the 9 secondary signals after conditioning for the index SNP. The secondary signal is highlighted with a red box. A. 1p31.3, B. 1p36.12, C. 6q25.1, D. 7p14.1, E. 7q31.31, F. 12q13.13, G. 13q14.11, H. 16q12.1, I. 17q21.31.

Supplementary Figure 5. QQ plots for gene-gene interaction results on 3311 SNP-SNP pairs. A) Results for FN-BMD. B) Results for LS-BMD

Supplementary Figure 6. *Summary genetic effect estimates for the significant BMD associations.* Genetic effect estimates for the 56 loci reaching GWS in the overall meta-analysis (17 discovery and 34 replication studies; n=50,933) are shown for FNBMD (green circles) and LSBMD (red circles). Significant genetic associations are shown separately for the 32 loci that were novel (A) and the 24 loci reported previously (B).

А

В

Supplementary Figure 7. Forest plots for each one of the BMD loci associated with fracture risk (rs7851693, rs227584, rs163879, rs6959212, rs430727, rs1286083, rs4233949, rs6532023, rs3801387, rs4792909, rs6426749, rs4727338, rs3736228, rs7521902, rs1373004, rs4796995) and those loci that are part of the OPG/RANK/RANKL pathway (rs2062377, rs884205, rs9533090). Studies are grouped by ethnic group. Imputed markers are colored in green. The imputation quality score is displayed for imputed markers at the right column.

info2_round

info2_round

99

102

Supplementary Figure 8. The area under the Receiver-operator characteristics (ROC) curves (AUC) of two different models predicting the risk of osteoporosis (T-score \leq -2.5) in the 2,836 genotyped women of the PERF study. Model 1, represented by the solid black line, includes only the genetic score (AUC = 0.59 [0.56- 0.61]). Model 2, represented by the dashed red line, includes age, weight, (AUC = 0.75 [0.73 -0.77]).

Supplementary Figure 9. Two thousand sets of 55 randomly selected SNPs evaluated in GRAIL. Black arrow points to the number of significant loci identified by GRAIL using the 55 GWS BMD loci. None of the 2,000 sets had more than 15 SNPs with P<0.01

GRAIL Simulations

Supplementary Figure 10. Graphic representation of the different pathways critical to bone biology including osteoblastic differentiation; Wnt-mediated osteoblastic activation and function; RANK-mediated osteoclastic activation and endochondral ossification. The figure is derived from an image generated by Ingenuity Pathway Analysis (IPA) software version 2011 (Ingenuity Systems). The osteoblast is the main bone-forming cell. Genes identified by SNPs associated with BMD at genome-wide significant levels are coloured pink, genes identified by markers associated with fracture risk are coloured orange, genes identified by markers associated with BMD at P<0.0001 are coloured in yellow and current pharmacological compounds used or under development (Phase II trials) for the treatment of osteoporosis are coloured aquamarine.

SUPPLEMENTARY NOTE

1. DE-NOVO GENOTYPING (STAGE 2)

1.1.De novo genotyping

A total of 62,203 samples from 34 studies with either BMD and/or fracture information was de-novo genotyped in four main genotyping centers (KBioSciences, AOGC, deCODE and WHI) (Supplementary Methods Table 3D).

1.1.1. KBioSciences

The majority of the studies opted for whole genome amplification (WGA) before genotyping. WGA was done by K-Biosciences

(http://www.kbioscience.co.uk/lab%20services/wga/wga.html) and samples were stored in freezers for genotyping. We evaluated the genotype concordance between raw DNA genotypes and amplified DNA genotypes in a panel of 82 SNPs within 96 samples. The genotype accuracy before and after amplification was 99.971%. DNA from the OSTEOS study could not be amplified with enough quality and was therefore excluded from all analyzes. All SNPs genotyped by K-Biosciences (www.kbioscience.co.uk) used a competitive allele specific PCR (KASPar) assay. A Y-chromosome specific assay was evaluated in all samples. Sample mismatches between the gender specific assay and the reported gender in the questionnaire were removed from analysis.

1.1.2. AOGC

AOGC samples from the Geelong Osteoporosis Study cohort and the Sheffield cohort were directly genotyped at the University of Queensland Diamantina Institute. Two genotyping platforms were used: Applied Biosystems OpenArray (for 72 SNPs) and KBioSciences technology for the remaining 10 SNPs for which a taqman probe could not be designed. Positive and negative controls were used on each plate. Nine SNPs failed QC (rs10048146, rs7017914, rs9466056, rs3736228, rs3755955, rs4240467, rs12995369, rs17040773, rs1053051; 2 using the KBioSciences platform and 7 using OpenArray).

1.1.3. deCODE

GENOMOS samples from the PERF (Denmark), DOES (Australia), AMC (South Korea) and the Hong Kong elderly cohorts were directly genotyped for replication at the deCODE Genetics, along with additional deCODE study samples (Iceland). The genotyping was performed on the Centaurus (Nanogen) platform¹. The quality of each Cenaturus SNP assay was evaluated by genotyping each assay in the CEU HapMap samples and comparing the results with the HapMap data. Assays with mismatches >1% were not used and positive and negative controls were present on all genotyping plates in order to ensure correct genotyping. Functional assays meeting all quality criteria could not be made for the markers rs4727338, rs4869742, rs6959212, rs430727, rs1286083, rs6532023, rs4790881, rs12995369 and rs4792909 and these proxy SNPs, rs7781370, rs4870044, rs1403987, rs87938, rs1286077, rs1471403, rs11657636, rs11690020 and rs7220711 were genotyped instead, respectively. For the SNP rs11048046 a functional assay could not be made nor was there a known proxy SNP available. Nine hundred samples from the chip-typed deCODE discovery cohort were also directly genotyped for comparison with the imputed genotypes. The median of the correlation between genotyped and imputed genotypes was 0.97.

1.1.4. WHI

A custom Illumina (Illumina, Inc., San Diego, CA, USA) iSELECT genotyping array was designed to analyze 3,923 samples. From the 82 main BMD SNPs the following 15 rsIDs could not be included in the array given design restrictions: rs4240467, rs12821008, rs4233949, rs7851693, rs3736228, rs7953528, rs1566045, rs2062377, rs6426749, rs7932354, rs4869742, rs4727338, rs430727, rs11048046, rs7427438.

1.2. Quality Control

Genotyped calls from K-Biosciences, AOGC and deCODE were centrally controlled for: Sample call rate > 80%, SNP call rate > 90%, HWE P > 1×10^{-4} , MAF > 1%. The following QC filters were applied for samples genotyped by WHI: Sample call rate > 98%, SNP call rate > 98%, HWE P > 1×10^{-6} , MAF > 0.5%.

2. ADDITIONAL ANALYSES

2.1. Secondary signals

To evaluate the presence of multiple association signals in one locus, each stage 1 study repeated the primary GWA analysis using models additionally adjusted for the top 82 lead SNPs associated with BMD at P < $5x10^{-6}$ with the objective of identifying additional signals in the discovered loci. The effect estimates for each association were calculated using inverse variance fixed-effects meta-analysis. Assuming that approximately 3,000 Mbp in the human genome are usually "genotypable" we tested ~ 5.5% of ~ 1 million tests. Hence the threshold we used for selecting secondary signals for replication was set to 9×10^{-7} .

2.2. Gene x Gene interaction

Each individual study extracted genotype imputation dosages for each of the top 82 lead SNPs to investigate potential gene-gene interaction. An R-script was provided to each individual study and was run using the extracted dosages. The allele coding was such that the BMD increasing allele (based on the Stage 1 meta-analysis) was always the dosage increasing allele. For the additive dosage and pair-wise interaction analyses $(Y=b_0+b_1.A+b_2.B+b_3.AB+e;$ test of H0: $b_3 = 0$), the dosages were regressed against residuals of sex-standardized Z-scores of FN-BMD and LS-BMD, adjusted for appropriate covariates as with the primary GWA study. For each pair, a linear regression analysis including the two SNPs and their interaction term was performed. Interaction terms were deemed significant at levels of 1.5×10^{-5} accounting for (82*81)/2 = 3321 interaction tests.

2.3. Fine Mapping using 1000 Genomes Project data

We imputed SNPs within the 2 Mb genomic region (1 Mb upstream and 1 Mb downstream) of top SNP from each of the 82 loci using the CEU or CHB/JPT as appropriate reference panels of the 1000 Genome Project that was released in June 2010. The imputation was performed using either MACH or IMPUTE in samples from 9 discovery cohorts including, AOGC (women only), DECODE, FHS, GOOD (men only), HEALTHABC, HKOS (women only), INDIANA (women only), ORCADES, RSI, RSII and RSIII. The total sample is 21,699 men and women for FN-BMD and 20,835 men and women for LS-BMD. A total of 495,634 SNPs with variance ratio > 0.3 in at least one study was imputed and used for this analysis. SNP-phenotype association was performed in each study and a fixed-effected inverse-variance meta-analysis was performed to estimate association p-values. We excluded SNPs only available in 4 or less studies. SNPs with higher heterogeneity ($I^2 > 50$) were also excluded. We defined "stronger evidence of association" as a P-value difference of more than one order of magnitude to avoid drawing conclusions from random variation in the test statistics. Physical-based SNP annotation by categorizing according to their position relative to genes (intronic, exonic, UTR, promoter, flanking, inter-genic, etc.) was done using the Human GRCh37 reference genome and Ensembl transcripts. Pair-wise Linkage Disequilibrium (LD) was estimated using haplotype information from 1000 Genome Project European reference panel. Functional predictions of gene or SNPs have been shown to provide supportive evidence of GWAS findings and can be used to prioritize the GWAS top hits for further studies². We predicted the potential functional effects on following types of SNPs: the premature translation termination (nonsense); the exonic SNPs that cause an amino acid change in conservative genomic region across multiple species (nonconservative non-synonymous)³; the exonic SNPs that affect protein function based on sequence homology and the physical properties of amino acids (non-conservative nonsynonymous)⁴; the splicing sites that lead to a protein domain being abolished.⁵; synonymous SNPs located at exonic splicing enhancer motifs^{6,7} and the exonic splicing silencer motifs⁸; the transcription factor binding sites at promoter regions⁹⁻¹¹; the 3-UTR post-transcriptional regulatory region¹²; and miRNA sites¹³.

2.4. Gene expression

Expression profiles at 55 of the 56 GWS loci were analysed within several eQTL datasets. We chose to omit the 17q21.31_2 locus because of the known rearrangements at this locus (inversion, duplications, and deletions) with resulting variable number of many of the genes at this locus.

The first eQTL dataset, published by Reppe and colleagues¹⁴, tested the relationship between gene expressions in trans-iliacal bone biopsies and BMD in 84 unrelated postmenopausal women. Transcripts that located within +/- 500kb of the candidate SNPs at the GWS loci were queried in a dataset of eQTLs that correlated with adjusted BMD with a p-value below 0.1 in the published dataset, 163 uniquely mapping transcripts in total for FN- and LS-BMD. Affymetrix HG U133 2.0 plus array was used for expression analysis, as previously described¹⁴.

The second eQTL dataset used expression data from multiple publicly available and in-house datasets to carry out cis-association analysis: a) CEU lymphoblastoid cell lines (n=60) for expression QTL association¹⁵ using Illumina Sentrix Human-6 Expression BeadChip version 1 and Genotypes from HapMap project, b) allelic expression cis-associations using llumina Human1M-duo BeadChip for lymphoblastoid cell lines (n=53)¹⁶ and for fibroblasts, Illumina HumanRef-8 v3.0 for expression traits and Illumina HapMap 1M Duo chip for genotypes (Pastinen, unpublished data), and c) RNAseg CEU eOTLs, where expression values were taken from RNA sequencing data (Illumina GA2) and genotypes from HapMap project¹⁷ (lymphoblastoid cell lines, n=60); d) primary human fibroblasts (n=64) treated with cholesterol, resveratrol, and ethanol (Pastinen, unpublished data), and primary human osteoblasts (HOb) (n=104) treated with bone morphogenetic protein BMP-2, dexamethasone, prostaglandin E2, and control PBS using Illumina HumRef-8v2 BeadChips for expression traits and Illumina HapMap 550k Duo chip for genotypes¹⁸. Cis-regulatory effects were tested using SNPs mapping the candidate SNP +/- 500kb. For the fibroblast and osteoblast samples, due to limited genotype information, we imputed the genotypes (MACH 1.0) for HapMap SNPs to provide a larger density of SNPs to test. Cis-associations for most datasets were carried out using a linear regression model implemented in the PLINK software package. Association analysis for the HOb datasets was carried out using MACH2QTL, using the genotype imputation data. For the RNAseg CEU eQTL analysis, Spearman-rank correlation was used as implemented in the R (version 2.12.1) software package. Variance r^2 is given for all eOTL datasets except for the RNAseq CEU analysis, where the rho value was calculated.

The third eQTL dataset at deCODE Genetics utilizes expression data from adipose tissue and whole blood from 603 and Icelandic individuals, respectively¹⁹. Genotyping was performed using Infinium HumanHap300 and 370CNV BeadChips (Illumina) and genotypes imputed into HapMap 2.5m SNPs using IMPUTE. Expression analysis was performed using an Agilent microarry of 23,700 transcripts. The correlation between the SNPs and expression of genes at the 56 GWS loci (located within +/- 500kb from the candidate SNP) was tested by linear regression analysis of normalized expression level (age, sex, BMI and weight adjusted, and for differential cell count in case of whole blood) on SNP genotypes as previously described²⁰.

The fourth eQTL dataset is derived from circulating monocytes in 1,490 unrelated individuals, published by Zeller and colleagues²¹ (publicly available at genecanvas.ecgene.net). All associations between SNPs and expressions with a p-value<5 x 10^{-5} were available for querying, using data analysed as described²¹, of expression traits measured on Illumina Human HT-12 expression BeadChip (12,808 detectable expression traits) and SNPs genotyped on an

Affymetrix 6.0 array. Expression of genes located within +/- 500kb from the candidate GWS SNPs at the 56 loci were queried for association in the dataset. Proxy SNPs were used for 42 SNPs that are not present on the Affymetrix 6.0 array ($r_2>0.7$), no proxy was available for the 4 SNPs, rs5934507 (chrX), rs13336428 (16p13.3_2), rs1566045 (16q12.1) and rs3755955 (4p16.3) and these loci therefore not represented in this dataset. Study-wise threshold of significance correcting of the number of expressions tested was set at P< 5 x10⁻⁵.

2.5. Literature-based annotation with GRAIL

The Gene Relationships Across Implicated Loci (GRAIL)²² software was used to investigate relationships between 55 autosomal loci identified from the combined results. Briefly, GRAIL evaluates connectivity and relationships between identified loci, by systematically mining Pubmed abstracts for shared text amongst possible genes at associated loci. Genes from independently identified loci that have increased sharing of text in the scientific literature are more likely to be functionally related and therefore more likely to be truly involved in disease pathogenesis²². As no information about the phenotype is used, the relatedness of genes at associated loci is not biased with respect to the phenotype. We conducted GRAIL analysis using the December 2006 Pubmed data set (avoiding potential bias from investigation of candidate genes stimulated by GWAS), the HG18 build of the human genome, and the 55 autosomal BMD loci with a p-value <5 x 10⁻⁸.

To confirm the significance of these findings, we followed a previously described strategy.²² We applied GRAIL to 2000 random matched SNP sets; each set consisted of 55 SNPs randomly selected from a previously published²³ set of 56,988 HapMap SNPs after LD pruning. We selected SNPs in LD with at least one gene, and so that in aggregate the total number of genes implicated was 224 +/-11 genes. These SNP sets matched the 55 SNPs associated with BMD in terms of total gene content, since those genes implicated 224 genes in aggregate. Then we individually tested each SNP test through GRAIL, noting with each run what proportion of SNPs demonstrated connectivity with p_{text} scores ≤ 0.01 .

2.6. Allele Risk Modeling

To estimate the cumulative effect of the genetic variants, we constructed genetic susceptibility scores that summed the weighted number of 55 autosomal and 8 secondary BMD-decreasing alleles, where the weights were derived from the beta-coefficients of the relationship between BMD and the BMD-decreasing allele. The "osteoporosis" outcome, was defined as having a FN-BMD T-score < -2.5. We used the NHANES²⁴ (female) mean and SD (mean 0.849, SD 0.109) to estimate T-scores from the raw FN-BMD (T = (ZFNBMD-0.849)/0.109). For the fracture risk modeling, first we used the 16 SNPs also associated with fracture risk were used to construct the genetic susceptibility scores and then compared the results by including the rest of the non-significantly associated SNPs. For this analysis, the weights were derived from the beta-coefficients of the relationship between fracture risk and the risk-increasing allele.

Models were estimated using the Prospective Epidemiological Risk Factor (PERF) study. This study is composed of postmenopausal women, in the age rage 55-86 years, taking part in a prospective epidemiological study and in various clinical trials for osteoporosis at the Center for Clinical and Basic Research, Copenhagen. Baseline DEXA- measurement (Hologic QDR2000) at the hip (total hip) and lumbar spine (L2-L4) was used. Osteoporotic fractures included low trauma fractures from medical records and radiographic documentation. (Supplementary Methods Table 3A, 3B, 3C). A subset of 2,836 women with both FN-BMD and fracture information were used for this analysis.

The PERF study was genotyped in Stage 2, had relatively large numbers of women with fracture ascertainment, and was not included in the discovery set. Furthermore, effect estimates of a meta-analysis excluding PERF in the Stage 2 replication samples were used to weight BMD-decreasing alleles. Weights were transformed to have a mean=1 by dividing each effect by the median of the FN-BMD effects. Weights for each of the 63 SNPs are available in the Supplementary Tables.

We performed profile scoring for each individual of the PERF study as implemented in PLINK, where:

Score_i= $\Sigma_{j=1 \text{ to m}} b_j x_{ij}$, where m= number of SNPs b_j =effect of allele at locus j x_{ij} =number of reference alleles of individual i at locus j

The resulting genetic scores were divided in quintiles and the mean FN-BMD, osteoporosis risk and fracture risk estimates were computed per each quintile of weighted allele score. The performance of the osteoporosis and fracture prediction properties of the genetic score was quantified using the area under the receptor-operator characteristics (ROC) curves implemented in the software PredictABEL²⁵. For this analysis the continuous weighted genotypic risk score was used in a regression model. Finally, the measure of variance explained (adjusted r²) was estimated from a linear regression model incorporating the quantitative score as the predictor and the age- and weight adjusted standardized FN-BMD residuals as outcome.

3. URLS

METAL: http://www.sph.umich.edu/csg/abecasis/Metal/

KbioSicences: http://www.kbioscience.co.uk/

PLINK: http://pngu.mgh.harvard.edu/purcell/plink/

GenABEL suite: http://www.genabel.org/

HapMap: http://www.hapmap.org/

LocusZoom: http://csg.sph.umich.edu/locuszoom/

1000 Genomes: http://www.1000genomes.org/

4. SUPPLEMENTARY REFERENCES

- 1. Kutyavin, I.V. *et al.* A novel endonuclease IV post-PCR genotyping system. *Nucleic Acids Res* **34**, e128 (2006).
- Hsu, Y.H. *et al.* An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility Loci for osteoporosis-related traits. *PLoS Genet* 6, e1000977 (2010).
- 3. Adzhubei, I.A. *et al.* A method and server for predicting damaging missense mutations. *Nat Methods* **7**, 248-9 (2010).
- 4. Kumar, P., Henikoff, S. & Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. *Nat Protoc* **4**, 1073-81 (2009).
- 5. Boeckmann, B. *et al.* The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. *Nucleic Acids Res* **31**, 365-70 (2003).
- 6. Cartegni, L., Chew, S.L. & Krainer, A.R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. *Nat Rev Genet* **3**, 285-98 (2002).
- 7. Fairbrother, W.G., Yeh, R.F., Sharp, P.A. & Burge, C.B. Predictive identification of exonic splicing enhancers in human genes. *Science* **297**, 1007-13 (2002).
- 8. Wang, Z. *et al.* Systematic identification and analysis of exonic splicing silencers. *Cell* **119**, 831-45 (2004).
- 9. Hu, J., Li, B. & Kihara, D. Limitations and potentials of current motif discovery algorithms. *Nucleic Acids Res* **33**, 4899-913 (2005).
- 10. Kim, T.H. *et al.* A high-resolution map of active promoters in the human genome. *Nature* **436**, 876-80 (2005).
- 11. Won, K.J., Ren, B. & Wang, W. Genome-wide prediction of transcription factor binding sites using an integrated model. *Genome Biol* **11**, R7 (2010).
- 12. Wang, X. & El Naqa, I.M. Prediction of both conserved and nonconserved microRNA targets in animals. *Bioinformatics* **24**, 325-32 (2008).
- 13. Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deepsequencing data. *Nucleic Acids Res* **39**, D152-7 (2011).
- 14. Reppe, S. *et al.* Eight genes are highly associated with BMD variation in postmenopausal Caucasian women. *Bone* **46**, 604-12 (2010).
- 15. Stranger, B.E. *et al.* Population genomics of human gene expression. *Nat Genet* **39**, 1217-24 (2007).
- 16. Ge, B. *et al.* Global patterns of cis variation in human cells revealed by high-density allelic expression analysis. *Nat Genet* **41**, 1216-22 (2009).
- 17. Montgomery, S.B. *et al.* Transcriptome genetics using second generation sequencing in a Caucasian population. *Nature* **464**, 773-7 (2010).
- 18. Grundberg, E. *et al.* Global analysis of the impact of environmental perturbation on cisregulation of gene expression. *PLoS Genet* **7**, e1001279 (2011).
- 19. Emilsson, V. *et al.* Genetics of gene expression and its effect on disease. *Nature* **452**, 423-8 (2008).
- 20. Thorleifsson, G. *et al.* Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. *Nat Genet* **41**, 18-24 (2009).
- 21. Zeller, T. *et al.* Genetics and beyond--the transcriptome of human monocytes and disease susceptibility. *PLoS One* **5**, e10693 (2010).
- 22. Raychaudhuri, S. *et al.* Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. *PLoS Genet* **5**, e1000534 (2009).

- 23. Lango Allen, H. *et al.* Hundreds of variants clustered in genomic loci and biological pathways affect human height. *Nature* **467**, 832-8 (2010).
- 24. Looker, A.C. *et al.* Prevalence of low femoral bone density in older U.S. women from NHANES III. *J Bone Miner Res* **10**, 796-802 (1995).
- 25. Kundu, S., Aulchenko, Y.S., van Duijn, C.M. & Janssens, A.C. PredictABEL: an R package for the assessment of risk prediction models. *Eur J Epidemiol* **26**, 261-4 (2011).

5. COHORT-SPECIFIC CONTRIBUTIONS

Type of Contribution	Cohort	Name	Overseeing (PI)	Genotyping	Phenotyping	Data analysis
GWAS	AFOS	Alan R Shuldiner	Х			
GWAS	AFOS	Braxton D Mitchell	Х			
GWAS	AFOS	Elizabeth A Streeten	Х		х	
GWAS	AFOS	Laura M Yerges-Armstrong				Х
GWAS	AOGC	Dana Willner				х
GWAS	AOGC	David M Evans				х
GWAS	AOGC	Elaine M Dennison			х	
GWAS	AOGC	Emma L Duncan		х	х	х
GWAS	AOGC	Eugene McCloskey	Х		х	
GWAS	AOGC	Geoffrey C Nicholson	х		х	
GWAS	AOGC	Graeme Jones	Х		х	
GWAS	AOGC	Graeme R Clark		х		
GWAS	AOGC	lan R Reid	Х		х	
GWAS	AOGC	John A Eisman	х		х	х
GWAS	AOGC	John P Kemp				х
GWAS	AOGC	Matthew A Brown	х	х	х	х
GWAS	AOGC	Patrick Danoy		х		
GWAS	AOGC	Paul J Leo				х
GWAS	AOGC	Philip N Sambrook	х		х	
GWAS	AOGC	Richard Eastell	х		х	
GWAS	CHS	Bruce M Psaty	Х			
GWAS	CHS	Guo Li				х
GWAS	CHS	Jerome I Rotter		х		x
GWAS	CHS	John Robbins			x	
GWAS	CHS, HealthABC	lane A Cauley	x		x	
GWAS	deCODE	Gudmar Thorleifsson	~		, A	x
GWAS	deCODE	Gunnar Sigurdsson			x	X
GWAS	deCODE	Hrefna Johannsdottir		x	<i>N</i>	
GWAS	deCODE	Kari Stefansson	x	X		
GWAS	deCODE	Stefan The Palsson	~	x		
GWAS	deCODE	Thorvaldur Ingvarsson		X	Y	
GWAS	deCODE		v	Y	x	×
GWAS	deCODE		×	X	X	X
GWAS	EPIC-Norfolk	Alireza Moaweri	~		Y	Y
GWAS	EPIC-Norfolk		v		X	X
GWAS	EPIC-Norfolk	Nick I Warobam	×	Y		
GWAS	EPIC Norfolk	Robert Luben	~	×	v	v
GWAS		Kobert Lubert	v	^	×	~
GWAS	EPIC-NOTIOIK,EPOS	Stanhan K Kantaga	^		×	V
GWAS	EPIC-NOTIOIR,EPUS				X	Χ
GWAS	ERF	Ben A Oostra	V		X	
GWAS	ERF	Cornella Mi van Duljn	X		X	
GWAS	ERF	M. Carola Zillikens	X		X	N/
GWAS	ERF			X		X
GWAS	ERF	Yurii S Aulchenko		X		Y.
GWAS	Fram					X
GWAS	Fram		v			X
GWAS	Fram		Х		Х	X
GWAS	Fram	Kannabiran Nandakumar				Х
GWAS	⊢ram	L. Adrienne Cupples	Х	Х		
GWAS	Fram	Yanhua Zhou				X
GWAS	Fram	Yi-Hsiang Hsu				Х
GWAS	GOOD, MrOS Sweden	Claes Ohlsson	Х	х	х	
GWAS	GOOD	Joel Eriksson				x
GWAS	GOOD	Liesbeth Vandenput		х		х
GWAS	GOOD	Mattias Lorentzon	Х	Х	Х	
GWAS	Health ABC	Candace M. Kammerer				х
GWAS	Health ABC	Frances A. Tylavsky	Х			
GWAS	Health ABC	Ryan L. Minster				х
GWAS	Health ABC	Steven R. Cummings	Х			
GWAS	Health ABC	Yongmei Liu		х	х	
GWAS	Health ABC, AGES	Tamara B. Harris	Х			
GWAS	HKOS	Annie Wai Chee Kung	Х		х	
GWAS	HKOS	Pak Chung Sham	Х			х
GWAS	HKOS	Su-Mei Xiao		х	х	х
GWAS	INDIANA	Daniel L Koller				х
GWAS	INDIANA	Michael J Econs	х		х	

5. COHORT-SPECIFIC CONTRIBUTIONS

Type of Contribution	Cohort	Name	Overseeing (PI)	Genotyping	Phenotyping	Data analysis
GWAS	INDIANA	Munro Peacock	Х		Х	
GWAS	ORCADES	James F Wilson	Х		Х	
GWAS	ORCADES,EDOS	Omar ME Albagha			х	х
GWAS	ORCADES,EDOS	Stuart H Ralston	х		х	
GWAS	RS-I, RS-II & RS-III	Albert Hofman	Х		Х	
GWAS	RS-I, RS-II & RS-III	Andre G. Uitterlinden	х	х	х	
GWAS	RS-I, RS-II & RS-III	Carolina Medina-Gómez		х		
GWAS	RS-I, RS-II & RS-III	Fernando Rivadeneira	х	х	х	х
GWAS	RS-I, RS-II & RS-III	Huibert A P. Pols	X		x	
GWAS	RS-L RS-II & RS-III	lovce B L van Meurs		x	x	
GWAS	RS-I RS-II & RS-III	Karol Estrada		x	A	x
GWAS	RS-I RS-II & RS-III			x		x
GWAS	RS-I RS-II & RS-III	Ling Oct		x		X
GWAS		Martha Castano-Betancourt		~	×	
GWAS _		Franços MK Williams			×	
GWAS					^	v
GWAS			v			×
GWAS		J Brent Richards	X			X
GWAS		RUI LI			v	Х
GWAS	TUK1, TUK23		N.		X	
GWAS	TUK1, TUK23	Timothy D Spector	X	X	X	
Meta-analytical center	IOANNINA	Evangelia E Ntzani				X
Meta-analytical center	IOANNINA	Evangelos Evangelou				Х
Meta-analytical center	IOANNINA	John P.A. Ioannidis	Х			Х
GxG	GXG Analytical support	Andrew R Wood				Х
INSILICO	AGES Reykjavik study	Albert V Smith				х
INSILICO	AGES Reykjavik study	Kristin Siggeirsdottir			х	
INSILICO	AGES Reykjavik study	Melissa Garcia				Х
INSILICO	AGES Reykjavik study	Thor Aspelund			х	Х
INSILICO	AGES Reykjavik study	Vilmundur Gudnason	Х		х	
INSILICO	PROSPER/PHASE study	Brendan M. Buckley	Х			
INSILICO	PROSPER/PHASE study	lan Ford	Х			
INSILICO	PROSPER/PHASE study	J Wouter Jukema	х			
INSILICO	PROSPER/PHASE study	P Eline Slagboom	Х			
INSILICO	PROSPER/PHASE study	Stella Trompet		х		х
INSILICO	WGHS	Daniel I. Chasman	Х	Х	Х	Х
INSILICO	WGHS	Lvnda M. Rose			х	х
INSILICO	WGHS	Paul M Ridker	х		х	
INSILICO	WHI	Aaron K Aragaki		х	Х	Х
INSUICO	WHI	Andrea 7 Lacroix		x	x	x
INSILICO	WHI	Charles Kooperberg		x	x	x
INSILICO	WHI	David I Duggan		x	A	~
INSILICO	W/HI	Bebecca D Jackson	x	x	x	x
	Young Einns Study	lorma Viikari	× ×	~	× ×	~
INSILICO	Young Finns Study	Marika Laaksonen	Х		x	
	Young Einns Study	Mika Käbönon	v		×	
INSILICO	Young Finns Study		×		~	v
INSILICO	Young Finns Study		×	v	^	×
INSILICO	Young Finns Study		X	X		×
INSILICO		Ville Aalto			× ×	Χ
De novo	APOSS, NOSOS				X	X
De novo	APOSS, NOSOS	Lynne J Hocking				X
De novo	AROS, DOPS	Bente Lomholt Langdahl	X		X	
De novo	AROS, DOPS	Lise Bjerre Husted			X	
De novo	AUSTRIOSA, AUSTRIOSB	Barbara Obermayer-Pietsch		X	X	Х
De novo	AUSTRIOSA, AUSTRIOSB	Olivia Trummer		X		
De novo	BARCOS	Natalia Garcia-Giralt			х	
De novo	BARCOS	Roser Urreizti	X			
De novo	BARCOS	Susana Balcells	X			
De novo	BARCOS	Xavier Nogues	Х		Х	
De novo	Cabrio-C, Cabrio-CC	Jesús González-Macías	Х			
De novo	Cabrio-C, Cabrio-CC	José M. Olmos	Х		Х	
De novo	Cabrio-C, Cabrio-CC	José A. Riancho	Х		Х	
De novo	Cabrio-C, Cabrio-CC	María T. Zarrabeitia	Х			
De novo	AOGC,CAIFOS	Richard L Prince	Х	х	х	
De novo	CAIFOS	Joshua R Lewis		х		
De novo	CAIFOS	Kun Zhu			Х	
De novo	Calex-family	Markku Alen	Х			

5. COHORT-SPECIFIC CONTRIBUTIONS

Type of Contribution	Cohort	Name	Overseeing (PI)	Genotyping	Phenotyping	Data analysis
De novo	Calex-family	Sulin Cheng		Х		Х
De novo	CaMos	David Goltzman	Х			
De novo	CaMos	Millan S. Patel				х
De novo	DOES	Jacqueline R Center			Х	Х
De novo	DOES	Tuan V Nguyen				х
De novo	EDOS	Nerea Alonso			Х	
De novo	EPOLOS	Marcin Kruk			Х	
De novo	EPOLOS	Roman S Lorenc	Х			
De novo	EPOS	Serena Scollen		Х		
De novo	FLOS	Laura Masi	Х		Х	
De novo	FLOS	Maria Luisa Brandi	Х		х	
De novo	GEOS	François Rousseau	Х		Х	
De novo	GEOS	Sylvie Giroux		х	х	
De novo	GEVUR	Elza Khusnutdinova		Х		
De novo	GEVUR	Rita Khusainova		х		
De novo	GROS	Panagoula Kollia	Х			
De novo	GROS	Theodora Koromila			х	х
De novo	GROS	Zoe Dailiana			х	
De novo	HCS	Cyrus Cooper	Х			
De novo	HCS	Karen A. Jameson			х	
De novo	нк	Jean Woo			х	
De novo	НК	Nelson L.S. Tang	х			
De novo	НК	Ping C. Leung			х	
De novo	KorAMC	Ghi Su Kim			X	
De novo	KorAMC	Jung-Min Koh	х		х	
De novo	KorAMC	Seung Hun Lee			X	
De novo	LASA	Natasia M. van Schoor			X	
De novo	LASA	Paul Lips	х			
De novo	ManMC	William D. Leslie	X			
De novo	MrOS Sweden	Dan Mellström	X		x	
De novo	MrOS Sweden	Magnus Karlsson	x		X	
De novo	MrOS Sweden	Östen Liunggren	x		x	
De novo	OAS	Morten Frost	X		X	
De novo	OAS	Wim van Hul	x		x	
De novo	OSTEOS	George Dedoussis	X		~	
De novo	PERE	Claus Christiansen	X		x	
De novo	SI O-PREVAI	Janez Prezeli	X		X	х
De novo	SLO-PREVAL	Jania Marc	x	x	x	x
De novo	SLO-PREVAL	Simona Mencei-Bedrac	<i>N</i>	x	A	x
De novo	UEO	Göran Hallmans		~	x	X
De novo	LIEO	Olle Svensson			x	x
De novo	UEO	Ulrika Pettersson	x		x	x
De novo	deCODE	Gudmar Thorleifsson	~		~	x
De novo	deCODE	Gunnar Sigurdsson			x	X
De novo	deCODE	Hrefna Johannsdottir		x	A	
De novo	deCODE	Kari Stefansson	x	A		
De novo	deCODE	Stefan The Palsson	<i>N</i>	x		
De novo	deCODE	Thorvaldur Ingvarsson		~	×	
De novo	deCODE	Linnur Styrkarsdottir	Y	×	x	Y
De novo	deCODE		x	~	A	X
FOTI	eOTI analytical center (deCODE)	Gudmar Thorleifsson	Х			Y
EQTE	eQTL analytical center (deCODE)	Uppur Styrkarsdottir	Y	×	×	X
FOTI	eOTI analytical center (deCODE)	Unnur Thorsteinsdottir	x	~	~	^
FOTI	eOTI analytical center (deCODE)	Kari Stefansson	x			
FOTI	eOTL analytical center (CA)	Dominique Verlaan	^	×	×	
FOTI	eQTL analytical center (CA)			×	×	
	eQTL analytical center (CA)	Tomi Dostinon	v	٨	٨	
	eQTL analytical center (CA)		٨	v		
			v	X V	v	
	eQTL analytical center (NO)	Kaare IVI. GautVIK	٨	х У	A V	v
	Crail Analytical Center (NO)	Soumus Bauchaudhuri		X	X	X
GKAIL	Grail Analytical Support	soumya kaychaudhuri				X

6. FULL ACKNOWLEDGMENTS

		ACKNOWLEDGMENTS (funding	
Cohort	Full Acknowledgments	agencies)	
AFOS	NIH research grants: R01 AG18728, R01HL088119, R01AR046838, U01 HL084756, P30DK072488, T32AG000262 and F32AR059469. The Old Order Amish Study was supported by NIH research grants, R01 AG18728, R01HL088119, R01AR046838, U01 HL084756. Partial funding was also provided by the Nutrition and Obesity Research Center of Maryland (P30DK072488). LUM'-A was supported by NIH training grants T32AG000262 and F32AR059469.	NIH research grants: R01 AG18728, R01HL088119, R01AR046838, U01 HL084756, P30DK072488, T32AG000262 and F32AR059469.	
AGES Reykjavik Study	The Age, Gene/Environment Susceptibility Reykjavik Study has been funded by NIH contract N01-AG-12100, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The Fracture Registry is funded by the Icelandic Heart Association .	NIH contract N01-AG-12100, the NIA Intramural Research Program, Hjartavend (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). Icelandic Heart Association .	
AOGC	We would like to thank all participants who provided DNA and clinical information for the AOGC. The AOGC was funded by the Australian National Health and Medical Research Council (Australia) (grant reference 511132). Funding was also received from the Australian Cancer Research Foundation and Rebecca Cooper Foundation (Australia). MAB is funded by a National Health and Medical Research Council (Australia) Principal Research Fellowship and ELD is funded by a National Health and Medical Research Council (Australia) Principal Research Fellowship and ELD is funded by a National Health and Medical Research Council (Australia) Career Development Award (569807). DME is supported by a Medical Research Council New Investigator Award (MRC G0800582) and JPK is funded by a Wellcome Trust PhD studentship (WT083431MA). IR is supported by the Health Research Council of New Zealand. The Sydney Twin Study and Tasmanian Older Adult Cohort were supported by the National Health and Medical Research Council, Australia. The help of Dr Joanna Makovey from the Sydney Twin Study is gratefully acknowledged. The Dubbo Osteoporosis Epidemiology Study was supported by the Australian National Health and Medical Research Council, MBF Living Well foundation, the Ernst Heine Family Foundation and from untied educational grants from Amgen, Eli Lilly International, GE-Lunar, Merck Australia, Novartis, Sanofi-Aventis Australia and Servier. The contribution from A/Prof Jacqueline R Center, A/Prof Tuan V Nguyen, Mr Sing C Nguyen, Ms Denia Mang, and Ms Ruth Toppler is gratefully acknowledged. The OPUS study was supported by grants from DPUS (Dr Christian Roux, Dr David Reid, Dr Claus Glüer, and Dr Dieter Felsenber); Ms Judith Finigan and Ms Selina Simpson. The assistance of Ms Fatma Gossiel (Sheffield) is gratefully acknowledged. The Hertfordshire Cohort Study was supported by grants from the Medical research Council UK & Arthritis Research UK. We thank the men and women who participated; Prof Cyrus Cooper; and the Herfordshire GPs w	National Health and Medical Research Council (Australia) (grant reference 511132 Australian Cancer Research Foundation and Rebecca Cooper Foundation (Australia). National Health and Medical Research Council (Australia). National Health and Medical Research Council (Australia) Career Development Award (S69807). Medical Research Council Australia) Career Development Award (S69807). Medical Research Council Australia) Career Development Award (S69807). Medical Research Council Australia). National Health and Medical Research Council, Australia. Australian National Health and Medical Research Council, MBF Linig Weil Gundation, the Ernst Hene Family Foundation and from untied educational grants from Amgen, Eli Lilly Internationa). GF-Lunar, Merk Australia, Novartis, Sandri-Aventis Sustralia and Servier. Medical Research Out UK & Arthrits. Research UK. The Victorian Health Promotion Foundation and the Geelong Region Medical Research Foundation, and the National Health and Medical Research Council, Australia (project grant 628582). Action Research UK.	
APOSS	We are extremely grateriul for the hard work of the clinical research staff in the Musculoskeletal Research Programme and to all the women who kindly participated in the study. Sample collection and analysis was supported in part by grants from the European Commission (QLRT-2001-02629) and the UK Food Standards Agency.	European Commission (QLRT-2001-02629) and the UK Food Standards Agency.	
AROS	The authors are very grateful to the participants and staff from the AROS Study.		
AUSTRIOS A and B	The AUSTRIOS studies are supported by the Medical University Graz. We thank Wilfried Renner, Elisabeth Lerchbaum, Verena Schwetz, Natascha Schweighofer, Markus Gugatschka, Daniela Walter-Finell, Lisa Stach, Astrid Fahrleitner-Pammer, Harald Dobnig and their colleagues for their help in creating the AUSTRIOS replication cohort. The authors are very grateful to the participants of the AUSTRIOS cohorts and the staff from the Medical University Graz.	BioPersMed (COMET K-project 825329), Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) and the Austrian Federal Ministry of Economics and Labour/the Federal Ministry of Economy, Family and Youth (BMWA/BMWF) and the Styrian Business Promotion Agency (SFG)	
BARCOS	Red de Envejecimiento y fragilidad RETICEF , Instituto Carlos III. Spanish Ministry of Education and Science (SAF2010-15707). Catalan Government (2009SGR971, 2009SGR818).	Red de Envejecimiento y fragilidad RETICEF, Instituto Carlos III. Spanish Ministry of Education and Science (SAF2010-15707). Catalan Government (2009SGR971, 2009SGR818).	
Cabrio-C, Cabrio-CC	Instituto de Salud Carlos III-Fondo de Investigaciones Sanitarias (PI 06/0034,PI08/0183). We acknowledge the inputs and help of Dr. J.L. Hernández, C. Valero, D. Nan, J. Castillo and the staff of the Centro de Salud Jose Barros. We also thank the technical assistance of C. Sañudo, J. Arozamena, V. Mijares and B. Paule.	Instituto de Salud Carlos III-Fondo de Investigaciones Sanitarias (PI 06/0034,PI08/0183).	
CAIFOS	This CAIFOS study was supported by the Healthway Health Promotion Foundation of Western Australia, Australasian Menopause Society and the Australian National Health and Medical Research Council Project Grants (254627, 303169 and 572604). The authors are grateful to participants of the CAIFOS Study.	Healthway Health Promotion Foundation of Western Australia, Australasian Menopause Society and the Australian National Health and Medical Research Council Project Grants (254627, 303169 and 572604).	
Calex-family	Mr. Leiting Xu, Ms. Shumei Cheng	Academy of Finland and Finnish Ministry of Education.	
CaMos	We thank all those participants in CaMos whose careful responses and attendance made this analysis possible. We also acknowledge the contributions of the centre directors and staff who have collected the DNA samples and phenotypic information. Canadian Institutes of Health Research (CIHR); Merck Frosst Canada Ltd.; Eli Lilly Canada Inc.; Novartis Pharmaceuticals Inc.; The Alliance: sanofi-aventis & Procter and Gamble Pharmaceuticals Canada Inc.; Servier Canada Inc.; Amgen Canada Inc.; The Dairy Farmers of Canada; and The Arthritis Society.	Canadian Institutes of Health Research (CIHR); Merck Frosst Canada Ltd.; Eli Lilly Canada Inc.; Novartis Pharmaceuticals Inc.; The Alliance: sanofi-aventis & Procter and Gamble Pharmaceuticals Canada Inc.; Servier Canada Inc.; Amgen Canada Inc.; The Dairy Farmers of Canada; and The Arthritis Society.	
снѕ	Cardiovascular Health Study: This CHS research was supported by NHLBI contracts N01-HC-85239, N01-HC-85079 through N01- HC-85086; N01-HC-35129, N01 HC-15103, N01 HC-55222, N01-HC-75150, N01-HC-45133 and NHLBI grants HL080295, HL075366, HL087652, HL105756 with additional contribution from NINDS. Additional support was provided through AG-023629, AG-15928, AG-20098, and AG-027058 from the NIA. See also http://www.chs-nhlbi.org/pi.htm. DNA handling and genotyping was supported in part by National Center for Research Resources grant M01-RR00425 to the Cedars-Sinai General Clinical Research Center Genotyping core and National Institute of Diabetes and Digestive and Kidney Diseases grant DK063491 to the Southern California Diabetes Endocrinology Research Center. Cedars-Sinai Board of Governors' Chair in Medical Genetics (JIR);	NHLBI contracts N01-HC-85239, N01-HC-85079 through N01-HC-85086; N01-HC- 35129, N01 HC-15103, M01 HC-55222, N01-HC-75150, N01-HC-45133 and NHLBI grants HL080295, HL075366, HL087652, HL105756 NHL08576, SAdditional support was provided through AG-02329, AG-15528, AG-20098, and AG-027058 from the NIA.National Center for Research Resources grant M01-R800425 to the Cedars- Sinal General Cinical Research Center Genotyping core and National Institute of Diabetes and Digestive and Kidney Diseases grant DK063491 to the Southern California Diabetes Endocrinology Research Center.	
deCODE	Funded by deCODE Genetics. We wish to thank the study volunteers for their contributions to this project, and the staff at the deCODE core facilities.	deCODE Genetics	
DOPS	The authors are very grateful to the participants and staff from the DOPS Study. We would like to thank Prof. Leif Mosekilde, Prof. Kim Brixen, Dr. Jens-Erik Beck Jensen and Dr. Pia Eiken as well as their institutions.		
EDOS	The EDOS study was supported by a grant from Arthritis Research UK (grant number 15389).	Arthritis Research UK (grant number 15389).	
EPIC-Norfolk	The UK's NIMR Biomedical Research Centre Grant to Cambridge contributed to the costs of genotyping. EPIC-Norfolk is funded by Cancer Research Campaign; Medical Research Council; Stroke Association; British Heart Foundation; Department of Health; Europe Against Cancer Programme Commission of the European Union and the Ministry of Agriculture, Fisheries and Food. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.EPIC- Norfolk is funded by Cancer Research Campaign; Medical Research Council; Stroke Association; British Heart Foundation; Department of Health; Europe Against Cancer Programme Commission of the European Union and the Ministry of Agriculture, Fisheries and Food. The UK's NIMR Biomedical Research Centre Grant to Cambridge contributed to the costs of genotyping. We thank in particular Mrs N Dalzell for coordination and DXA data collection, Robert Luben for data management, Serena Scollen and Alison Dunning for genotyping in GENOMOS, and Matt Sims and Steve Knighton for managing the EPIC DNA bank.	The UK's NIMR Biomedical Research Centre Grant. Cancer Research Campaign; Medical Research Council; Stroke Association; British Heart Foundation; Department of Health; Europe Against Cancer Programme Commission of the European Union and the Ministry of Agriculture, Fisheries and Food.	

		ACKNOWLEDGMENTS (funding
Cohort	Full Acknowledgments	agencies)
EPOS	LD Biomed 1 (BMHIC1920182, CIPDC1925012, ERBC1PDC1940229, ERBC1PDC1930105), MARCIai Research Council G9321536 and G9800062, Wellcome Trust collaborative Research Initiative 1995, MAFF AN0523, EU FP5 (QLK6-CT-2002-02629), Food Standards Agency N05046, GEFOS EU FP7 Integrated Project Grant Reference: 201865 The UK's NIMR Biomedical Research Centre Grant to Cambridge contributed to the costs of genotyping. The European Prospective Osteoporosis Study (1992-) was the prospective phase of the European Vertebral Osteoporosis Study, initiated by Alan J Silman who continued as the joint coordinator of EPOS. Particular thank are due to Terry O'Neill, Mark Lunt and Joe Finn for managing the collection of phenotypic data in Manchester and Jon Power for lab support. The PIs of the EPOS Centres contributing to the GENOMOS initiative and their excellent and enthusiastic staff are thanked for their energetic contributions to local fund-raising and excellent data collection efforts as well as collecting blood for DNA from their subjects: J Bruges Armas, A Bhalla, G Poor, R Nuti, A Lopes Vaz, L Benevolenskaya, S Grazio, K Weber, T Miazgowski, J J Stepan, J da Silva, P Masaryk, F Galan Galan, S Boonen, S Havelka, G Livritis. M Naves Diaz. R Perez Cano.	EU Biomed 1 (BMHICT920182, CIPDCT925012, ERBC1PDCT 940229, ERBC1PDCT930105), Medical Research Council G9321536 and G9800062, Wellcome Trust collaborative Research Initiative 1995, MAFF AN0523, EU FP5 (CLK6-CT-2002-02629), Food Standards Agency N05046, GEFOS EU FP7 Integrated Project Grant Reference: 201865 The UK's NIMR Biomedical Research Centre Gran to Cambridge.
ERF	The ERF study was supported by grants from the Netherlands Organisation for Scientific Research (NWO), Erasmus university medical center, the Centre for Medical Systems Biology (CMSB1 and CMSB2) of the Netherlands Genomics Initiative (NGI). We are grateful to all individuals and their relatives and general practitioners for their contributions and Jeannette Vergeer for the supervision of the laboratory work.	Netherlands Organisation for Scientific Research (NWO), Erasmus university medical center, the Centre for Medical Systems Biology (CMSB1 and CMSB2) of the Netherlands Genomics Initiative (NGI).
FLOS	F.I.R.M.O. Fondazione Raffaella Becagli.	F.I.R.M.O. Fondazione Raffaella Becagli.
Framingham Study Original Cohort, Framingham Offspring Study	The study was funded by grants from the US National Institute for Arthritis, Musculoskeletal and Skin Diseases and National Institute on Aging (R01 AR/AG 41398; DPK and R01 AR 050066; DK). The Framingham Heart Study of the National Heart, Lung, and Blood Institutes of Health and Boston University School of Medicine were supported by the National Heart, Lung, and Blood Institute's Framingham Heart Study (N01-HC-25195) and its contract with Affymetrix, Inc. for genotyping services (N02-HL-6-4278). Analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe) project. A portion of this research was conducted using the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center.	National Institute for Arthritis, Musculoskeletal and Skin Diseases and National Institute on Aging (R01 AR/AG 41398; DPK and R01 AR 050066; DK National Heart, Lung, and Blood Institute's Framingham Heart Study (N01-HC-25195) and its contract with Affymetrix, Inc. for genotyping services (N02-HL-6-4278).
GEOS	Financial support was provided by the Canadian Institutes for Health Research(Funding reference #86748). Infrastructure support to the various research centers was provided by the Fonds de Recherche en Santé du Quebec. François Rousseau holds a Fonds de la Recherche en Santé du Québec / MSSS Research Chair in Health Technology Assessment and Evidence Based Laboratory Medicine. We thank Cynthia Roy and Johanne Bussières for technical assistance.	Canadian Institutes for health research operating grant funding reference #86748.
GEVUR	Federal program of Ministry of Education and Science of Russian Federation "Scientific and pedagogical staff of innovative Russia" in 2009-2013 (state contract P-601) and Federal program "Research and development of prior directions of scientific- technological complex of Russia in 2007-2012" (state contract 16.512.11.2032). This work was supported by the Federal program of Ministry of Education and Science of Russian Federation "Scientific and pedagogical staff of innovative Russia" in 2009-2013 (state contract P-601) and Federal program "Research and development of prior directions of scientific-technological complex of Russia in 2007-2012" (state contract 16.512.11.2032). We are grateful to prof. Lesnyak O.M., the Head of Family Medicine Department of Ural State Medical Academy, Dr. Kojhemyakina Elena and Evstegneeva Ludmila for their help in collecting blood samples.	Federal program of Ministry of Education and Science of Russian Federation "Scientific and pedagogical staff of innovative Russia" in 2009-2013 (state contract P-601) and Federal program "Research and development of prior directions of scientific-technological complex of Russia in 2007-2012" (state contract 16.512.11.2032).
GOOD	Financial support was received from the Swedish Research Council (K2010-54X-09894-19-3, 2006-3832 and K2010-52X-20229-05- 3), the Swedish Foundation for Strategic Research, the ALF/LUA research grant in Gothenburg, the Lundberg Foundation, the Torsten and Ragnar Söderberg's Foundation, the Västra Götaland Foundation, the Göteborg Medical Society, the Novo Nordisk foundation, and the European Commission grant HEALTH-F2-2008-201865-GEFOS. We would like to acknowledge Maria Nethander at the genomics core facility at University of Gothenburg for statistical analyses. We would also like to thank Dr. Tobias A. Knoch, Luc V. de Zeeuw, Anis Abuseiris, and Rob de Graaf as well as their institutions the Erasmus Computing Grid, Rotterdam, The Netherlands, and especially the national German MediGRID and Services@MediGRID part of the German D-Grid, both funded by the German Bundesministerium fuer Forschung und Technology under grants #01 AK 803 A-H and #01 IG 07015 G for access to their grid resources. We would also like to thank Karol Estrada, Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands for advice regarding the grid resources.	Swedish Research Council (K2010-54X-09894-19-3, 2006-3832 and K2010-52X- 20229-05-3), the Swedish Foundation for Strategic Research, the ALF/LUA research grant in Gothenburg, the Lundberg Foundation, the Torsten and Ragnar Söderberg's Foundation, the Västra Götaland Foundation, the Göteborg Medical Society, the Novo Nordisk Foundation, and the European Commission grant HEALTH-F2-2008-201865-GEFOS.
GROS	The GROS study was supported partially by a research grant (Kapodistrias 2009, University of Athens, Greece). The authors are very grateful to Assoc. Prof. P. Georgouilas, the head of Nuclear Medicine Department, for bone markers analysis. We would like to thank the participants and staff from the Department of Orthopaedics, University Hospital of Thessalia, Larissa, Greece, as well as Mrs. S. Samara, Mr. C. Chassanidis and Mrs. C. Paliou for their help in collecting blood samples.	University of Athens, Greece (Kapodistrias 2009).
HCS	Medical Research Council; Arthritis Research UK; NIHR Musculoskeletal BRU Oxford; NIHR Nutrition BRU Southampton.	Medical Research Council; Arthritis Research UK; NIHR Musculoskeletal BRU Oxford; NIHR Nutrition BRU Southampton.
HealthABC	This research was supported in part by the Intramural Research Program of the NIH, National Institute on Aging. This research was supported by the U.S. National Institute of Aging (NIA) contracts N01AG62101, N01AG62103, and N01AG62106. The genome-wide association study was funded by NIA grant IR01AG032098 to Wake Forest University Health Sciences and genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C.We would like to thank the participants of the Health, Aging, and Body Composition Study.	The Intramural Research Program of the NIH, National Institute on Aging. U.S. National Institute of Aging (NIA) contracts N01AG62101, N01AG62103, and N01AG62106. NIA grant 1R01AG032098. The Center for Inherited Disease Research (CIDR). National Institutes of Health contract number HHSN268200782096C.
нкоѕ	This project is supported by Hong Kong Research Grant Council (HKU 768610M); The Bone Health Fund of HKU Foundation; The KC Wong Education Foundation; Small Project Funding (201007176237); Matching Grant, CRCG Grant and Osteoporosis and Endocrine Research Fund, and the Genomics Startegic Research Theme of The University of Hong Kong. The authors are very grateful to the participants and clinical staff at the Queen Mary Hospital of The University of Hong Kong.	Hong Kong Research Grant Council (HKU 768610M); The Bone Health Fund of HKU Foundation; The KC Wong Education Foundation; Small Project Funding (201007176237); Matching Grant, CRCG Grant and Osteoporosis and Endocrine Research Fund, and the Genomics Strategic Research Theme of The University of Hong Kong.
Hong Kong	Direct grant of the Chinese University of Hong Kong.	Direct grant of the Chinese University of Hong Kong.
Indiana	National Institutes of Health grants P01 AG-18397 and M01 RR-00750. Genotyping services were provided by CIDR. CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C. This research was supported in part by the Intramural Research Program of the NIH, National Library of Medicine.We thank the individuals who participated in this study, as well as the study coordinators, without whom this work would not have been possible. This work was supported by National Institutes of Health grants P01 AG-18397 and M01 RR- 00750. Genotyping services were provided by CIDR. CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C. This research was supported in part by the Intramural.Research Program of the NIH, National Library of Medicine.	National Institutes of Health grants P01 AG-18397 and M01 RR-00750. Intramural Research Program of the NIH, National Library of Medicine.
KorAMC	HIIS WORK was Supported by a grant of the Korea Health 21 K&D Project, Ministry of Health & Welfare, Republic of Korea (Project NO.: A010252), and by a grant of the Korea Healthcare technology R&D Project, Ministry for Health, Welfare and Family Affairs (Project NO.: A110536).	A grant of the Korea Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea (Project No.: A010252); A grant of the Korea Healthcare technology R&D Project, Ministry for Health, Welfare and Family Affairs (Project No.: A110536).
LASA	The Longitudinal Aging Study Amsterdam is largely supported by a grant from the Netherlands Ministry of Health Welfare and Sports, Directorate of Long-Term Care.	Grant from the Netherlands Ministry of Health Welfare and Sports, Directorate of Long-Term Care.

		ACKNOWLEDGMENTS (funding
Cohort	Full Acknowledgments	agencies)
ManMC (Manitoba McGill Fracture Study)	The authors are indebted to Manitoba Health for the provision of data (HIPC File No. 2008/2009-12). The results and conclusions are those of the authors, and no official endorsement by Manitoba Health is intended or should be inferred. The authors would also like to thank Ms. Linda Ward for coordinating recruitment activities related to the Manitoba Cohort and Ms Anna Kelly Sampson for coordinating the study from Montreal. In addition we thank Renee Atallah for her efforts with data entry. Study funded by Canadian Foundation for Innovation, the Canadian Institutes of Health Research (CIHR), Fonds de la recherche en santé du Québec and the Jewish General Hospital, Montreal, Canada.	Canadian Foundation for Innovation, the Canadian Institutes of Health Research (CIHR), Fonds de la recherche en santé du Québec and the Jewish General Hospita Montreal, Canada.
MrOS Sweden	Financial support was received from the Swedish Research Council (K2010-54X-09894-19-3, 2006-3832), the Swedish Foundation for Strategic Research, the ALF/LUA research grant in Gothenburg, the Lundberg Foundation, the Torsten and Ragnar Söderberg's Foundation, the Västra Götaland Foundation, the Göteborg Medical Society, the Novo Nordisk foundation and the European Commission grant HEALTH-F2-2008-201865-GEFOS.	Swedish Research Council (K2010-54X-09894-19-3, 2006-3832), the Swedish Foundation for Strategic Research, the ALF/LUA research grant in Gothenburg, the Lundberg Foundation, the Torsten and Ragnar Söderberg's Foundation, the Västra Gotaland Foundation, the Göteborg Medical Society, the Novo Nordisk foundation and the European Commission grant HEALTH-F2-2008-201865-GEFOS.
NOSOS	We are grateful to everyone who helped with NOSOS study recruitment, data and sample collection (radiographers, research nurses, administration staff, clinicians, technicians and research assistants) at both the Aberdeen and Dingwall centres, as well as Dr Malcolm Steven, who assisted with original participant access at the Dingwall centre. Finally, we are extremely grateful to all the women who took part in this study.	
OAS	Eveline Boudin is thanked for managing DNA samples and the World Anti-Doping Agency, the Danish Ministry of Culture, and Institute of Clinical Research of the University of Southern Denmark are thanked for financial support.	World Anti-Doping Agency, the Danish Ministry of Culture, Institute of Clinical Research of the University of Southern Denmark.
ORCADES	ORCADES was supported by grants from the Chief Scientist Office of the Scottish Government, the Royal Society, Arthritis Research UK (grant number 17539) and the European Union framework program 6 EUROSPAN project (contract no. ISHG-CT- 2006-018947). DNA extractions were performed at the Wellcome Trust Clinical Research Facility in Edinburgh. We would like to acknowledge the invaluable contributions of Lorraine Anderson and the research nurses in Orkney, the administrative team in Edinburgh and the people of Orkney.	Chief Scientist Office of the Scottish Government, the Royal Society, Arthritis Research UK (grant number 17539) and the European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947).
OSTEOS	We thank all participants for given their consent to the study	
PROSPER/PHASE study	The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° HEALTH-F2-2009-223004 PHASE.	European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° HEALTH-F2-2009-223004 PHASE.
RSI,RSII,RSIII	The GWA study was funded by the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911- 03-012), the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Consortium for Healthy Aging (NCHA) project nr. 050-060-810. We thank Pascal Arp, Mia Jhamai, Dr Michael Moorhouse, Marijn Verkerk, and Lisbeth Herrera for their help in creating the GWAS database. We also thank Lisette Stolk for her support creating the fracture dataset and members of the GIANT consortium for sharing scripts used in this study. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are very grateful to the participants and staff from the Rotterdam Study, particularly L. Buist and J.H. van den Boogert and also the participantig general practitioners and pharmacitis. We would like to thank Dr. Tobias A. Knoch, Luc V. de Zeeuw, Anis Abuseiris, and Rob de Graaf as well as their institutions the Erasmus Computing Grid, Rotterdam, The Netherlands, and especially the national German MediGRID and Services@MediGRID part of the German D-Grid, both funded by the German Bundesministerium fuer Forschung und Technology under grants #01 AK 803 A-H and #01 IG 07015 G for access to their ard resources.	Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012); Research Institute for Diceases in the Elderly (014 93-015; RIDE2); Netherlands Genomics Initiative/Netherlands Consortium for Healthy Aging (050-060-810); German Bundesministerium fuer Forschung und Technology under grants #01 AK 803 A-H and # 01 IG 07015 G;
TUK1, TUK23	NIHR Biomedical Research Centre (grant to Guys' and St. Thomas' Hospitals and King's College London); the Chronic Disease Research Foundation; Canadian Institutes of Health Research, the Canadian Foundation for Innovation, the Fonds de la Recherche en Santé Québec, The Lady Davis Institute, the Jewish General Hospital and Ministère du Développement économique, de l'Innovation et de l'Exportation du Quebec. Dr. Frances Williams for her contributions to phenotyping in this cohort.	NIHR Biomedical Research Centre (grant to Guys' and St. Thomas' Hospitals and King's College London); the Chronic Disease Research Foundation; Wellcome Trust Canadian Institutes of Health Research, the Canadian Foundation for innovation, the Fonds de la Recherche en Sante Québec, The Lady Davis Institute, the Jewish General Hospital and Ministère du Développement économique, de l'Innovation et de l'Exportation du Quebec.
UFO	The Umeå Fracture and Osteoporosis Study (UFO) is supported by the Swedish Research Council (K20006-72X-20155013), the Swedish Sports Research Council (87/06), the Swedish Society of Medicine, the Kempe-Foundation (JCK-1021), and by grants from the Medical Faculty of Umeå Unviersity (ALFVLL:968:22-2005, ALFVLL:937-2006, ALFVLL:223:11-2007, ALFVLL:78151- 2009) and from the county council of Västerbotten (Spjutspetsanslag VLL:159:33-2007). We thank Åsa Ågren, Hubert Sjödin and Magnus Hellström for skullfull data processing and for help creating the UFO database and Kerstin Enquist and Ann-Marie Åhrén for their help in preparing samples for genotyping. We would also like to thank the participants and staff from the NSHDS cohort study and all collaborators in the UFO study group.	Swedish Research Council (K20006-72X-20155013), the Swedish Sports Research Council (87/06), the Swedish Society of Medicine, the Kempe-Foundation (JCK- 1021), and by grants from the Medical Faculty of Umeå Univiersity (ALFVLL:968:22- 2005, ALFVL-937-2006, ALFVLL:223:11-2007, ALFVL::78151-2003) and from the county council of Västerbotten (Spjutspetsansiag VLL:159:33-2007)
WGHS	The WGHS is supported by HL 043851 and HL69757 from the National Heart, Lung, and Blood Institute and CA 047988 from the National Cancer Institute, the Donald W. Reynolds Foundation and the Fondation Leducq, with collaborative scientific support and funding for genotyping provided by Amgen.	HL 043851 and HL69757 from the National Heart, Lung, and Blood Institute and CA 047988 from the National Cancer Institute, the Donald W. Reynolds Foundation and the Fondation Leducq. Amgen.
Young Finns study (YFS)	The Young Finns Study has been financially supported by the Academy of Finland: grants 126925, 121584, 124282, 129378 (Salve), 117787 (Gendi), and 41071 (Skidi), the Social Insurance Institution of Finland, Kuopio, Tampere and Turku University Hospital Medical Funds (grant 9M048 for TeLeht), Juho Vainio Foundation, Paavo Nurmi Foundation, Finnish Foundation of Cardiovascular Research and Finnish Cultural Foundation, Tampere Tuberculosis Foundation and Emil Aaltonen Foundation (T.L).The expert technical assistance in the statistical analyses by Irina Lisinen is gratefully acknowledged.	Academy of Finland: grants 126925, 121584, 124282, 129378 (Salve), 117787 (Gendi), and 41071 (Skidi), the Social Insurance Institution of Finland, Kuopio, Tampere and Turku University Hospital Medical Funds (grant 9M048 for Teleht), Juho Vainio Foundation, Paavo Nurmi Foundation, Finnish Foundation of Cardiovascular Research and Finnish Cultural Foundation, Tampere Tuberculosis Foundation and Emil Aaltonen Foundation (T.L).