Totopotensamides, Polyketide-Cyclic Peptide Hybrids from a Mollusk-Associated Bacterium *Streptomyces* sp.

Zhenjian Lin,[†] Malem Flores,[‡] Imelda Forteza,[‡] Niel Henriksen, [†] Gisela P. Concepcion,[‡] Gary Rosenberg, [§] Margo G. Haygood,[⊥] Baldomero M. Olivera,[†] Alan Light,[⊽] Thomas E. Cheatham, III, [†] and Eric W. Schmidt^{*,†,↓}

[†] College of Pharmacy, Medicinal Chemistry, Salt Lake City, Utah 84112 USA.

^{*}Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines.

[§]Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103. USA

^LDepartment of Environmental and Biomolecular Systems, OGI School of Science & Engineering,

Oregon Health & Science University, Beaverton, Oregon 97006, USA.

¹Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA

⁷Department of Anesthesiology, University of Utah, Salt Lake City, Utah 84112, USA.

*To whom correspondence should be addressed. Phone: (801) 585-5234. Fax: (801) 585-9119. E-mail: ews1@utah.edu

- Figure S1. ¹H NMR spectrum of compound 1 in DMSO- *d*₆.
- Figure S2. ¹H NMR spectrum of compound 1 in CD₃OD.
- Figure S3. ¹³C NMR spectrum of compound 1 in DMSO- *d*₆.
- Figure S4. HSQC spectrum of compound 1 in DMSO- d_6 .
- Figure S5. HMBC spectrum of compound 1 in DMSO- d_6 .
- Figure S6. ¹H-¹H COSY spectrum of compound 1 in DMSO- d₆.
- Figure S7. NOESY spectrum of compound 1 in DMSO- d_6 .
- Figure S8. 1D TOCSY spectrum of compound 1 in CD₃OD.
- Figure S9. ¹H NMR spectrum of compound 2 in DMSO- d_6 .
- Figure S10. HSQC spectrum of compound 2 in DMSO- d_6 .
- Figure S11. HMBC spectrum of compound 2 in DMSO- d_6 .
- Figure S12. ¹H-¹H COSY spectrum of compound 2 in DMSO- *d*₆.
- Figure S13. LC-MS Analysis of D/L-FDLA Derivatives.
- Figure S14. LC-MS Analysis of L-FDAA Derivatives.
- Figure S15. HRESIMS spectra of compounds 1 and 2.
- Figure S16. ¹H NMR spectrum of FDLA derivatives of Phg and DHPhg in CD3OD- *d*₄.
- Table S1. The chemical differences of the α protons of the Leu and Phgs.

Figure S1.¹H NMR spectrum of compound 1 in DMSO-*d*₆.

Figure S2. ¹H NMR spectrum of compound 1 in CD₃OD.

Figure S3. ¹³C NMR spectrum of compound 1 in DMSO- d_6 .

Figure S5. HMBC spectrum of compound 1 in DMSO- d_6 .

Figure S6. ¹H-¹H COSY spectrum of compound 1 in DMSO- d_6 .

Figure S7. NOESY spectrum of compound 1 in DMSO- d_6 .

Figure S9. ¹H NMR spectrum of compound 2 in DMSO- d_6 .

Figure S10. HSQC spectrum of compound 2 in DMSO- d_6 .

Figure S11. HMBC spectrum of compound 2 in DMSO- d_6 .

Figure S12.¹H-¹H COSY spectrum of compound 2 in DMSO- d₆.

Figure S13. LC-MS Analysis of D/L-FDLA Derivatives.

Hydrolysate of **1** was reacted with L-FDLA (top) and D-FDLA (bottom), showing are extracted ion chromatographs.

B) D-ClPhg in 1: m/z 524 [M – H]⁻

C) HPLC analysis of D/L-FDLA Derivatives for standard D-Phg

D) LC-MS analysis of D/L-FDLA Derivatives for standard L-3,5-Dihydroxyphenylglycine (DHPhg)

F) L-Ile in 1: m/z 424 $[M - H]^{-}$

G) D-Dab in 1: m/z 705 $[M - H]^{-}$

H) LC-MS analysis of D/L-FDLA Derivatives for standard 2*S*,3*S*-Dab and 2*S* 3*R*-Dab.

Figure S14. LC-MS Analysis of L-FDAA Derivatives.

Figure S15. HRESIMS spectra of compounds 1 and 2.

S-DHPhg-R-FDLA S-DHPhg-S-FDLA R-Phg-S-FDLA 1 X R-Phg-R-FDLA X 9 N 8 በ 70 6 0 50 4 0 3 0 20 1 0 S-DHPhg-R-FDLA DHPhg αH $\text{Leu}\,\alpha\,H$ 4 S-DHPhg-S-FDLA DHPhg α H Leu αH -3 R-Phg-S-FDLA Phg $\alpha \, H$ -2 Leu αH R-Phg-R-FDLA $\mathsf{Phg}\, \alpha\, H$ -1 $\text{Leu}\,\alpha\,H$ 4.7 f1 (ppm) 5.5 5.1 4.3 3.9

Figure S16. ¹H NMR spectrum of FDLA derivatives of Phg and DHPhg in CD3OD- *d*₄.

Table S1. The chemical difference of the α protons of the Leu and Phgs.

	S-DHPhg-R-FDLA	S-DHPhg-S-FDLA	Δδ1	R-Phg-S-FDLA	R-Phg-R-FDLA	Δδ2
αH-Leu (ppm)	3.7794	4.0153	-0.2359	3.5955	3.9494	-0.3539
αH-Phgs (ppm)	5.0252	5.1045	-0.0793	5.2400	5.3738	-0.1338