# Nickel-Mediated Hydrogenolysis of C-O Bonds of Aryl Ethers: What Is the Source of the Hydrogen?

Paul Kelley, Sibo Lin, Guy Edouard, Michael W. Day and Theodor Agapie\*

Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. MC 127-72, Pasadena, CA, 91125, USA

## Supporting Information

| I. Experimental Details                                                                                                                                                                      |              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| General considerations                                                                                                                                                                       | S 3          |
| Synthesis of bis(2'-bromophenyl)-4-tert-butyl-2-methoxybenzene                                                                                                                               | S 3          |
| Synthesis of 1,3-bis(2 <sup>2</sup> -diisopropylphosphino)-4-tert-butyl-2-methoxybenzene (1a)                                                                                                | S 4          |
| Synthesis of [1,3-bis(2'-diisopropylphosphino)-4-tert-butyl-2-methoxybenzene]nickel(0) (2a)                                                                                                  | S 4          |
| Synthesis of [1,3-bis(2'-diisopropylphosphino)-4-tert-butyl-2-methoxybenzene]nickel(0)carbonyl (6a)                                                                                          | S 5          |
| Synthesis of 1,3-bis(2'-bromophenyl)-2-methoxy-4-nitrobenzene                                                                                                                                | <b>S 6</b>   |
| Synthesis of 4-amino-1,3-bis(2 -bromophenyl)-2-methoxybenzene                                                                                                                                | <b>S 6</b>   |
| Synthesis of 1,3-bis(2 <sup>2</sup> -bromophenyl)-4-dimethylamino-2-methoxybenzene                                                                                                           | <u>86</u>    |
| Synthesis of 1,3-bis(2 <sup>2</sup> -disopropylphosphino)-4-dimethylamino-2-methoxybenzene (1b)                                                                                              | S 7          |
| Synthesis of [1,3-bis(2'-disopropyiphosphino)-4-dimethylamino-2-methoxybenzenejnickel(0) (2b)                                                                                                | 87           |
| Synthesis of $[1,3-bis(2]-discopropy(phospnino)-4-dimethylaminophenyi]nickel(11)methoxide (3b)$                                                                                              | 58           |
| Synthesis of [1,5-bis(2 -discopropyphosphino)-4-dimethylaminophenyl]nickel(11)nydride (46)<br>Swrthesis of [1,2-bis(2) -discopropyphosphino) 4 dimethylaminophenyl]nickel(10) is did ( $(5)$ | 50           |
| Synthesis of $[1,3-bis(2,-disopropylphosphino)-4-dimethylaminophenyl[nickel(i1)]outde (5)Synthesis of [1,3-bis(2,-disopropylphosphino)] 4 dimethylaminophenyenlinickel(i1)]outde (5)$        | 59           |
| Synthesis of [1,5-bis(2]-unsopropylphosphino)-4-unnethylaninobenzenetjincket(0)carbonyl (0b)<br>Baseficia of Divite d_strictbulkilone                                                        | 59           |
| Reaction of 2D with mothened                                                                                                                                                                 | S 10<br>S 10 |
| Reaction of 4b with inclusion                                                                                                                                                                | S 10         |
| Reaction of 4b with company de                                                                                                                                                               | S 10         |
| Reaction of 5 with sodium methavide                                                                                                                                                          | S 10         |
| Quantification of H <sub>2</sub> in the conversion of 2b to 6b                                                                                                                               | \$ 10        |
|                                                                                                                                                                                              | 511          |
| II. Crystallographic Data                                                                                                                                                                    |              |
| Table S1. Crystal and refinement data for 2b. 5, and 6a                                                                                                                                      | S 11         |
| Figure S1. Structural drawing of 2b                                                                                                                                                          | S 13         |
| Table S2. Atomic coordinates and equivalent isotropic parameters for 2b                                                                                                                      | S 14         |
| Table S3. Selected bond lengths and angles for 2b                                                                                                                                            | S 14         |
| Table S4. Bond lengths and angles for 2b                                                                                                                                                     | S 15         |
| Table S5. Anisotropic displacement parameters for 2b                                                                                                                                         | S 16         |
| Figure S2. Structural drawing of 5                                                                                                                                                           | S 17         |
| Figure S3. Alternate structural drawing of 5                                                                                                                                                 | S 18         |
| Table S6. Atomic coordinates and equivalent isotropic parameters for 5                                                                                                                       | S 19         |
| Table S7. Selected bond lengths and angles for 5                                                                                                                                             | S 19         |
| Table S8. Bond lengths and angles for 5                                                                                                                                                      | S 20         |
| Table S9. Anisotropic displacement parameters for 5                                                                                                                                          | S 21         |
| Figure S4. Structural drawing of 6a                                                                                                                                                          | S 22         |
| Table S10. Atomic coordinates and equivalent isotropic parameters for 6a                                                                                                                     | S 23         |
| Table S11. Selected bond lengths and angles for 6a                                                                                                                                           | S 23         |
| Table S12. Bond lengths and angles for 6a                                                                                                                                                    | S 23         |
| Table S13. Anisotropic displacement parameters for 6a                                                                                                                                        | S 25         |
| III. Nuclear Magnetic Resonance Spectra                                                                                                                                                      |              |
| Figure S5. H NMK spectrum of 1a.                                                                                                                                                             | S 26         |
| Figure S6. "C{H} NMK spectrum of 1a.                                                                                                                                                         | S 26         |
| Figure 57. 17 H} NMK spectrum of 1a.                                                                                                                                                         | S 26         |
| Figure 58. II INMK Spectrum of 22.                                                                                                                                                           | 5 27         |
| Figure 59. $U_{\rm f}$ H <sub>3</sub> NWK spectrum of 1a.                                                                                                                                    | S 27         |
| rigure 510. "F{ H} NMK spectrum of 2a.                                                                                                                                                       | 52/          |
| Figure 511, grisQC spectrum of Za.                                                                                                                                                           | 5 28         |
| rigure 512, gHIMBC spectrum of 2a.                                                                                                                                                           | 5 29         |
| Figure 513. II TAMR Spectrum of 6a                                                                                                                                                           | 5 30         |
| Figure 514. Ci fij fivire spectrum of va.                                                                                                                                                    | 5 30         |

| Figure S15. <sup>31</sup> P{ <sup>1</sup> H} NMR spectrum of 6a.      | S 30 |
|-----------------------------------------------------------------------|------|
| Figure S16. <sup>1</sup> H NMR spectrum of 1b 25°C.                   | S 31 |
| Figure S17. <sup>1</sup> H NMR spectrum of 1b 75°C.                   | S 31 |
| Figure S18. <sup>13</sup> C{ <sup>1</sup> H} NMR spectrum of 1b.      | S 31 |
| Figure S19. <sup>31</sup> P{ <sup>1</sup> H} NMR spectrum of 1b 25°C. | S 32 |
| Figure S20. <sup>31</sup> P{ <sup>1</sup> H} NMR spectrum of 1b 75°C. | S 32 |
| Figure S21. <sup>1</sup> H NMR spectrum of 2b.                        | S 32 |
| Figure S22. <sup>13</sup> C{ <sup>1</sup> H} NMR spectrum of 2b.      | S 33 |
| Figure S23. <sup>31</sup> P{ <sup>1</sup> H} NMR spectrum of 2b.      | S 33 |
| Figure S24. <sup>1</sup> H NMR spectrum of 3b.                        | S 33 |
| Figure S25. <sup>13</sup> C{ <sup>1</sup> H} NMR spectrum of 3b.      | S 34 |
| Figure S26. <sup>31</sup> P{ <sup>1</sup> H} NMR spectrum of 3b.      | S 34 |
| Figure S27. <sup>1</sup> H NMR spectrum of 4b.                        | S 34 |
| Figure S28. <sup>1</sup> H NMR spectrum of 4b.                        | S 35 |
| Figure S29. <sup>13</sup> C{ <sup>1</sup> H} NMR spectrum of 4b.      | S 35 |
| Figure S30. <sup>31</sup> P{ <sup>1</sup> H} NMR spectrum of 4b.      | S 35 |
| Figure S31. <sup>1</sup> H NMR spectrum of 5.                         | S 36 |
| Figure S32. <sup>13</sup> C{ <sup>1</sup> H} NMR spectrum of 5.       | S 36 |
| Figure S33. <sup>31</sup> P{ <sup>1</sup> H} NMR spectrum of 5.       | S 36 |
| Figure S34. <sup>1</sup> H NMR spectrum of 6b.                        | S 37 |
| Figure S35. <sup>13</sup> C{ <sup>1</sup> H} NMR spectrum of 6b.      | S 37 |
| Figure S36. <sup>31</sup> P{ <sup>1</sup> H} NMR spectrum of 6b.      | S 37 |

| IV. Hydrogenolysis Studies                                                                                                      |      |
|---------------------------------------------------------------------------------------------------------------------------------|------|
| General considerations                                                                                                          | S 38 |
| Synthesis of 2-(1,1-dideuterohexyloxy)naphthalene                                                                               | S 38 |
| Figure S37. MS of 2-deuteronaphthalene                                                                                          | S 38 |
| Synthesis of 2-deuteronaphthalene                                                                                               | S 38 |
| Hydrogenolysis of 2-methoxynaphthalene (and deuterated variants)                                                                | S 38 |
| Figure S38. MS of naphthalene from hydrogenolysis of 2-methoxynaphthalene under $H_2$                                           | S 39 |
| Figure S39. MS of naphthalene from hydrogenolysis of 2-(trideuteromethoxy)naphthalene under H <sub>2</sub>                      | S 39 |
| Figure S40. MS of naphthalene from hydrogenolysis of 2-methoxynaphthalene under ${ m D}_2$                                      | S 39 |
| Hydrogenolysis of 2-(n-hexyloxy)naphthalene (and deuterated variants)                                                           | S 40 |
| Figure S41. MS of naphthalene from hydrogenolysis of 2-(n-hexyloxy)naphthalene under $H_2$                                      | S 40 |
| Figure S42. MS of naphthalene from hydrogenolysis of $2-(1,1-d_2-n-hexyloxy)$ naphthalene under H <sub>2</sub>                  | S 41 |
| Figure S43. MS of naphthalene from hydrogenolysis of 2-(n-hexyloxy)naphthalene under $D_2$                                      | S 41 |
| Exposure of naphthalene to hydrogenolysis conditions under D <sub>2</sub>                                                       | S 41 |
| Figure S44. MS of naphthalene from exposure to hydrogenation conditions under ${ m D}_2$                                        | S 41 |
| Derivatization of hexanol byproducts                                                                                            | S 41 |
| Figure S45. MS of (hexyloxy)trimethylsilane from reaction of 2-(n-hexyloxy)naphthalene under $ m H_2$                           | S 42 |
| Figure S46. MS of (hexyloxy)trimethylsilane from reaction of 2-(1,1-d <sub>2</sub> -n-hexyloxy)naphthalene under H <sub>2</sub> | S 42 |
| Figure S47. MS of (hexyloxy)trimethylsilane from reaction of 2-(n-hexyloxy)naphthalene under $\mathrm{D}_2$                     | S 42 |
| Reaction of 2-methoxynaphthalene under hydrogenolysis conditions with $H_2$ pre-activation                                      | S 43 |
| V. Triethylsilane Reductive Cleavage Studies                                                                                    |      |
| General considerations                                                                                                          | S 44 |
| Table S14. Results of various labeling studies with triethylsilane                                                              | S 44 |
| References                                                                                                                      | S 44 |

#### I. Experimental Details

General considerations: Unless otherwise specified, all compounds were manipulated using a glove box under a nitrogen atmosphere. Solvents for all reactions were dried by Grubbs' method.<sup>1</sup> Benzene- $d_6$  was purchased from Cambridge Isotope Laboratories and vacuum distilled from sodium benzophenone ketyl. Chloroform-d was also purchased from Cambridge Isotope Laboratories and vacuum distilled from calcium hydride. Alumina and Celite were activated by heating under vacuum at 200 °C for 12 h. 4-(tertbutyl)-2,6-diiodophenol, 5-(tert-butyl)-1,3-diiodo-2-methoxybenzene, its isotopolog with a deuterated methoxy ether, 2,6-diiodo-4-nitrophenol, 1,3-diiodo-2-methoxy-5-nitrobenzene, and its isotopolog with a deuterated methoxy ether were synthesized following literature procedures<sup>2-5</sup>. All other materials were used as received. <sup>1</sup>H, <sup>13</sup>C, and <sup>31</sup>P NMR spectra were recorded on a Varian Mercury 300 spectrometer at ambient temperature, unless denoted otherwise. Chemical shifts are reported with respect to internal solvent: 7.16 ppm and 128.06 (t) ppm ( $C_6D_6$ ) and 7.26 ppm and 77.16 ppm (CDCl<sub>3</sub>) for <sup>1</sup>H and <sup>13</sup>C NMR data, respectively. <sup>31</sup>P NMR chemical shifts are reported with respect to the instrument solvent lock when a deuterated solvent was used. IR spectra were recorded on a Thermo-Fisher Scientific Nicolet 6700 FT-IR spectrometer. Gas chromatography-mass spectrometry (GC-MS) analysis was performed upon filtering the sample through a plug of silica gel. Fast atom bombardment-mass spectrometry (FAB-MS) analysis was performed with a JEOL JMS-600H high resolution mass spectrometer. Elemental analysis was conducted by Midwest Microlab, LLC (Indianapolis, IN). In the following complexes, the carbons of the terphenyl backbone are assigned using the following scheme:



#### Synthesis of bis(2'-bromophenyl)-4-tert-butyl-2-methoxybenzene.



Suzuki coupling conditions were adapted from a previously published procedure.<sup>6</sup> 5-(tert-butyl)-1,3diiodo-2-methoxybenzene (2.48 g, 6.58 mmol, 1 equiv), 2-bromo-phenylboronic acid (2.77 g, 13.80 mmol, 2.1 equiv),  $K_2CO_3$  (5.46 g, 39.47 mmol, 6 equiv), 140 mL toluene, 40 mL ethanol, and 40 mL water were added to a 500 mL Schlenk tube fitted with a screw-in Teflon stopper. The mixture was degassed by three freeze-pump-thaw cycles, after which Pd(PPh<sub>3</sub>)<sub>4</sub> (380 mg, 0.38 mmol, 0.05 equiv) was added as a solid with a counterflow of nitrogen. The reaction vessel was then placed in an oil bath preheated to 65°C. After stirring for 12 h, the reaction mixture was allowed to cool to room temperature, concentrated via rotary evaporation and diluted with 200 mL H<sub>2</sub>O. The solution was extracted with three portions of CH<sub>2</sub>Cl<sub>2</sub>. The combined organic fractions were dried over MgSO<sub>4</sub>, filtered and concentrated via rotary evaporation. The product (Kugelrohr, 10 mTorr, 200°C) was then distilled from biphenyl impurities (Kugelrohr, 10 mTorr, 90°C) to afford 2.48 g (79% yield, 5.22 mmol) of the desired terphenyl dibromide as a white solid. <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  7.69 (d, 2H, Ar-*H*<sub>6</sub>), 7.46 (d, 2H, Ar-*H*<sub>9</sub>), 7.35 (t, 2H, Ar-*H*<sub>7</sub>), 7.29 (s, 2H, Ar-*H*<sub>3</sub>), 7.20 (td, 2H, Ar-*H*<sub>8</sub>), 3.15 (s, 3H, OCH<sub>3</sub>), 1.37 (s, 2H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C {<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 126 MHz)  $\delta$  152.49 (s, Ar-C<sub>2</sub>), 145.50 (s, Ar-C<sub>1</sub>), 140.17 (s, Ar-C<sub>4</sub>), 133.92 (s, Ar-C<sub>1</sub>), 132.78 (s, Ar-C<sub>6</sub>), 131.89 (s, Ar-C<sub>9</sub>), 128.83 (s, Ar-C<sub>7</sub>), 128.49 (s, Ar-C<sub>3</sub>), 127.01 (s, Ar-C<sub>8</sub>), 124.05 (s, Ar- $C_5$ ), 60.69 (s, OCH<sub>3</sub>), 34.56 (s,  $C(CH_3)_3$ ), 31.54 (s,  $C(CH_3)_3$ ). MS (m/z): calcd, 474.0017 (M+); found 474.0031 (FAB+, M+ $^{\bullet}$ ).



Synthesis of [1,3-bis(2'-diisopropylphosphino)-4-tert-butyl-2-methoxybenzene] (1a).

A mixture of bis(2'-bromophenyl)-4-tert-butyl-2-methoxybenzene (1.00 g, 2.11 mmol, 1 equiv) and THF (30 mL) in a 100 mL round bottom was frozen in a cold well. The vial was removed from the cold well and 'BuLi in pentane (1.7 M, 5.2 mL, 8.86 mmol, 4.2 equiv) was added via syringe to the thawing solution. The resulting dark orange solution was allowed to warm to room temperature while stirring for 20 minutes before being frozen again. Separately, a 20 mL scintillation vial was charged with a solution of chlorodiisopropylphosphine (0.68 g, 4.43 mmol, 2.1 equiv) in hexanes (5 mL) and frozen. The thawing chlorophosphine solution was added dropwise to the just-thawed lithiation reaction mixture. The reaction mixture was allowed to warm to and stir at room temperature for 2 hours. The volatile materials were then removed under vacuum and the residue was dissolved in hexanes and filtered through Celite. The volatiles were removed from the filtrate under reduced pressure, and the resulting yellow oil was redissolved in hexanes and filtered through Celite a second time. The volatiles were removed from the filtrate under reduced pressure once more, and the resulting yellow oil was redissolved in hexanes and filtered through a bed of alumina. Removal of volatile materials in vacuo yielded 1a as a colorless oil (0.68 g, 1.20 mmol) in 57% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.59 (d, 2H, Ar-H), 7.48 (m, 2H, Ar-H), 7.35 (m, 4H, Ar-H), 7.11 (m, 2H, Ar-H), 3.02 (m, 3H, OCH<sub>3</sub>), 2.17 (hept, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.98 (sept, 2H,  $CH(CH_2)_3$ , 1.33 (s, 9H,  $C(CH_3)_3$ ), 1.06 (m, 18H,  $CH(CH_3)_3$ ), 0.89 (qr, 6H,  $CH(CH_3)_3$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) & 152.66 (s, Ar-C), 148.03 (s, Ar-C), 147.73 (s, Ar-C), 143.19 (s, Ar-C), 136.30 (d, Ar-C), 134.79 (d, Ar-C), 132.36 (s, Ar-C), 132.34 (d, Ar-C), 131.29 (d, Ar-C), 130.92 (s, Ar-C), 129.53 (s, Ar-C), 129.14 (d, Ar-C), 128.02 (s, Ar-C), 127.77, (s, Ar-C), 126.38 (s, Ar-C), 59.81 (s, OCH<sub>3</sub>), 34.41 (s, C(CH<sub>3</sub>)<sub>3</sub>), 31.74 (s, C(CH<sub>3</sub>)<sub>3</sub>), 26.38 (d, CH(CH<sub>3</sub>)<sub>3</sub>), 24.64 (d, CH(CH<sub>3</sub>)<sub>3</sub>), 20.45 (m, CH(CH<sub>2</sub>)<sub>3</sub>).  $^{31}P{^{1}H}$  NMR (121 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  -3.10 (s), -4.13 (s). MS (m/z): calcd, 549.3415 (M+); found 549.3431 (FAB+, M+).

#### Synthesis of [1,3-bis(2'-diisopropylphosphino)-4-tert-butyl-2-methoxybenzene]nickel(0) (2a).



A colorless solution of diphosphine **1a** (0.51 g, 0.92 mmol, 1 equiv) in THF (3 mL) was added dropwise to a slurry of Ni(COD)<sub>2</sub> (0.25 g, 0.92 mmol, 1 equiv) in THF (2 mL) in a 20 mL scintillation vial charged

with a magnetic stir bar. Upon addition, a light orange color was observed. After 30 min., the reaction mixture had changed color to dark red. The mixture was stirred at room temperature for 4 h, at which time volatiles were removed under reduced pressure. The dark red residue was triturated twice with THF (3 mL) and solvent was removed *en vacuo* both times to afford a dark red powder. This powder was redissolved in THF and allowed to stir at room temperature for an additional 4 h, at which time volaties were removed under reduced pressure. The dark red residue was triturated twice with THF (3 mL) and solvent was removed en vacuo both times to afford a dark red powder. This dark red powder was washed with three portions of acetonitrile (4 mL) and solvent removed *en vacuo* to afford **6a** (0.32 g, 0.53 mmol) in 58% yield and approximately 90% purity. To date, an analytically pure sample has yet to be obtained to date due to Ni(COD)<sub>2</sub> contamination, the following data was obtained using material of approximately 90% purity (<sup>1</sup>H NMR). <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>) δ 7.68 (d, 2H, Ar-H<sub>6</sub>), 7.32 (d, 2H, Ar-H<sub>9</sub>), 7.23 (q, 4H, Ar-H<sub>7</sub> & Ar-H<sub>8</sub>), 6.31 (t, 2H, Ar-H<sub>3</sub>), 4.30 (s, 4H, Ni(COD)<sub>2</sub>), 3.14 (s, 3H, OCH<sub>3</sub>), 2.32 (m, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 2.08 (s, 8H. Ni(COD)<sub>2</sub>), 2.04 (q, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.29 (s, 9H, C(CH<sub>3</sub>)), 1.20 (qr, 6H, CH(CH<sub>3</sub>)<sub>3</sub>), 1.12 (m, 12H, CH(CH<sub>3</sub>)<sub>3</sub>), 1.02 (qr, 6H, CH(CH<sub>3</sub>)<sub>3</sub>).  $^{13}C{^{1}H}$  NMR (126 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ 151.64 (t, Ar-C<sub>5</sub>), 139.78 (t, Ar-C<sub>10</sub>), 138.03 (s, Ar-C<sub>4</sub>), 130.85 (s, Ar-C<sub>9</sub>), 129.70 (t, Ar-C<sub>6</sub>), 129.16 (s, Ar-C<sub>7</sub>), 127.00 (s, Ar-C<sub>8</sub>), 119.67 (s, Ar-C<sub>3</sub>), 113.57 (t, Ar-C<sub>2</sub>), 101.45 (t, Ar-C<sub>1</sub>), 89.72 (s, Ni(COD)<sub>2</sub>), 59.26 (s, OCH<sub>3</sub>), 34.25 (s, C(CH<sub>3</sub>)), 31.35 (s, C(CH<sub>3</sub>)), 30.89 (s, Ni(COD)<sub>2</sub>), 27.25 (t, CH(CH<sub>3</sub>)<sub>2</sub>), 21.70 (t, CH(CH<sub>3</sub>)<sub>2</sub>), 19.99 (m, CH(CH<sub>3</sub>)<sub>2</sub>), 19.79 (t, CH(CH<sub>3</sub>)<sub>2</sub>), 19.23 (t, CH(CH<sub>3</sub>)<sub>2</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (121, MHz,  $C_6D_6$ )  $\delta$  41.04 (s).

Synthesis of [1,3-bis(2'-diisopropylphosphino)-4-tert-butyl-2-methoxybenzene]nickel(0) (6a).



A 100 mL Schlenk tube fitted with a screw-in Teflon stopper was charged with a magnetic stir bar and a dark red solution of crude 2a (0.09 g, 0.15 mmol, 1 equiv) in toluene (6 mL). The reaction vessel was removed from the glovebox and placed in an oil bath pre-heated to 100°C. After stirring for 2 h the reaction mixture was allowed to cool to room temperature. A black precipitate was observed on the walls of the reaction vessel. The reaction mixture was brought in the glovebox and filtered through Celite. The volatiles were removed from the filtrate under reduced pressure. NMR spectra indicated that the residue contained ca 90% 6a. The dark red material was redissolved in the minimum volume of toluene (2 mL) and chilled to -35°C. After 8 hours, solvent was decanted with a pipette and a darkly colored precipitate was washed twice with toluene chilled to  $-35^{\circ}$ C. The precipitate was ground to a powder to afford **6a** as an orange solid (0.60 g, 0.10 mmol, 60% yield). X-ray quality crystals were grown from a saturated solution in acetonitrile at room temperature. <sup>1</sup>H NMR (300 MHz, C<sub>6</sub>D<sub>6</sub>).  $\delta$  7.42 (m, 4H, Ar-H<sub>6</sub> & Ar-H<sub>9</sub>), δ 7.26 (s, 2H, Ar-H<sub>3</sub>), 7.16 (m, 4H, Ar-H<sub>7</sub> & Ar-H<sub>8</sub>), 6.82 (tt, 1H, Ar-H<sub>1</sub>), 2.38 (hept, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 2.14 (hept, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.44 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 1.11 (m, 18H, CH(CH<sub>3</sub>)<sub>2</sub>), 0.95 (q, 6H, CH(CH<sub>3</sub>)<sub>2</sub>).  ${}^{13}C{}^{1}H$ NMR (126 MHz, C<sub>6</sub>D<sub>6</sub>) δ 196.33 (s, Ni-CO), 151.46 (s, Ar-C<sub>4</sub>), 150.95 (t, Ar-C<sub>10</sub>), 141.01 (t, Ar-C<sub>2</sub>), 135.86 (t, Ar-C<sub>5</sub>), 131.20 (s, Ar-C<sub>9</sub>), 130.69 (t, Ar-C<sub>6</sub>), 129.07 (s, Ar-C<sub>8</sub>), 127.31 (s, Ar-C<sub>7</sub>), 122.97 (s, Ar-C<sub>1</sub>), 122.97 (s C<sub>3</sub>), 89.92 (s, Ar-C<sub>1</sub>), 34.95 (s, C(CH<sub>3</sub>)<sub>3</sub>), 31.70 (s, C(CH<sub>3</sub>)<sub>3</sub>), 29.39 (t, CH(CH<sub>3</sub>)<sub>2</sub>), 26.52 (t, CH(CH<sub>3</sub>)<sub>2</sub>), 20.32 (t, CH(CH<sub>3</sub>)<sub>2</sub>), 19.48 (t, CH(CH<sub>3</sub>)<sub>2</sub>), 18.77 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 18.37 (s, CH(CH<sub>3</sub>)<sub>2</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (121 MHz, C<sub>6</sub>D<sub>6</sub>). δ 33.64 (s). Anal. Calcd. for C<sub>35</sub>H<sub>48</sub>OP<sub>2</sub>Ni (%): C, 69.44; H, 7.99 Found: C, 69.26; H, 7.72. IR (hexanes) :  $v_{CO} = 1929 \text{ cm}^{-1}$ .

#### 1,3-bis(2'-bromophenyl)-2-methoxy-4-nitrobenzene



1,3-bis(2'-bromophenyl)-2-methoxy-4-nitrobenzene was synthesized according to the procedure for 1,3-bis(2'-bromophenyl)-4-tert-butyl-2-methoxybenzene listed above<sup>6</sup>. The crude 1,3-bis(2'-bromophenyl)-2-methoxy-4-nitrobenzene was reduced without purification. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  8.17 (s, 2H, central Ar-*H*), 7.71 (d, 2H, Ar-*H*), 7.40 (m, 4H, Ar-*H*), 7.30 (d, 2H, Ar-*H*), 3.27 (s, 3H, OCH<sub>3</sub>)

#### 4-amino-1,3-bis(2'-bromophenyl)-2-methoxybenzene



4-amino-1,3-bis(2'-bromophenyl)-2-methoxybenzene was synthesized using a modified literature procedure<sup>7</sup>. The crude 4-amino-1,3-bis(2'-bromophenyl)-2-methoxybenzene was methylated without purification. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  7.65 (d, 2H, Ar-*H*), 7.36 (m, 4H, Ar-*H*), 7.20 (t, 2H, Ar-*H*), 6.59 (s, 2H, central Ar-*H*), 3.63 (s, 2H, NH<sub>2</sub>), 3.27 (s, 3H, OCH<sub>3</sub>)

#### 1,3-bis(2'-bromophenyl)-4-dimethylamino-2-methoxybenzene



1,3-bis(2'-bromophenyl)-4-dimethylamino-2-methoxybenzene was synthesized using a literature procedure<sup>8</sup>. The product was purified by Flash chromatography (dichloromethane) and isolated as a colorless solid. Yield: 41.9% <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 399.80 MHz)  $\delta$  7.57 (d, 2H, Ar-*H*<sub>6</sub>), 7.41 (d, 2H, Ar-*H*<sub>9</sub>), 7.01 (t, 2H, Ar-*H*<sub>7</sub>), 6.81 (t, 2H, Ar-*H*<sub>8</sub>), 6.68 (s, 2H, Ar-*H*<sub>3</sub>), 3.12 (s, 3H, OC*H*<sub>3</sub>), 2.48 (s, 6H, N(C*H*<sub>3</sub>)<sub>2</sub>), <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 100.54 MHz)  $\delta$  146.72 (s, Ar-*C*<sub>1</sub>), 146.66 (s, Ar-*C*<sub>4</sub>), 141.21 (s, Ar-*C*<sub>10</sub>), 135.74 (s, Ar-*C*<sub>2</sub>), 132.98 (s, Ar-*C*<sub>9</sub>), 132.31 (s, Ar-*C*<sub>6</sub>), 128.97 (s, Ar-*C*<sub>7</sub>), 127.09 (s, Ar-*C*<sub>8</sub>), 124.54 (s, Ar-*C*<sub>5</sub>), 115.73 (s, Ar-*C*<sub>3</sub>), 60.77 (s, O-CH<sub>3</sub>), 40.69 (N(CH<sub>3</sub>)<sub>2</sub>), MS (m/z): calcd, 460.9813 (M+); found, 460.9822 (FAB+, M+).

1,3-bis(2'-diisopropylphosphino)-4-dimethylamino-2-methoxybenzene (1b)



In a glovebox a 100 mL schlenk tube was charged with a colorless solution of 1.3-bis(2'diisopropylphosphino)-4-dimethylamino-2-methoxybenzene (50.1 mg, 0.11 mmol) in Et<sub>2</sub>O (30 mL) and a stir bar. The schlenk tube was removed from the glove box and cooled to -78°C in a dry ice/acetone bath. Under N2, 'BuLi in pentane (1.5 M, 303.5 µL, 0.46 mmol) was added via syringe slowly to the cold solution. The resulting dark yellow mixture was stirred for one hour at -78°C. After an hour chlorodiisopropylphosphine (36.5 µl, 0.23 mmol) was added to the cold solution slowly via syringe. After addition the reaction mixture was allowed to warm to and stir at room temperature for 8 hours. The volatile materials were then removed under vacuum and the pale yellow/white residue was mixed in hexanes and filtered through Celite. The volatiles were removed from the filtrate in vacuo, and the resulting pale yellow/colorless oil was redissolved in pentane and stirred with alumina. The mixture was filtered through a bed of alumina and the alumina was rinsed with toluene. Removal of volatile materials under vacuum yielded 1b as a white solid (0.68 g, 1.20 mmol) in 92.9% yield. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz, 75°C) δ 7.65 (m, 2H, Ar-H<sub>6</sub>), 7.48 (m, 2H, Ar-H<sub>9</sub>), 7.19 (m, 4H, Ar-H<sub>7-8</sub>), 6.73 (s, 2H, Ar-H<sub>3</sub>), 3.14 (s, 3H, OCH<sub>3</sub>), 2.65 (s, 6H, N(CH<sub>3</sub>)<sub>2</sub>), 2.06 (m, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.92 (m, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.08 (m, 24H, CH(CH<sub>3</sub>)<sub>2</sub>) <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 100.54 MHz) δ 148.52 (m, Ar-C<sub>10</sub>), 147.49 (s, Ar-C<sub>1</sub>), 145.61 (s, Ar-C<sub>4</sub>), 136.85 (d, Ar-C<sub>5</sub>), 136.44 (d, Ar-C<sub>2</sub>), 132.43 (s, Ar-C<sub>9</sub>), 131.68 (d, Ar-C<sub>6</sub>), 128.19 (s, Ar-C<sub>8</sub>), 126.68 (s, Ar-C<sub>7</sub>), 117.41 (s, Ar-C<sub>3</sub>), 60.18 (s, O-CH<sub>3</sub>), 41.21 (N(CH<sub>3</sub>)<sub>2</sub>), 26.79 (CH-(CH<sub>3</sub>)<sub>2</sub>), 24.96 (CH-(CH<sub>3</sub>)<sub>2</sub>), 20.83 (CH-(CH<sub>3</sub>)<sub>2</sub>),  ${}^{31}P{}^{1}H$  NMR (C<sub>6</sub>D<sub>6</sub>, 121.48 MHz)  $\delta$  -2.72 (s), -4.09 (s) MS (m/z): calcd, 535.3133 (M+); found, 535.3134 (FAB+, M+).

#### [1,3-bis(2'-diisopropylphosphino)-4-dimethylamino-2-methoxybenzene|nickel(0) (2b)



A colorless solution of 1,3-bis(2'-diisopropylphosphino)-4-dimethylamino-2-methoxybenzene (937.2mg, 1.74 mmol) in THF (35 ml) was mixed with a yellow slurry of Ni(COD)<sub>2</sub> (477.7 mg, 1.74 mmol) in THF (5 ml) at RT. The mixture changed color to dark red and was stirred for 11 hours. Volatiles were removed *in vacuo* yielding a dark red solid. The crude solid was taken up in MeCN and filtered through celite to remove solids. MeCN was removed from the filtrate under vacuum. The dark red solid was dissolved in hexanes and cooled to neigh freezing temperatures in a liquid nitrogen cooled cold well and filtered through a celite packed frit. The hexanes were removed under vacuum yielding a dark red solid. Yield: 872.9 mg, 84.4% <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 399.80 MHz)  $\delta$  7.70 (d, 2H, Ar-*H*<sub>6</sub>), 7.32 (m, 2H, Ar-*H*<sub>9</sub>), 7.24 (mm, 4H, Ar-*H*<sub>7-8</sub>), 5.84 (t, 2H, Ar-*H*<sub>3</sub>), 3.17 (s, 3H, OC*H*<sub>3</sub>), 2.58 (s, 6H, N(C*H*<sub>3</sub>)<sub>2</sub>), 2.33 (m, 2H, C*H*(CH<sub>3</sub>)<sub>2</sub>), 2.04 (m, 2H, C*H*(CH<sub>3</sub>)<sub>2</sub>), 1.25 (mm, 6H, CH(C*H*<sub>3</sub>)<sub>2</sub>), 1.16 (mm, 12H, CH(C*H*<sub>3</sub>)<sub>2</sub>), 1.06 (m, 6H, CH(C*H*<sub>3</sub>)<sub>2</sub>), 1<sup>3</sup>C {<sup>1</sup>H}</sup> NMR (C<sub>6</sub>D<sub>6</sub>, 100.54 MHz)  $\delta$  151.42 (t, Ar-C<sub>10</sub>), 143.50 (s, Ar-C<sub>4</sub>), 140.43 (t, Ar-C<sub>5</sub>), 130.82 (s,

Ar- $C_6$ ), 129.74 (t, Ar- $C_9$ ), 128.95 (s, Ar- $C_8$ ), 127.11 (s, Ar- $C_7$ ), 115.72 (t, Ar- $C_2$ ), 109.32 (t, Ar- $C_3$ ), 100.69 (t, Ar- $C_1$ ), 59.55 (s, O-CH<sub>3</sub>), 42.03 (N(CH<sub>3</sub>)<sub>2</sub>), 27.25 (CH-(CH<sub>3</sub>)<sub>2</sub>), 21.82 (CH-(CH<sub>3</sub>)<sub>2</sub>), 20.15 (CH-(CH<sub>3</sub>)<sub>2</sub>), 20.09 (CH-(CH<sub>3</sub>)<sub>2</sub>), 19.80 (CH-(CH<sub>3</sub>)<sub>2</sub>), 19.33 (CH-(CH<sub>3</sub>)<sub>2</sub>), <sup>31</sup>P{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 121.48 MHz)  $\delta$  40.65 (s) Anal. Calcd. for C<sub>33</sub>H<sub>47</sub>NNiOP<sub>2</sub> (%): C, 66.68; H, 7.97; N, 2.36 Found C, 66.45; H, 7.94; N, 2.11.

[1,3-bis(2'-diisopropylphosphino)-4-dimethylaminophenyl]nickel(II)methoxide (3b)



А solution [1,3-bis(2'-diisopropylphosphino)-4-dimethylamino-2dark red of purified methoxybenzenelnickel(0) (105.2 mg, 0.18 mmol) in  $C_6H_6$  was warmed to  $45^{\circ}C$  in a schlenk tube. After 14 hours the solvent was removed under vacuum. The resulting red orange solid was washed with pentane and extracted with ether. The ether was pumped off resulting in an orange solid (3b). Yield: 82.7 mg, 78.6% <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 399.80 MHz)  $\delta$  7.76 (d, 2H, Ar-H<sub>6</sub>), 7.44 (d, 2H, Ar-H<sub>9</sub>), 7.37 (t, 2H, Ar-H<sub>7</sub>), 7.17 (t, 2H, Ar-H<sub>8</sub>), 6.78 (s, 2H, Ar-H<sub>3</sub>), 3.67 (s, 3H, OCH<sub>3</sub>), 2.56 (s, 6H, N(CH<sub>3</sub>)<sub>2</sub>), 2.52 (br, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.76 (br, 2H,  $CH(CH_3)_2$ ), 1.66 (br, 6H,  $CH(CH_3)_2$ ), 1.28 (br, 6H,  $CH(CH_3)_2$ ), 0.96 (br, 6H,  $CH(CH_3)_2$ ), 0.80 (br, 6H, CH(CH<sub>3</sub>)<sub>2</sub>)  ${}^{13}C_{1}^{1}H_{1}^{1}$  NMR (C<sub>6</sub>D<sub>6</sub>, 100.54 MHz)  $\delta$  153.23 (t, Ar-C<sub>10</sub>), 150.95 (s, Ar-C<sub>4</sub>), 147.19 (t, Ar-C<sub>5</sub>), 130.26 (s, Ar-C<sub>7</sub>), 129.41 (s, Ar-C<sub>9</sub>), 128.40 (s, Ar-C<sub>2</sub>), 128.35 (s, Ar-C<sub>6</sub>), 126.99 (s, Ar-C1), 126.60 (s, Ar-C8), 113.59 (s, Ar-C3), 54.84 (s, OCH3), 40.56 (s, N(CH3)2), 23.83 (s, CH(CH3)2), 21.09 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 20.45 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 19.77 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 18.90 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 18.12 (s,  $CH(CH_3)_2$ ,  ${}^{31}P{}^{1}H{}$  NMR (C<sub>6</sub>D<sub>6</sub>, 161.85 MHz)  $\delta$  27.26 (s) Anal. Calcd. for C<sub>33</sub>H<sub>47</sub>NNiOP<sub>2</sub> (%): C, 66.68; H, 7.97; N, 2.36 Found C, 66.60; H, 8.10; N, 2.23.

#### [1,3-bis(2'-diisopropylphosphino)-4-dimethylaminophenyl]nickel(II)hydride (4b)



solution [1,3-bis(2'-diisopropylphosphino)-4-dimethylamino-2-А dark red of crude methoxybenzene]nickel(0) (100.1 mg, 0.17 mmol) in THF (10 ml) was stirred at RT for 8 days. Over the course of 8 days a yellow solid precipitated. The solid was collected on a pad of celite. The solid was extracted from the celite with toluene. Removal of solvent under vacuum yielded a yellow solid. Yield: 52.3 mg, 55% <sup>1</sup>H NMR ( $C_6D_6$ , 300 MHz)  $\delta$  7.87 (d, 2H, Ar- $H_6$ ), 7.44 (t, 2H, Ar- $H_7$ ), 7.29 (d, 2H, Ar- $H_9$ ), 7.14 (t, 2H, Ar-H<sub>8</sub>), 6.79 (s, 2H, Ar-H<sub>3</sub>), 2.54 (t, 6H, N(CH<sub>3</sub>)<sub>2</sub>), 2.27 (br m, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.70 (br m, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.61 (br m, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.28 (mm, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.12 (mm, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 0.70 (m, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), -2.80 (t, 1H, Ni-H),  ${}^{13}C{}^{1}H$  NMR (CD<sub>2</sub>Cl<sub>2</sub>, 100.54 MHz)  $\delta$  152.69 (t, Ar-C<sub>10</sub>), 150.79 (s, Ar-C<sub>4</sub>), 147.09 (t, Ar-C<sub>5</sub>), 130.40 (s, Ar-C<sub>7</sub>), 129.13 (s, Ar-C<sub>9</sub>), 128.70 (s, Ar-C<sub>2</sub>), 128.15 (s, Ar-C<sub>6</sub>), 126.61 (s, Ar-C<sub>8</sub>), 126.41 (s, Ar-C<sub>1</sub>), 114.03 (s, Ar-C<sub>3</sub>), 41.07 (s, N(CH<sub>3</sub>)<sub>2</sub>), 24.08 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 20.48 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 20.34 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 20.08 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 18.75 (s, CH(CH<sub>3</sub>)<sub>2</sub>), 18.08 (s, CH(CH<sub>3</sub>)<sub>2</sub>), <sup>31</sup>P{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 121.48 MHz)  $\delta$  30.41 (s) Anal. Calcd. for C<sub>32</sub>H<sub>45</sub>NNiP<sub>2</sub> (%): C, 68.10; H, 8.04; N, 2.48 Found. C, 67.63; H, 7.85; N, 2.05

[1,3-bis(2'-diisopropylphosphino)-4-dimethylaminophenyl]nickel(II)iodide (5)



A yellow solution of [1,3-bis(2'-diisopropylphosphino)-4-dimethylaminophenyl]nickel(II)hydride (35.3 mg, 0.063 mmol) was made in THF (7 ml). To this solution was added dry methyl iodide (28.5 mg, 0.20 mmol) at room temperature. The solution was stirred for 14 hours at room temperature in the dark. After 14 hours the volatiles were removed under vacuum leaving a red orange residue. The residue was washed with hexanes and extracted with ether. The ether was removed under vacuum yielding a red orange solid. X-ray quality crystals were grown from a concentrated solution in ether. Yield: 27.4 mg, 63.5%<sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 399.80 MHz)  $\delta$  7.72 (d, 2H, Ar-*H*<sub>6</sub>), 7.40 (d, 2H, Ar-*H*<sub>9</sub>), 7.37 (t, 2H, Ar-*H*<sub>8</sub>), 7.13 (t, 2H, Ar-*H*<sub>7</sub>), 6.78 (s, 2H, Ar-*H*<sub>3</sub>), 3.03 (m, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 2.52 (m, 6H, N(CH<sub>3</sub>)<sub>2</sub>), 1.77 (m, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.51 (q, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.31 (m, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 0.91 (m, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 0.77 (m, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.51 (q, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 127.98 (s, Ar-C<sub>2</sub>), 127.95 (s, Ar-C<sub>6</sub>), 127.16 (s, Ar-C<sub>7</sub>), 126.19 (t, Ar-C<sub>1</sub>), 113.86 (t, Ar-C<sub>3</sub>), 40.28 (N(CH<sub>3</sub>)<sub>2</sub>), 24.29 (CH-(CH<sub>3</sub>)<sub>2</sub>), 23.59 (CH-(CH<sub>3</sub>)<sub>2</sub>), 20.55 (CH-(CH<sub>3</sub>)<sub>2</sub>), 20.21 (CH-(CH<sub>3</sub>)<sub>2</sub>), 19.39 (CH-(CH<sub>3</sub>)<sub>2</sub>), 18.91 (CH-(CH<sub>3</sub>)<sub>2</sub>), <sup>31</sup>P{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 121.48 MHz)  $\delta$  34.35 (s) Anal. Calcd. for C<sub>32</sub>H<sub>44</sub>NNiP<sub>2</sub> (%): C, 58.01; H, 6.51; N, 1.90 Found. C, 58.23; H, 6.62; N, 2.00

#### [1,3-bis(2'-diisopropylphosphino)-4-dimethylaminobenzenel]nickel(0)carbonyl (6b)



[1,3-bis(2'-diisopropylphosphino)-4-dimethylamino-2dark solution crude А red of methoxybenzenelnickel(0) (96.9 mg, 0.16 mmol) in toluene was heated to 100 °C in a sealed schlenk tube. The tube was heated for 2.5 hours. After 2.5 hours the solvent was removed under vacuum giving an orange solid. NMR spectra indicated that this material contained ca 95% 6b. The solid was washed with hexanes and dried under vacuum yielding a red orange solid. Yield: 83.8 mg, 86.7%. <sup>1</sup>H NMR ( $C_6D_6$ , 399.80 MHz) δ 7.49 (br m, 2H, Ar-H<sub>6</sub>), 7.44 (br m, 2H, Ar-H<sub>9</sub>), 7.18 (m, 4H, Ar-H<sub>7-8</sub>), 6.56 (s, 2H, Ar-H<sub>3</sub>), 6.51 (t, 1H, Ar-H<sub>1</sub>), 2.65 (s, 6H, N(CH<sub>3</sub>)<sub>2</sub>), 2.40 (m, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 2.18 (m, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.24  $(q, 6H, CH(CH_3)_2), 1.16 (q, 6H, CH(CH_3)_2), 1.10 (q, 6H, CH(CH_3)_2), 1.02 (q, 6H, CH(CH_3)_2)^{-13}C{^{1}H}$ NMR (C<sub>6</sub>D<sub>6</sub>, 100.54 MHz) δ 195.98 (t, Ni-CO), 152.54 (s, Ar-C<sub>4</sub>), 151.06 (t, Ar-C<sub>10</sub>), 145.58 (s, Ar-C<sub>2</sub>), 136.50 (t, Ar-C<sub>5</sub>), 131.26 (s, Ar-C<sub>9</sub>), 130.81 (s, Ar-C<sub>6</sub>), 128.90 (s, Ar-C<sub>8</sub>), 127.29 (s, Ar-C<sub>7</sub>), 110.03 (s, Ar-C<sub>3</sub>), 84.65 (s, Ar-C<sub>1</sub>), 40.68 (N(CH<sub>3</sub>)<sub>2</sub>), 29.44 (CH-(CH<sub>3</sub>)<sub>2</sub>), 26.79 (CH-(CH<sub>3</sub>)<sub>2</sub>), 20.40 (CH-(CH<sub>3</sub>)<sub>2</sub>), 19.62 (CH-(CH<sub>3</sub>)<sub>2</sub>), 18.90 (CH-(CH<sub>3</sub>)<sub>2</sub>), 18.60 (CH-(CH<sub>3</sub>)<sub>2</sub>) <sup>31</sup>P{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 121.48 MHz) δ 34.17 (s) EA Calcd. C, 66.91; H, 7.66; N, 2.36 Found. C, 67.13; H, 7.67; N, 2.38 IR ( $C_6D_6$ ):  $v_{CO} = 1917 \text{ cm}^{-1}$ .

#### Reaction of 2b with *d*<sub>1</sub>-triethylsilane

A J. Young tube was charged with a dark red solution of **2b** (5.3 mg, 0.009 mmol) in C<sub>6</sub>D<sub>6</sub>. To this solution was added  $d_1$ -triethylsilane by syringe (3 µL, 0.019 mmol) and the solution heated to 80 °C. After two and a half hours the formation of **6b** was confirmed by <sup>1</sup>H and <sup>31</sup>P NMR spectroscopy. Based on the integration of the Ar- $H_3$  peak at 6.56 and the Ar- $H_1$  peak at 6.51 ppm in the <sup>1</sup>H-NMR spectrum, the isotopolog distribution consisted of 7%  $d_1$ -**6b** (deuterium atom being incorporated into the ipso carbon [Ar- $H_1$ ] of the central arene) and 93%  $d_0$ -**6b**. Increasing the equivalents of triethylsilane led to an increase in deuteration of Ar- $H_1$ . Thirteen equivalents of  $d_1$ -triethylsilane under the same conditions led to 18%  $d_1$ -**6b** and 82% **6b**. Starting with  $d_3$ -**2b** and two equivalents of triethylsilane, the product after five hours at 80 °C was found to contain 47%  $d_1$ -**6b** and 53% **6b**. An unidentified species was observed by <sup>1</sup>H and <sup>31</sup>P NMR spectroscopy, in amount roughly proportional to the label incorporation from SiX (X=D or H). This is consistent with decreased generation of formaldehyde and hence lower formation of the nickel carbonyl species upon reductive elimination / decarbonylation. The increased label incorporation from SiH vs SiD in the experiments above is consistent with normal isotope effects for  $\beta$ -H elimination from the intermediate nickel methoxide species (**3**) and for transmetallation in the reaction of the silane with **3**.

#### **Reaction of 4b with methanol**

A J. Young tube was charged with a yellow slurry of **4b** (4.7 mg, 0.008 mmol) in C<sub>6</sub>D<sub>6</sub>. To this slurry was added (0.3 mg, 0.008 mmol) of methanol. The J. Young tube was sealed, inverted several times, and allowed to react at 20 °C for 15 minutes. After the allotted time the solution contained 20% **3b** by <sup>31</sup>P and <sup>1</sup>H NMR spectroscopy. Longer reaction times and increasing the amount of methanol added (10 eq.) did not change the percentage of **3b** produced.

#### **Reaction of 4b with formaldehyde**

A J. Young tube was charged with a yellow slurry of **4b** (5.2 mg, 0.009 mmol) in C<sub>6</sub>D<sub>6</sub>. To this slurry was added paraformaldehyde (1 mg, 0.033 mmol). The J. Young tube was sealed and heated to 60°C for two and a half hours. During the first 30 minutes of heating everything became soluble and the color of the solution changed to orange. After the allotted time the solution contained 85% **6b** by <sup>31</sup>P and <sup>1</sup>H NMR spectroscopy.

#### **Reaction of 4b with carbon monoxide**

A J. Young tube (2.9 ml) was charged with a yellow slurry of **4b** (4.8 mg, 0.009 mmol) in  $C_6D_6$  (0.6 ml). The slurry was degassed by three freeze-pump-thaw cycles and left under static vacuum. Using a schlenk line equipped with a mercury manometer, the evacuated gas manifold was pressurized with carbon monoxide (53 Torr). Using the gas manifold the J. Young tube containing a frozen benzene solution under static vacuum was pressurized with carbon monoxide corresponding to ca. 0.8 equiv of carbon monoxide for the free volume of the tube. The tube was thawed and inverted several times then heated at 60 °C for 64 hours with periodic mixing. Over time the color of the solution changed to a light orange. After the allotted time the solution contained ca. 50% **6b** by <sup>31</sup>P and <sup>1</sup>H NMR spectroscopy as part of a mixture with unidentified species.

#### Reaction of 5 with sodium methoxide

A vial was charged with a red orange solution of **5** (18.7 mg, 0.027 mmol) in THF (ca. 5 ml). To this solution was added a slurry of sodium methoxide (4.4 mg, 0.081 mmol) in THF (ca. 1 ml). The mixture was stirred at 20 °C for four hours. After four hours the solution contained 64% **3b** by <sup>31</sup>P and <sup>1</sup>H NMR spectroscopy along with unreacted **5** and  $\beta$ -H elimination product, **4b**.

#### Quantification of H<sub>2</sub> in the conversion of 2b to 6b

In a Schlenk tube 25.8 mg (0.043 mmol) of **2b** was dissolved in toluene (ca. 5 ml). The solution was degassed by three freeze-pump-thaw cycles and left under static vacuum. The solution of **2b** was heated to 100 °C for 12 hours. After 12 hours the solution was frozen and the gas in the Schlenk flask was pumped through a liquid nitrogen cooled trap and collected in a calibrated volume (24 ml) using a Toepler pump. After 20 minutes (ca. 25 cycles of the Toepler pump) the Schlenk flask was sealed and thawed. Upon thawing the solution was re-frozen and the aforementioned Toepler pump process was repeated. After three of the described freeze-Toepler pump-thaw cycles, the pressure of gas collected was found to be 29 Torr. Using the Toepler pump the gas was pumped through a CuO filled tube. The tube was heated and kept between a range of 300 and 375 °C. After 40 minutes of pumping the gas through the CuO tube, the pressure of gas was found to be 1 Torr. The measurements corresponded to 0.037 mmol combustible gas (H<sub>2</sub>) released from the reaction of **2b** to form **6b**. The amount of hydrogen released was found to be 0.9 equivalents (based on two independent determinations 0.88 and 0.93 equivalents) after correcting for 91% **6b** being formed (determined by <sup>1</sup>H and <sup>31</sup>P NMR spectroscopy) under the conditions described.

#### II. Crystallographic Data

| Table S1. | Crystal | and | refinement | data | for | 2b, | 5, | and | 6a |
|-----------|---------|-----|------------|------|-----|-----|----|-----|----|
|           | ~       |     |            |      |     |     |    |     |    |

|                                          | 2b                                                  | 5                                           | 6a                                                                                                                    |
|------------------------------------------|-----------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| CCDC Deposition #                        | 859840                                              | 859841                                      | 857167                                                                                                                |
| Empirical formula                        | C <sub>33</sub> H <sub>47</sub> NOP <sub>2</sub> Ni | $C_{32}H_{44}NP_2INi \bullet \\ C_4H_{10}O$ | 0.96(C <sub>35</sub> H <sub>48</sub> OP <sub>2</sub> Ni)<br>0.04(C <sub>34</sub> H <sub>48</sub> P <sub>2</sub> ClNi) |
| Formula weight                           | 594.37                                              | 764.35                                      | 605.66                                                                                                                |
| Crystallization<br>Solvent               | Hexamethyldisiloxane                                | Diethyl ether                               | Acetonitrile                                                                                                          |
| Crystal Habit                            | Block                                               | Plate                                       | Block                                                                                                                 |
| Crystal size, mm <sup>3</sup>            | 0.25 x 0.16 x 0.09                                  | 0.36 x 0.23 x 0.04                          | 0.31 x 0.24 x 0.22                                                                                                    |
| Crystal color                            | Red                                                 | Red                                         | Dark orange                                                                                                           |
| $\theta$ range for lattice determination | 2.35 to 30.25°                                      | 2.85 to 36.20°                              | 2.37 to 44.55°                                                                                                        |
| a, Å                                     | 10.6162(4)                                          | 9.0551(6)                                   | 19.1875(10)                                                                                                           |
| b, Å                                     | 19.6007(8)                                          | 17.5696(12)                                 | 9.6032(5)                                                                                                             |
| c, Å                                     | 15.6192(6)                                          | 11.5133(8)                                  | 17.5086(9)                                                                                                            |
| a, °                                     | 90                                                  | 90                                          | 90                                                                                                                    |
| b, °                                     | 103.887(2)                                          | 102.374(3)                                  | 93.098(3)                                                                                                             |
| g, °                                     | 90                                                  | 90                                          | 90                                                                                                                    |
| Volume, Å <sup>3</sup>                   | 3155.1(2)                                           | 1789.2(2)                                   | 3221.4(3)                                                                                                             |
| Ζ                                        | 4                                                   | 2                                           | 4                                                                                                                     |
| Crystal system                           | Monoclinic                                          | Monoclinic                                  | Monoclinic                                                                                                            |
| Space group                              | P $2_1/n$                                           | P 2 <sub>1</sub>                            | С с                                                                                                                   |
| Density (calculated)                     | 1.251 Mg/m <sup>3</sup>                             | $1.419 \text{ Mg/m}^3$                      | $1.249 \text{ Mg/m}^3$                                                                                                |
| F(000)                                   | 1272                                                | 792                                         | 1296                                                                                                                  |

| $\theta$ range for data collection, °                 | 2.08 to 33.20                                                                                 | 1.81 to 36.41                                                                                 | 2.13 to 47.45                                                                                 |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Completeness to $\theta = 26.43^{\circ}$              | 97.3%                                                                                         | 100.0%                                                                                        | 99.7%                                                                                         |
| Index ranges                                          | $\begin{array}{c} -16 \leq h \leq 16 \\ -30 \leq k \leq 30 \\ -23 \leq l \leq 21 \end{array}$ | $\begin{array}{c} -15 \leq h \leq 15 \\ -29 \leq k \leq 29 \\ -19 \leq l \leq 19 \end{array}$ | $\begin{array}{l} -39 \leq h \leq 39 \\ -19 \leq k \leq 19 \\ -35 \leq l \leq 36 \end{array}$ |
| Data collection scan<br>type                          | $\omega$ scans; 9 settings                                                                    | $\omega$ scans; 15 settings                                                                   | $\omega$ scans; 16 settings                                                                   |
| Reflections collected                                 | 78843                                                                                         | 109962                                                                                        | 120762                                                                                        |
| Independent<br>reflections                            | 11768 [R <sub>int</sub> = 0.0695]                                                             | 17397 [R <sub>int</sub> =0.0392]                                                              | 24726 [ $R_{int}$ = 0.0365]                                                                   |
| Absorption coefficient, mm <sup>-1</sup>              | 0.743                                                                                         | 1.522                                                                                         | 0.730                                                                                         |
| Absorption correction                                 | None                                                                                          | Semi-empirical from equivalents                                                               | None                                                                                          |
| Max. and min.<br>transmission                         | 0.9362 and 0.8363                                                                             | 0.9569 and 0.6479                                                                             | 0.8559 and 0.8053                                                                             |
| Hydrogen placement<br>Structure refinement<br>program | Geometric positions<br>SHELXL-97<br>(Sheldrick, 2008)                                         | Geometric positions<br>SHELXL-97<br>(Sheldrick, 2008)                                         | Geometric positions<br>SHELXL-97<br>(Sheldrick, 2008)                                         |
| Refinement method                                     | Full matrix least-<br>squares on F <sup>2</sup>                                               | Full matrix least-<br>squares on F <sup>2</sup>                                               | Full matrix least-<br>squares on F <sup>2</sup>                                               |
| Data / restraints /<br>parameters                     | 11768 / 0 / 354                                                                               | 17397 / 7 / 417                                                                               | 24726 / 2 / 373                                                                               |
| Treatment of<br>hydrogen atoms                        | Riding                                                                                        | Riding                                                                                        | Riding                                                                                        |
| Goodness-of-fit on F2                                 | 1.604                                                                                         | 1.924                                                                                         | 1.711                                                                                         |
| Final R indices<br>[I>2s(I), 4802<br>reflections]     | R1 = 0.0489<br>wR2 = 0.0501                                                                   | R1 = 0.0266<br>wR2 = 0.0483                                                                   | R1 = 0.0259<br>wR2 = 0.0427                                                                   |
| R indices (all data)                                  | R1 = 0.0934<br>wR2 = 0.0514                                                                   | R1 = 0.0312<br>wR2 = 0.0488                                                                   | R1 = 0.0334<br>wR2 = 0.0429                                                                   |
| Type of weighting scheme used                         | Sigma                                                                                         | Sigma                                                                                         | Sigma                                                                                         |
| Weighting scheme<br>used                              | $w=1/s^2(Fo^2)$                                                                               | $w=1/s^2(Fo^2)$                                                                               | $w=1/s^2(Fo^2)$                                                                               |
| Max shift/error                                       | 0.001                                                                                         | 0.006                                                                                         | 0.002                                                                                         |
| Average shift/error                                   | 0                                                                                             | 0                                                                                             | 0                                                                                             |
| Largest diff. peak and hole, e.Å <sup>-3</sup>        | 1.838 and -1.065                                                                              | 1.668 and -0.753                                                                              | 0.428 and -0.607                                                                              |
| Type of<br>diffractometer                             | Bruker KAPPA APEX<br>II                                                                       | Bruker KAPPA APEX<br>II                                                                       | Bruker KAPPA APEX<br>II                                                                       |
| Wavelength, Å MoKa                                    | 0.71073                                                                                       | 0.71073                                                                                       | 0.71073                                                                                       |
| Data Collection                                       | 100(2) K                                                                                      | 100(2) K                                                                                      | 100(2) K                                                                                      |
| Structure solution<br>program                         | SHELXS-97<br>(Sheldrick, 2008)                                                                | SHELXS-97<br>(Sheldrick, 2008)                                                                | SHELXS-97<br>(Sheldrick, 2008)                                                                |
| Primary solution<br>method                            | Direct methods                                                                                | Direct methods                                                                                | Direct methods                                                                                |
| Secondary solution method                             | Difference Fourier<br>map                                                                     | Difference Fourier<br>map                                                                     | Difference Fourier<br>map                                                                     |



Figure S1. Structural drawing of 2b with 50% thermal probability ellipsoids.

**Special Refinement Details for 2b.** Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K. Refinement of  $F^2$  against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on  $F^2$ , conventional R-factors (R) are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2s(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

|                | X                    | у                  | Z                  | U <sub>eq</sub>       |
|----------------|----------------------|--------------------|--------------------|-----------------------|
| N:(1)          | 0252(1)              | 2504(1)            | 2704(1)            | 19(1)                 |
| NI(1)          | 9252(1)              | 2504(1)            | 5704(1)            | 18(1)                 |
| P(1)           | 8688(1)              | 1534(1)            | 4155(1)            | 20(1)                 |
| P(2)           | 10268(1)             | 2868(1)            | 2734(1)            | 22(1)                 |
| 0(1)           | 11102(1)             | 3154(1)            | 4912(1)            | 21(1)                 |
| N(1)           | 5974(1)              | 4118(1)            | 4063(1)            | 20(1)                 |
| C(1)           | 9168(1)              | 1691(1)            | 5340(1)            | 15(1)                 |
| C(2)           | 9522(2)              | 1210(1)            | 6016(1)            | 23(1)                 |
| C(3)           | 9827(2)              | 1408(1)            | 6888(1)            | 23(1)                 |
| C(4)           | 9777(2)              | 2086(1)            | 7101(1)            | 23(1)                 |
| C(5)           | 9432(1)              | 2572(1)            | 6439(1)            | 21(1)                 |
| C(6)           | 9154(1)              | 2379(1)            | 5560(1)            | 17(1)                 |
| C(7)           | 8804(2)              | 2903(1)            | 4836(1)            | 17(1)                 |
| C(8)           | 7542(1)              | 3227(1)            | 4707(1)            | 18(1)                 |
| C(9)           | 7230(2)              | 3818(1)            | 4239(1)            | 18(1)                 |
| C(10)          | 8183(2)              | 4124(1)            | 3861(1)            | 20(1)                 |
| C(11)          | 9404(2)              | 3867(1)            | 3996(1)            | 18(1)                 |
| C(12)          | 10367(2)             | 4159(1)            | 3545(1)            | 20(1)                 |
| C(13)          | 10773(2)             | 4829(1)            | 3707(1)            | 30(1)                 |
| C(14)          | 11668(2)             | 5115(1)            | 3298(1)            | 37(1)                 |
| C(15)          | 12148(2)             | 4725(1)            | 2712(1)            | 35(1)                 |
| C(16)          | 11749(2)             | 4059(1)            | 2544(1)            | 28(1)                 |
| C(17)          | 10845(2)             | 3756(1)            | 2944(1)            | 21(1)                 |
| C(18)          | 9772(2)              | 3268(1)            | 4526(1)            | 17(1)                 |
| C(19)          | 5030(2)              | 3778(1)            | 4446(1)            | 29(1)                 |
| C(20)          | 5946(2)              | 4853(1)            | 4177(1)            | $\frac{26(1)}{26(1)}$ |
| C(21)          | 11628(2)             | 3637(1)            | 5591(1)            | $\frac{-2}{32(1)}$    |
| C(22)          | 9450(2)              | 707(1)             | 4024(1)            | 22(1)                 |
| C(23)          | 10930(2)             | 790(1)             | 4300(1)            | 29(1)                 |
| C(24)          | 9010(2)              | 456(1)             | 3064(1)            | $\frac{2}{31(1)}$     |
| C(24)          | 6933(2)              | 1340(1)            | 4026(1)            | 26(1)                 |
| C(25)          | 6632(2)              | 707(1)             | 4020(1)            | 20(1)<br>33(1)        |
| C(27)          | 6192(2)              | 1341(1)            | 3068(1)            | 37(1)                 |
| C(27)          | 11766(2)             | 2424(1)            | 2620(1)            | $\frac{37(1)}{21(1)}$ |
| C(28)          | 11700(2)<br>11464(2) | 2434(1)<br>1722(1) | 2030(1)<br>2100(1) | $\frac{51(1)}{45(1)}$ |
| C(29)          | 11404(2)             | 1732(1)            | 2199(1)<br>2546(1) | 43(1)                 |
| C(30)<br>C(21) | 12078(2)             | 23/3(1)<br>2805(1) | 3340(1) - 1507(1)  | 30(1)<br>36(1)        |
| C(31)          | 9232(2)              | 2093(1)            | 1397(1)            | 50(1)                 |
| C(32)          | 9855(2)              | 3198(1)            | 890(1)<br>150((1)  | 54(1)<br>54(1)        |
| C(33)          | /9//(2)              | 3240(1)            | 1590(1)            | 54(1)                 |

**Table S2**. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters ( $Å^2x$  10<sup>3</sup>) for **2b**. U(eq) is defined as the trace of the orthogonalized U<sup>ij</sup> tensor.

Table S3. Selected bond lengths [Å] and angles [°] for 2b.

| Ni(1)-C(18) | 1.9628(16) | C(18)-Ni(1)-C(7) | 41.11(6)  |
|-------------|------------|------------------|-----------|
| Ni(1)-C(7)  | 2.0907(16) | C(18)-Ni(1)-P(1) | 120.95(5) |
| Ni(1)-P(1)  | 2.1614(5)  | C(7)-Ni(1)-P(1)  | 85.23(5)  |
| Ni(1)-P(2)  | 2.1799(5)  | C(18)-Ni(1)-P(2) | 95.53(5)  |
|             |            | C(7)-Ni(1)-P(2)  | 135.74(5) |
|             |            | P(1)-Ni(1)-P(2)  | 137.43(2) |

| Ni(1)-C(18)                         | 1 9628(16)               | C(6)-C(1)-C(2)          | 118 89(14)               |
|-------------------------------------|--------------------------|-------------------------|--------------------------|
| $N_{i}(1) C(7)$                     | 2 0907(16)               | C(6) C(1) P(1)          | 113.37(12)               |
| N(1)-C(7)                           | 2.0907(10)               | C(0) - C(1) - F(1)      | 113.37(12)               |
| $N_1(1)-P(1)$                       | 2.1614(5)                | C(2)-C(1)-P(1)          | 127.74(13)               |
| Ni(1)-P(2)                          | 2.1799(5)                | C(3)-C(2)-C(1)          | 120.94(16)               |
| P(1) - C(1)                         | 1 8242(15)               | C(4) - C(3) - C(2)      | 119 87(16)               |
| P(1) C(2)                           | 1.0242(13)<br>1.9451(17) | C(2) C(4) C(5)          | 120.11(16)               |
| P(1) = C(22)                        | 1.8431(17)               | C(3)-C(4)-C(3)          | 120.11(10)               |
| P(1)-C(25)                          | 1.8649(17)               | C(6)-C(5)-C(4)          | 120.36(17)               |
| P(2)-C(31)                          | 1.8440(17)               | C(5)-C(6)-C(1)          | 119.77(15)               |
| P(2) - C(28)                        | 1 8445(17)               | C(5)-C(6)-C(7)          | 120 82(16)               |
| P(2) C(17)                          | 1.0110(17)               | C(1) C(6) C(7)          | 120.02(10)<br>110.29(14) |
| P(2)=C(17)                          | 1.8480(18)               | C(1)-C(0)-C(7)          | 119.38(14)               |
| O(1)-C(18)                          | 1.4137(17)               | C(18)-C(7)-C(8)         | 116.69(15)               |
| O(1)-C(21)                          | 1.4310(18)               | C(18)-C(7)-C(6)         | 121.82(14)               |
| N(1) - C(9)                         | 1 4219(19)               | C(8) - C(7) - C(6)      | 117 13(14)               |
| N(1) - C(10)                        | 1.449(2)                 | C(19) C(7) N(1)         | (A (A(0)))               |
| N(1)-C(19)                          | 1.448(2)                 | C(18) - C(7) - NI(1)    | 04.04(9)                 |
| N(1)-C(20)                          | 1.452(2)                 | C(8)-C(7)-Ni(1)         | 115.84(11)               |
| C(1)-C(6)                           | 1.393(2)                 | C(6)-C(7)-Ni(1)         | 108.28(11)               |
| C(1)-C(2)                           | 1 397(2)                 | C(9) - C(8) - C(7)      | 122 83(16)               |
| C(1) - C(2)                         | 1.377(2)                 | C(8) C(0) C(10)         | 122.03(10)<br>119.20(15) |
| C(2) - C(3)                         | 1.377(2)                 | C(8) - C(9) - C(10)     | 118.30(13)               |
| C(3)-C(4)                           | 1.374(2)                 | C(8)-C(9)-N(1)          | 123.36(16)               |
| C(4)-C(5)                           | 1.389(2)                 | C(10)-C(9)-N(1)         | 118.20(15)               |
| င်းသိုးငှိုက်                       | 1 3856(19)               | C(11)- $C(10)$ - $C(9)$ | 121 73(16)               |
| C(0) C(0)                           | 1.5050(1))               | C(10) C(11) C(19)       | 121.75(10)<br>120.72(15) |
| C(0)-C(7)                           | 1.507(2)                 | C(10)-C(11)-C(18)       | 120.73(15)               |
| C(7)-C(18)                          | 1.428(2)                 | C(10)-C(11)-C(12)       | 121.35(15)               |
| C(7)-C(8)                           | 1.452(2)                 | C(18)-C(11)-C(12)       | 117.74(14)               |
| C(8) - C(9)                         | 1 368(2)                 | C(13) - C(12) - C(17)   | 120 43(16)               |
| C(0) C(10)                          | 1.421(2)                 | C(12) C(12) C(11)       | 120.13(10)<br>110.92(16) |
| C(9)-C(10)                          | 1.421(2)                 | C(13)-C(12)-C(11)       | 119.82(10)               |
| C(10)-C(11)                         | 1.360(2)                 | C(17)-C(12)-C(11)       | 119.75(16)               |
| C(11)-C(18)                         | 1.436(2)                 | C(14)-C(13)-C(12)       | 121.13(18)               |
| C(11)- $C(12)$                      | 1 489(2)                 | C(15) - C(14) - C(13)   | 119 05(19)               |
| C(12) C(12)                         | 1 296(2)                 | C(16) C(15) C(14)       | 120.22(18)               |
| C(12)- $C(13)$                      | 1.380(2)                 | C(10)-C(13)-C(14)       | 120.33(18)               |
| C(12)-C(17)                         | 1.411(2)                 | C(15)-C(16)-C(17)       | 122.05(18)               |
| C(13)-C(14)                         | 1.384(2)                 | C(16)-C(17)-C(12)       | 117.01(17)               |
| C(14)-C(15)                         | 1.381(2)                 | C(16)-C(17)-P(2)        | 123.74(14)               |
| C(15) C(16)                         | 1 378(2)                 | C(12) C(17) P(2)        | 110 25(13)               |
|                                     | 1.378(2)                 | C(12)- $C(17)$ - $1(2)$ | 119.23(13)               |
| C(16)-C(17)                         | 1.398(2)                 | O(1)-C(18)-C(7)         | 120.18(14)               |
| C(22)-C(23)                         | 1.535(2)                 | O(1)-C(18)-C(11)        | 118.72(14)               |
| C(22)-C(24)                         | 1.540(2)                 | C(7)-C(18)-C(11)        | 119.07(14)               |
| C(25)- $C(26)$                      | 1.514(2)                 | O(1)-C(18)-Ni(1)        | 104 73(10)               |
| C(25) - C(20)                       | 1.514(2)                 | C(7) C(10) N(1)         | 74.25(10)                |
| C(25)-C(27)                         | 1.514(2)                 | C(7)-C(18)-NI(1)        | /4.25(10)                |
| C(28)-C(30)                         | 1.527(2)                 | C(11)-C(18)-Ni(1)       | 104.60(11)               |
| C(28)-C(29)                         | 1.531(2)                 | C(23)-C(22)-C(24)       | 110.98(14)               |
| C(31)- $C(33)$                      | 1 512(2)                 | C(23)-C(22)-P(1)        | 108 80(12)               |
| C(21) C(22)                         | 1.512(2)<br>1.524(2)     | C(24) C(22) P(1)        | 100.00(12)               |
| C(31)-C(32)                         | 1.324(2)                 | C(24)- $C(22)$ - $P(1)$ | 110.45(11)               |
| $C(18)-N_1(1)-C(7)$                 | 41.11(6)                 | C(26)-C(25)-C(27)       | 111.05(14)               |
| C(18)-Ni(1)-P(1)                    | 120.95(5)                | C(26)-C(25)-P(1)        | 115.83(12)               |
| C(7)-Ni(1)-P(1)                     | 85.23(5)                 | C(27)-C(25)-P(1)        | 112.03(12)               |
| C(18) Ni(1) P(2)                    | 05.53(5)                 | C(30) C(28) C(20)       | 111 28(16)               |
| C(10)-INI(1)-F(2)                   | <i>33.33(3)</i>          | C(30) - C(20) - C(29)   | 111.20(10)               |
| C(7)-Ni(1)-P(2)                     | 135./4(5)                | C(30)- $C(28)$ - $P(2)$ | 108.60(11)               |
| P(1)-Ni(1)-P(2)                     | 137.43(2)                | C(29)-C(28)-P(2)        | 111.07(12)               |
| C(1)-P(1)-C(22)                     | 103.76(7)                | C(33)-C(31)-C(32)       | 110.87(17)               |
| C(1) - P(1) - C(25)                 | 99 94(7)                 | C(33) - C(31) - P(2)    | 100 31(13)               |
| $C(1)^{-1}(1)^{-}C(25)$             | 33.34(7)<br>105.22(0)    | C(33)-C(31)-T(2)        | 109.51(15)               |
| C(22)-P(1)- $C(25)$                 | 105.23(8)                | C(32)-C(31)-P(2)        | 11/.32(13)               |
| C(1)-P(1)-Ni(1)                     | 98.66(5)                 |                         |                          |
| C(22)-P(1)-Ni(1)                    | 125.00(6)                |                         |                          |
| C(25)-P(1)-Ni(1)                    | 119 44(6)                |                         |                          |
| C(21) P(2) C(20)                    | 104.22(0)                |                         |                          |
| C(31)-P(2)-C(28)                    | 104.23(8)                |                         |                          |
| C(31)-P(2)-C(17)                    | 103.67(8)                |                         |                          |
| C(28)-P(2)-C(17)                    | 101.17(8)                |                         |                          |
| C(31) - P(2) - Ni(1)                | 113 96(6)                |                         |                          |
| $C(29) \mathbf{P}(2) \mathbf{N}(1)$ | 110.29(0)                |                         |                          |
| C(20) - P(2) - NI(1)                | 119.58(0)                |                         |                          |
| C(17)-P(2)-Ni(1)                    | 112.55(6)                |                         |                          |
| C(18)-O(1)-C(21)                    | 112.62(12)               |                         |                          |
| C(9) - N(1) - C(19)                 | 116 04(14)               |                         |                          |
| C(0) N(1) C(20)                     | 115(2(12))               |                         |                          |
| C(9)-IN(1)-C(20)                    | 113.02(13)               |                         |                          |
| C(19)-N(1)-C(20)                    | 111.68(13)               |                         |                          |
|                                     |                          |                         |                          |

Table S4. Bond lengths [Å] and angles [°] for 2b.

|       | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Ni(1) | 184(1)          | 191(1)          | 188(1)          | 0(1)            | 70(1)           | 11(1)           |
| P(1)  | 223(2)          | 184(3)          | 188(3)          | -9(2)           | 39(2)           | 11(2)           |
| P(2)  | 185(2)          | 292(3)          | 196(3)          | -18(2)          | 84(2)           | -10(2)          |
| O(1)  | 176(6)          | 229(7)          | 220(7)          | -12(5)          | 43(5)           | 14(5)           |
| N(1)  | 180(7)          | 206(9)          | 213(9)          | -19(7)          | 40(7)           | 27(7)           |
| C(1)  | 162(8)          | 155(10)         | 153(10)         | 12(7)           | 54(7)           | 3(7)            |
| C(2)  | 256(9)          | 196(11)         | 241(11)         | -10(8)          | 76(8)           | -4(8)           |
| C(3)  | 245(10)         | 258(12)         | 198(11)         | 66(8)           | 73(8)           | 21(8)           |
| C(4)  | 232(9)          | 323(12)         | 154(10)         | -21(8)          | 66(8)           | 2(9)            |
| C(5)  | 199(8)          | 234(11)         | 213(10)         | -33(9)          | 81(7)           | -4(8)           |
| C(6)  | 118(7)          | 236(11)         | 177(10)         | 28(8)           | 76(7)           | -1(7)           |
| C(7)  | 204(9)          | 168(10)         | 144(10)         | -16(7)          | 44(7)           | 12(7)           |
| C(8)  | 148(8)          | 213(10)         | 188(10)         | -37(8)          | 63(7)           | -1(7)           |
| C(9)  | 198(9)          | 207(11)         | 129(10)         | -47(8)          | 40(7)           | 21(8)           |
| C(10) | 254(9)          | 140(9)          | 221(10)         | 32(8)           | 73(8)           | 45(8)           |
| C(11) | 208(9)          | 167(10)         | 164(10)         | -11(7)          | 75(8)           | -3(8)           |
| C(12) | 166(9)          | 190(11)         | 240(11)         | 94(8)           | 42(8)           | 7(8)            |
| C(13) | 338(11)         | 223(12)         | 383(13)         | 46(9)           | 175(10)         | 27(9)           |
| C(14) | 387(12)         | 224(12)         | 511(14)         | 100(10)         | 140(11)         | -40(10)         |
| C(15) | 300(11)         | 358(14)         | 422(13)         | 158(11)         | 158(10)         | -20(10)         |
| C(16) | 221(9)          | 339(13)         | 300(11)         | 71(9)           | 119(9)          | 30(9)           |
| C(17) | 160(8)          | 264(11)         | 212(11)         | 105(8)          | 50(8)           | 34(8)           |
| C(18) | 148(8)          | 196(10)         | 178(10)         | -10(8)          | 40(7)           | 16(7)           |
| C(19) | 184(9)          | 277(12)         | 412(13)         | -32(9)          | 75(9)           | 24(8)           |
| C(20) | 254(10)         | 257(11)         | 287(11)         | 36(8)           | 116(9)          | 77(8)           |
| C(21) | 250(10)         | 330(13)         | 339(12)         | -21(9)          | 25(9)           | -56(9)          |
| C(22) | 293(10)         | 184(10)         | 191(10)         | 5(8)            | 63(8)           | 14(8)           |
| C(23) | 327(11)         | 239(11)         | 317(12)         | 20(9)           | 93(9)           | 57(9)           |
| C(24) | 411(12)         | 243(12)         | 257(11)         | -18(9)          | 54(9)           | 45(9)           |
| C(25) | 250(10)         | 302(12)         | 211(11)         | -11(9)          | 48(8)           | 7(9)            |
| C(26) | 256(10)         | 314(13)         | 409(13)         | 39(10)          | 31(9)           | -55(9)          |
| C(27) | 292(11)         | 407(14)         | 371(13)         | 34(10)          | -17(10)         | 7(10)           |
| C(28) | 295(9)          | 339(12)         | 382(11)         | -34(11)         | 232(8)          | -1(10)          |
| C(29) | 500(13)         | 409(15)         | 521(15)         | -129(11)        | 300(12)         | 6(11)           |
| C(30) | 209(9)          | 322(14)         | 566(13)         | 18(10)          | 121(9)          | 30(9)           |
| C(31) | 387(12)         | 532(15)         | 180(11)         | 29(10)          | 91(9)           | -103(11)        |
| C(32) | 482(14)         | 920(20)         | 210(12)         | 57(12)          | 80(10)          | -182(14)        |
| C(33) | 275(11)         | 990(20)         | 300(13)         | 182(13)         | -23(10)         | 6(13)           |

**Table S5.** Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>4</sup>) for **2b**. The anisotropic displacement factor exponent takes the form:  $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$ 



Figure S2. Structural drawing of 5 with 50% thermal probability ellipsoids.



Figure S3. Structural drawing of 5 with 50% thermal probability ellipsoids showing disorder in isopropyl group.

**Special Refinement Details for 5.** Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K. One of the isopropyl groups on P1 is disordered and the model includes anisotropic refinement the disordered atoms without restraints in the least-squares. The two orientations of the disordered group were constrained to have a total occupancy of one. Refinement of  $F^2$  against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on  $F^2$ , conventional R-factors (R) are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2s(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|        | X                    | у                       | Z                   | U <sub>eq</sub>       | Occ                  |
|--------|----------------------|-------------------------|---------------------|-----------------------|----------------------|
| Ni(1)  | 10947(1)             | 943(1)                  | 1261(1)             | 12(1)                 | 1                    |
| I(1)   | 12720(1)             | 2063(1)                 | 1760(1)             | 18(1)                 | 1                    |
| N(1)   | 4918(2)              | -832(1)                 | 438(1)              | 26(1)                 | 1                    |
| P(1)   | 11101(1)             | 650(1)                  | 3148(1)             | 17(1)                 | 1                    |
| P(2)   | 10524(1)             | 980(1)                  | -677(1)             | 13(1)                 | 1                    |
| C(1)   | 9562(2)              | 1278(1)                 | 3307(1)             | 18(1)                 | 1                    |
| C(2)   | 9694(2)              | 1873(1)                 | 4132(1)             | 22(1)                 | 1                    |
| C(3)   | 8487(2)              | 2348(1)                 | 4157(1)             | 24(1)                 | 1                    |
| C(4)   | 7133(2)              | 22570(1)                | 3354(1)             | 22(1)                 | 1                    |
| C(5)   | 6994(2)              | 1681(1)                 | 2508(1)             | 22(1)<br>22(1)        | 1                    |
| C(6)   | 8196(2)              | 1186(1)                 | 2475(1)             | 18(1)                 | 1                    |
| C(7)   | 8006(2)              | 546(1)                  | 1600(1)             | 19(1)                 | 1                    |
| C(8)   | 6627(2)              | 153(1)                  | 1423(2)             | 23(1)                 | 1                    |
| C(9)   | 6328(2)              | -474(1)                 | 673(1)              | 20(1)                 | 1                    |
| C(10)  | 7473(2)              | -703(1)                 | 111(1)              | 17(1)                 | 1                    |
| C(10)  | 8838(2)              | -304(1)                 | 245(1)              | 14(1)                 | 1                    |
| C(12)  | 9870(2)              | -554(1)                 | -526(1)             | 13(1)                 | 1                    |
| C(12)  | 9997(2)              | -1322(1)                | -789(1)             | 15(1)<br>16(1)        | 1                    |
| C(13)  | 10799(2)             | -1522(1)                | -1611(1)            | 10(1)                 | 1                    |
| C(14)  | 10777(2)<br>11522(2) | 1036(1)                 | 2184(1)             | 10(1)                 | 1                    |
| C(15)  | 11322(2)<br>11425(2) | -1030(1)<br>274(1)      | -2104(1)<br>1021(1) | 19(1)<br>17(1)        | 1                    |
| C(10)  | 11433(2)<br>10634(2) | -274(1)                 | -1921(1)<br>1092(1) | 17(1)<br>13(1)        | 1                    |
| C(17)  | 0144(2)              | -1/(1)<br>226(1)        | -1092(1)<br>1002(1) | 15(1)                 | 1                    |
| C(10)  | 9144(2)<br>3864(2)   | 530(1)<br>628(1)        | 1002(1)<br>1165(2)  | 13(1)<br>25(1)        | 1                    |
| C(19)  | 3804(2)              | -020(1)                 | 1105(2)             | 23(1)<br>20(1)        | 1                    |
| C(20)  | 4627(2)<br>12765(2)  | -1013(1)<br>945(1)      | 40(2)<br>4291(1)    | 29(1)<br>25(1)        | 1                    |
| C(21)  | 12703(2)<br>14202(2) | 577(1)                  | 4291(1)<br>4061(2)  | 23(1)<br>24(1)        | 1                    |
| C(22)  | 14202(2)<br>12620(2) | $\frac{377(1)}{708(1)}$ | 4001(2)<br>5570(2)  | $\frac{24(1)}{42(1)}$ | 1                    |
| C(23)  | 12030(2)<br>10820(4) | 796(1)                  | 3379(2)             | 42(1)                 | 1                    |
| C(24A) | 10839(4)             | -300(2)                 | 5775(5)             | 21(1)<br>25(1)        | 0.033(0)<br>0.625(6) |
| C(2SA) | 9520(9)              | -383(3)                 | 4404(7)             | 23(1)                 | 0.033(0)             |
| C(26A) | 10588(4)             | -952(2)                 | 2875(5)             | $\frac{27(1)}{17(1)}$ | 0.035(0)             |
| C(24B) | 10309(6)             | -334(3)                 | 3409(5)             | $\frac{1}{(1)}$       | 0.365(6)             |
| C(25B) | 9070(15)             | -224(6)                 | 4541(11)            | 26(2)<br>24(1)        | 0.365(6)             |
| C(26B) | 11555(0)             | -930(3)                 | 3517(5)             | 24(1)                 | 0.365(6)             |
| C(27)  | 11/88(2)             | 1453(1)                 | -1524(1)            | 18(1)                 | 1                    |
| C(28)  | 115/6(2)             | 2313(1)                 | -1618(2)            | 23(1)                 | 1                    |
| C(29)  | 13459(2)             | 1252(1)                 | -1048(1)            | 22(1)                 | 1                    |
| C(30)  | 8570(2)              | 1232(1)                 | -1447(1)            | 18(1)                 | 1                    |
| C(31)  | 8316(2)              | 1226(1)                 | -2798(1)            | 26(1)                 | 1                    |
| C(32)  | 8011(2)              | 1964(1)                 | -958(1)             | 24(1)                 | 1                    |
| C(41)  | 5764(3)              | 9430(2)                 | 7114(2)             | 61(1)                 | 1                    |
| C(42)  | 6484(3)              | 9045(1)                 | 6250(2)             | 49(1)                 | 1                    |
| O(41)  | 5392(2)              | 8616(1)                 | 5452(1)             | 37(1)                 | 1                    |
| C(43)  | 6010(3)              | 8221(1)                 | 4598(3)             | 53(1)                 | 1                    |
| C(44)  | 4831(3)              | 7720(2)                 | 3896(3)             | 60(1)                 | 1                    |
| × /    | (-)                  |                         | (- )                | ( )                   |                      |

**Table S6**. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for **5**. U(eq) is defined as the trace of the orthogonalized  $U^{ij}$  tensor.

 Table S7.
 Selected bond lengths [Å] and angles [°] for 5.

| Ni(1)-C(18) | 1.9188(14) | C(18)-Ni(1)-P(2) | 84.30(4)    |
|-------------|------------|------------------|-------------|
| Ni(1)-P(2)  | 2.1827(4)  | C(18)-Ni(1)-P(1) | 83.98(4)    |
| Ni(1)-P(1)  | 2.2075(4)  | P(2)-Ni(1)-P(1)  | 166.680(17) |
| Ni(1)-I(1)  | 2.5268(2)  | C(18)-Ni(1)-I(1) | 161.06(4)   |
|             |            | P(2)-Ni(1)-I(1)  | 99.972(12)  |
|             |            | P(1)-Ni(1)-I(1)  | 93.156(13)  |
|             |            |                  |             |

| $\overline{Ni}(1)$ -C(18) | 1.9188(14)              | C(17)-P(2)-C(27)                      | 102.65(7)                |
|---------------------------|-------------------------|---------------------------------------|--------------------------|
| Ni(1)-P(2)                | 2 1827(4)               | C(17)-P(2)-C(30)                      | 101 79(6)                |
| $N_{i}(1) P(1)$           | 2.1027(1)<br>2.2075(4)  | C(27) P(2) C(30)                      | 101.75(0)<br>105.05(7)   |
| N(1) - F(1)               | 2.2073(4)               | C(27) - F(2) - C(30)                  | 103.93(7)                |
| N1(1)-1(1)                | 2.5268(2)               | C(17) - P(2) - Ni(1)                  | 103.40(4)                |
| N(1)-C(9)                 | 1.397(2)                | C(27)-P(2)-Ni(1)                      | 123.96(5)                |
| N(1)-C(19)                | 1.443(2)                | C(30)-P(2)-Ni(1)                      | 115.85(5)                |
| N(1)-C(20)                | 1.444(2)                | C(2)-C(1)-C(6)                        | 118.95(14)               |
| P(1)-C(1)                 | 1.8173(16)              | C(2)-C(1)-P(1)                        | 124.47(12)               |
| P(1)-C(21)                | 1.8504(17)              | C(6)-C(1)-P(1)                        | 116 39(11)               |
| P(1) C(24A)               | 1.862(2)                | C(2) C(2) C(1)                        | 120.82(15)               |
| P(1) - C(24R)             | 1.020(6)                | C(3) - C(2) - C(1)                    | 120.82(13)<br>120.44(14) |
| P(1)-C(24B)               | 1.920(6)                | C(4) - C(3) - C(2)                    | 120.44(14)               |
| P(2)-C(17)                | 1.8230(14)              | C(3)-C(4)-C(5)                        | 119.56(14)               |
| P(2)-C(27)                | 1.8522(15)              | C(4)-C(5)-C(6)                        | 121.01(15)               |
| P(2)-C(30)                | 1.8553(15)              | C(5)-C(6)-C(1)                        | 119.19(13)               |
| C(1)-C(2)                 | 1.400(2)                | C(5)-C(6)-C(7)                        | 120.48(14)               |
| C(1)-C(6)                 | 1.402(2)                | C(1)- $C(6)$ - $C(7)$                 | 120 28(13)               |
| C(2)-C(3)                 | 1 380(2)                | C(8)-C(7)-C(18)                       | 121.52(14)               |
| C(2) C(3)                 | 1.370(2)                | C(8) C(7) C(10)                       | 121.32(14)<br>116.01(12) |
| C(3)-C(4)                 | 1.379(2)                | C(0) - C(0)                           | 110.01(13)               |
| C(4)-C(5)                 | 1.385(2)                | C(18)-C(7)-C(6)                       | 122.45(13)               |
| C(5)-C(6)                 | 1.399(2)                | C(9)-C(8)-C(7)                        | 121.96(14)               |
| C(6)-C(7)                 | 1.496(2)                | C(8)-C(9)-C(10)                       | 116.83(13)               |
| C(7)-C(8)                 | 1.404(2)                | C(8)-C(9)-N(1)                        | 121.70(13)               |
| C(7) - C(18)              | 1 405(2)                | C(10)-C(9)-N(1)                       | 121 37(14)               |
| C(8)-C(9)                 | 1 390(2)                | C(9)- $C(10)$ - $C(11)$               | 1221.07(11)<br>12211(14) |
| C(0) C(10)                | 1.394(2)                | C(10) C(11) C(12)                     | 122.11(14)<br>121.20(12) |
| C(9)-C(10)                | 1.394(2)                | C(10) - C(11) - C(10)                 | 121.20(13)               |
| C(10)-C(11)               | 1.4001(19)              | C(10)-C(11)-C(12)                     | 116.0/(12)               |
| C(11)-C(18)               | 1.414(2)                | C(18)-C(11)-C(12)                     | 122.54(12)               |
| C(11)-C(12)               | 1.4862(19)              | C(13)-C(12)-C(17)                     | 118.43(12)               |
| C(12)-C(13)               | 1.393(2)                | C(13)-C(12)-C(11)                     | 120.53(12)               |
| C(12)-C(17)               | 1.4094(19)              | C(17)-C(12)-C(11)                     | 120.78(12)               |
| C(13)- $C(14)$            | 1 381(2)                | C(14) - C(13) - C(12)                 | 122 31(13)               |
| C(14)-C(15)               | 1 388(2)                | C(13)-C(14)-C(15)                     | 118.94(14)               |
| C(15) C(16)               | 1.370(2)                | C(16) C(15) C(14)                     | 110.94(14)<br>110.75(14) |
| C(13)-C(10)               | 1.379(2)                | C(10)-C(13)-C(14)                     | 119.73(14)               |
| C(16)-C(17)               | 1.3923(19)              | C(15)-C(16)-C(17)                     | 121.91(13)               |
| C(21)-C(22)               | 1.526(2)                | C(16)-C(17)-C(12)                     | 118.61(13)               |
| C(21)-C(23)               | 1.535(2)                | C(16)-C(17)-P(2)                      | 123.85(11)               |
| C(24A)-C(25A)             | 1.572(7)                | C(12)-C(17)-P(2)                      | 117.53(10)               |
| C(24A)-C(26A)             | 1.519(5)                | C(7)-C(18)-C(11)                      | 116.30(13)               |
| C(24B)-C(26B)             | 1 511(7)                | C(7)-C(18)-Ni(1)                      | 117 85(11)               |
| C(24B) C(25B)             | 1.511(1)                | C(11) C(18) N(1)                      | 125.84(10)               |
| C(27) C(23D)              | 1.524(2)                | C(11)-C(10)-N(1)<br>C(22) C(21) C(22) | 123.84(10)<br>110.00(14) |
| C(27) - C(20)             | 1.524(2)                | C(22) - C(21) - C(23)                 | 110.09(14)               |
| C(27)-C(29)               | 1.536(2)                | C(22)-C(21)-P(1)                      | 110.63(11)               |
| C(30)-C(31)               | 1.523(2)                | C(23)-C(21)-P(1)                      | 114.73(13)               |
| C(30)-C(32)               | 1.532(2)                | C(25A)-C(24A)-C(26A)                  | 105.1(3)                 |
| C(41)-C(42)               | 1.466(4)                | C(25A)-C(24A)-P(1)                    | 116.5(3)                 |
| C(42)-O(41)               | 1.415(3)                | C(26A)-C(24A)-P(1)                    | 115.1(2)                 |
| O(41) - C(43)             | 1 413(3)                | C(26B)-C(24B)-C(25B)                  | 114 6(6)                 |
| C(43) C(44)               | 1.483(4)                | C(26B) C(24B) C(25B)                  | 110.2(4)                 |
| $C(19) N_{1}(1) P(2)$     | 94 20(4)                | C(25D) - C(24D) - I(1)                | 110.2(4)                 |
| C(18)-NI(1)-P(2)          | 84.30(4)                | C(25B)-C(24B)-P(1)                    | 103.8(5)                 |
| C(18)-Ni(1)-P(1)          | 83.98(4)                | C(28)-C(27)-C(29)                     | 110.65(14)               |
| P(2)-Ni(1)-P(1)           | 166.680(17)             | C(28)-C(27)-P(2)                      | 113.57(11)               |
| C(18)-Ni(1)-I(1)          | 161.06(4)               | C(29)-C(27)-P(2)                      | 112.42(11)               |
| P(2)-Ni(1)-I(1)           | 99.972(12)              | C(31)-C(30)-C(32)                     | 113.03(13)               |
| P(1) - Ni(1) - I(1)       | 93,156(13)              | C(31)-C(30)-P(2)                      | 113.97(11)               |
| C(9)-N(1)-C(19)           | 117.81(13)              | C(32)-C(30)-P(2)                      | 11240(10)                |
| C(0) N(1) C(20)           | 11954(12)               | O(41) C(42) C(41)                     | 100.6(2)                 |
| C(10) N(1) C(20)          | 110.04(10)              | C(42) = C(42) - C(41)                 | 112 70(10)               |
| C(19)-IN(1)-C(20)         | 114.04(13)              | C(43)-O(41)-C(42)                     | 112./9(18)               |
| C(1)-P(1)-C(21)           | 106.43(7)               | U(41)-C(43)-C(44)                     | 109.0(2)                 |
| C(1)-P(1)-C(24A)          | 110.21(11)              |                                       |                          |
| C(21)-P(1)-C(24A)         | 97.44(14)               |                                       |                          |
| C(1)-P(1)-C(24B)          | 102.20(17)              |                                       |                          |
| C(21)-P(1)-C(24B)         | 114.54(19)              |                                       |                          |
| C(1)-P(1)-Ni(1)           | 93 98(5)                |                                       |                          |
| C(21) D(1) Ni(1)          | 120 21(5)               |                                       |                          |
| C(24A) P(1) N(1)          | 120.31(3)<br>127.17(11) |                                       |                          |
| C(24A)-P(1)-NI(1)         | 12/.1/(11)              |                                       |                          |
| C(24B)-P(1)-Ni(1)         | 114.68(17)              |                                       |                          |

**Table S8.** Bond lengths [Å] and angles [°] for 5.

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                   | U33                    | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|-----------------|-----------------|
| $\begin{array}{ccccccc} I(1) & 165(1) & 205\\ N(1) & 161(6) & 288\\ P(1) & 197(2) & 222\\ P(2) & 142(2) & 144\\ C(1) & 210(7) & 219\\ C(2) & 253(7) & 271\\ C(3) & 329(9) & 215\\ C(4) & 253(8) & 201\\ C(5) & 166(7) & 267\\ C(6) & 175(7) & 215\\ C(7) & 167(7) & 222\\ C(8) & 159(7) & 288\\ C(9) & 133(6) & 258\\ C(10) & 132(6) & 183\\ C(11) & 119(6) & 182\\ C(12) & 108(6) & 166\\ \end{array}$ | <del>5</del> (1) 92(1) | -8(1)           | 46(1)           | -24(1)          |
| $\begin{array}{ccccccc} N(1) & 161(6) & 288\\ P(1) & 197(2) & 222\\ P(2) & 142(2) & 144\\ C(1) & 210(7) & 219\\ C(2) & 253(7) & 271\\ C(3) & 329(9) & 219\\ C(4) & 253(8) & 200\\ C(5) & 166(7) & 267\\ C(6) & 175(7) & 219\\ C(7) & 167(7) & 222\\ C(8) & 159(7) & 288\\ C(9) & 133(6) & 258\\ C(10) & 132(6) & 183\\ C(11) & 119(6) & 182\\ C(12) & 108(6) & 168\\ \end{array}$                       | 5(1) 183(1)            | -3(1)           | 41(1)           | -28(1)          |
| $\begin{array}{cccccccc} P(1) & 197(2) & 222 \\ P(2) & 142(2) & 144 \\ C(1) & 210(7) & 219 \\ C(2) & 253(7) & 271 \\ C(3) & 329(9) & 219 \\ C(4) & 253(8) & 201 \\ C(5) & 166(7) & 267 \\ C(6) & 175(7) & 219 \\ C(7) & 167(7) & 222 \\ C(8) & 159(7) & 289 \\ C(9) & 133(6) & 258 \\ C(10) & 132(6) & 183 \\ C(11) & 119(6) & 183 \\ C(12) & 108(6) & 168 \\ \end{array}$                              | 3(7) 368(8)            | -110(6)         | 126(6)          | -74(5)          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                    | 2(2) 115(2)            | 12(1)           | 83(1)           | 5(2)            |
| $\begin{array}{ccccc} C(1) & 210(7) & 219\\ C(2) & 253(7) & 271\\ C(3) & 329(9) & 219\\ C(4) & 253(8) & 201\\ C(5) & 166(7) & 265\\ C(6) & 175(7) & 219\\ C(7) & 167(7) & 222\\ C(8) & 159(7) & 289\\ C(9) & 133(6) & 258\\ C(10) & 132(6) & 183\\ C(11) & 119(6) & 182\\ C(12) & 108(6) & 166\\ \end{array}$                                                                                           | l(2) 100(1)            | -5(1)           | 45(1)           | -13(1)          |
| $\begin{array}{ccccc} C(2) & 253(7) & 271\\ C(3) & 329(9) & 219\\ C(4) & 253(8) & 201\\ C(5) & 166(7) & 267\\ C(6) & 175(7) & 219\\ C(7) & 167(7) & 222\\ C(8) & 159(7) & 289\\ C(9) & 133(6) & 258\\ C(10) & 132(6) & 183\\ C(11) & 119(6) & 182\\ C(12) & 108(6) & 166\\ \end{array}$                                                                                                                 | 9(7) 145(6)            | -20(5)          | 112(5)          | -22(6)          |
| $\begin{array}{cccc} C(3) & 329(9) & 219\\ C(4) & 253(8) & 201\\ C(5) & 166(7) & 267\\ C(6) & 175(7) & 219\\ C(7) & 167(7) & 222\\ C(8) & 159(7) & 289\\ C(9) & 133(6) & 258\\ C(10) & 132(6) & 183\\ C(11) & 119(6) & 182\\ C(12) & 108(6) & 166\\ \end{array}$                                                                                                                                        | (8) 144(6)             | -49(5)          | 83(6)           | -34(6)          |
| $\begin{array}{cccc} C(4) & 253(8) & 201\\ C(5) & 166(7) & 267\\ C(6) & 175(7) & 215\\ C(7) & 167(7) & 222\\ C(8) & 159(7) & 285\\ C(9) & 133(6) & 258\\ C(10) & 132(6) & 183\\ C(11) & 119(6) & 182\\ C(12) & 108(6) & 166\\ \end{array}$                                                                                                                                                              | 203(7)                 | -67(6)          | 151(7)          | -37(6)          |
| $\begin{array}{cccc} C(5) & 166(7) & 267\\ C(6) & 175(7) & 219\\ C(7) & 167(7) & 222\\ C(8) & 159(7) & 289\\ C(9) & 133(6) & 258\\ C(10) & 132(6) & 183\\ C(11) & 119(6) & 182\\ C(12) & 108(6) & 166\\ \end{array}$                                                                                                                                                                                    | (8) 269(8)             | -6(6)           | 165(6)          | 0(5)            |
| C(6)         175(7)         219           C(7)         167(7)         222           C(8)         159(7)         289           C(9)         133(6)         258           C(10)         132(6)         183           C(11)         119(6)         182           C(12)         108(6)         168                                                                                                          | 251(8)                 | -50(6)          | 109(6)          | -38(6)          |
| $\begin{array}{cccc} C(7) & 167(7) & 222\\ C(8) & 159(7) & 289\\ C(9) & 133(6) & 258\\ C(10) & 132(6) & 183\\ C(11) & 119(6) & 182\\ C(12) & 108(6) & 168\\ \end{array}$                                                                                                                                                                                                                                | 9(7) 190(7)            | -43(5)          | 122(6)          | -35(5)          |
| C(8)         159(7)         289           C(9)         133(6)         258           C(10)         132(6)         183           C(11)         119(6)         182           C(12)         108(6)         168                                                                                                                                                                                              | 2(7) 199(7)            | -62(6)          | 100(6)          | -48(5)          |
| C(9)         133(6)         258           C(10)         132(6)         183           C(11)         119(6)         182           C(12)         108(6)         168                                                                                                                                                                                                                                        | 299(8)                 | -98(7)          | 152(6)          | -65(6)          |
| C(10) 132(6) 183<br>C(11) 119(6) 182<br>C(12) 108(6) 168                                                                                                                                                                                                                                                                                                                                                | 3(8) 244(7)            | -50(6)          | 96(6)           | -56(6)          |
| C(11) 119(6) 182<br>C(12) 108(6) 168                                                                                                                                                                                                                                                                                                                                                                    | 3(7) 191(7)            | -5(5)           | 53(5)           | -28(5)          |
| C(12) 108(6) 168                                                                                                                                                                                                                                                                                                                                                                                        | 2(6) 124(6)            | 5(5)            | 53(5)           | -13(5)          |
|                                                                                                                                                                                                                                                                                                                                                                                                         | 3(6) 121(6)            | 8(5)            | 31(5)           | -7(5)           |
| C(13) 144(6) 168                                                                                                                                                                                                                                                                                                                                                                                        | 3(6) 169(6)            | 9(5)            | 55(5)           | -9(5)           |
| C(14) 192(7) 164                                                                                                                                                                                                                                                                                                                                                                                        | 4(6) 227(7)            | -16(6)          | 76(6)           | 11(5)           |
| C(15) 218(7) 208                                                                                                                                                                                                                                                                                                                                                                                        | 3(7) 181(7)            | -28(6)          | 118(6)          | -5(6)           |
| C(16) 210(7) 186                                                                                                                                                                                                                                                                                                                                                                                        | 5(7) 153(6)            | 4(5)            | 102(5)          | -12(5)          |
| C(17) 134(6) 153                                                                                                                                                                                                                                                                                                                                                                                        | 3(6) 109(6)            | -4(5)           | 34(5)           | 1(5)            |
| C(18) 118(6) 195                                                                                                                                                                                                                                                                                                                                                                                        | 5(7) 155(6)            | -4(5)           | 63(5)           | -21(5)          |
| C(19) 127(7) 337                                                                                                                                                                                                                                                                                                                                                                                        | 7(9) 317(9)            | -38(7)          | 99(6)           | -40(6)          |
| C(20) 180(8) 234                                                                                                                                                                                                                                                                                                                                                                                        | 487(11)                | -43(7)          | 122(7)          | -44(6)          |
| C(21) 277(8) 366                                                                                                                                                                                                                                                                                                                                                                                        | <b>5(9)</b> 97(6)      | -8(6)           | 30(5)           | 46(7)           |
| C(22) 216(8) 328                                                                                                                                                                                                                                                                                                                                                                                        | 3(9) 177(7)            | 15(6)           | 21(6)           | 18(7)           |
| C(23) 421(11) 699                                                                                                                                                                                                                                                                                                                                                                                       | 0(15) 130(7)           | 46(8)           | 70(7)           | 127(11)         |
| C(24A) 217(16) 280                                                                                                                                                                                                                                                                                                                                                                                      | )(14) 134(14)          | 62(12)          | 58(11)          | -23(13)         |
| C(25A) 360(30) 190                                                                                                                                                                                                                                                                                                                                                                                      | )(20) 287(19)          | 4(16)           | 256(18)         | -71(17)         |
| C(26A) 289(16) 278                                                                                                                                                                                                                                                                                                                                                                                      | 3(14) 240(14)          | 65(11)          | 39(12)          | -12(11)         |
| C(24B) 140(20) 250                                                                                                                                                                                                                                                                                                                                                                                      | )(20) 120(20)          | 63(19)          | 17(17)          | -19(19)         |
| C(25B) 250(30) 260                                                                                                                                                                                                                                                                                                                                                                                      | 0(40) 260(30)          | 150(30)         | 40(20)          | -80(30)         |
| C(26B) 270(30) 210                                                                                                                                                                                                                                                                                                                                                                                      | )(20) 310(30)          | 75(18)          | 180(20)         | 25(17)          |
| C(27) 233(7) 205                                                                                                                                                                                                                                                                                                                                                                                        | <i>i</i> (7) 119(6)    | -7(5)           | 92(5)           | -35(6)          |
| C(28) 321(9) 187                                                                                                                                                                                                                                                                                                                                                                                        | 202(7)                 | 16(6)           | 93(6)           | -59(6)          |
| C(29) 207(7) 256                                                                                                                                                                                                                                                                                                                                                                                        | b(8) 217(7)            | -25(6)          | 122(6)          | -41(6)          |
| C(30) 168(7) 181                                                                                                                                                                                                                                                                                                                                                                                        | 1(6) 167(7)            | -22(5)          | 2(5)            | 6(5)            |
| C(31) 297(9) 272                                                                                                                                                                                                                                                                                                                                                                                        | 2(8) 186(7)            | -13(6)          | -27(6)          | 34(7)           |
| C(32) 228(7) 224                                                                                                                                                                                                                                                                                                                                                                                        | 4(9) 265(7)            | -38(7)          | 13(6)           | 60(6)           |
| C(41) 703(18) 656                                                                                                                                                                                                                                                                                                                                                                                       | b(17) 342(12)          | 41(12)          | -152(12)        | -206(15)        |
| C(42) 379(12) 374                                                                                                                                                                                                                                                                                                                                                                                       | (12) 613(15)           | 151(11)         | -135(11)        | -117(10)        |
| O(41) 324(8) 364                                                                                                                                                                                                                                                                                                                                                                                        | i(7) 387(8)            | 45(6)           | -26(6)          | -78(6)          |
| C(43) 407(12) 389                                                                                                                                                                                                                                                                                                                                                                                       | 9(12) 815(19)          | -32(13)         | 165(12)         | -50(10)         |
| C(44) 647(17) 532                                                                                                                                                                                                                                                                                                                                                                                       | 2(15) 675(17)          | -220(13)        | 280(14)         | -185(13)        |

**Table S9.** Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>4</sup>) for **5**. The anisotropic displacement factor exponent takes the form:  $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$ 



Figure S4. Structural drawing of 6a with 50% thermal probability ellipsoids.

**Special Refinement Details for 6a**. Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K. The crystal is disordered at the carbonyl position with a 0.04% impurity of chlorine present. All components were refined without restraint other than setting total occupancy to equal unity. Refinement of  $F^2$  against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on  $F^2$ , conventional R-factors (R) are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2s(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|       | Х       | у        | Z       | U <sub>eq</sub> | Occ      |
|-------|---------|----------|---------|-----------------|----------|
| Ni(1) | 5193(1) | 7496(1)  | 6109(1) | 10(1)           | 1        |
| P(1)  | 4561(1) | 6027(1)  | 5395(1) | 10(1)           | 1        |
| P(2)  | 6099(1) | 8746(1)  | 5816(1) | 10(1)           | 1        |
| C(1)  | 3720(1) | 6738(1)  | 5029(1) | 11(1)           | 1        |
| C(2)  | 3321(1) | 6135(1)  | 4424(1) | 14(1)           | 1        |
| C(3)  | 2676(1) | 6671(1)  | 4177(1) | 15(1)           | 1        |
| C(4)  | 2415(1) | 7833(1)  | 4536(1) | 15(1)           | 1        |
| C(5)  | 2803(1) | 8448(1)  | 5137(1) | 13(1)           | 1        |
| C(6)  | 3452(1) | 7926(1)  | 5389(1) | 10(1)           | 1        |
| C(7)  | 3828(1) | 8590(1)  | 6062(1) | 10(1)           | 1        |
| C(8)  | 3527(1) | 8492(1)  | 6767(1) | 11(1)           | 1        |
| C(9)  | 3842(1) | 9093(1)  | 7431(1) | 10(1)           | 1        |
| C(10) | 4467(1) | 9784(1)  | 7369(1) | 11(1)           | 1        |
| C(11) | 4784(1) | 9931(1)  | 6661(1) | 11(1)           | 1        |
| C(12) | 5403(1) | 10843(1) | 6625(1) | 10(1)           | 1        |
| C(13) | 5390(1) | 12125(1) | 7010(1) | 13(1)           | 1        |
| C(14) | 5931(1) | 13072(1) | 6984(1) | 15(1)           | 1        |
| C(15) | 6506(1) | 12757(1) | 6562(1) | 14(1)           | 1        |
| C(16) | 6536(1) | 11479(1) | 6196(1) | 13(1)           | 1        |
| C(17) | 5998(1) | 10503(1) | 6223(1) | 10(1)           | 1        |
| C(18) | 4450(1) | 9342(1)  | 6000(1) | 10(1)           | 1        |
| C(19) | 3492(1) | 8891(1)  | 8192(1) | 12(1)           | 1        |
| C(20) | 3427(1) | 7320(1)  | 8346(1) | 18(1)           | 1        |
| C(21) | 2764(1) | 9550(1)  | 8140(1) | 19(1)           | 1        |
| C(22) | 3917(1) | 9541(1)  | 8866(1) | 20(1)           | 1        |
| C(23) | 4292(1) | 4491(1)  | 5968(1) | 14(1)           | 1        |
| C(24) | 3838(1) | 4944(1)  | 6616(1) | 19(1)           | 1        |
| C(25) | 3944(1) | 3276(1)  | 5530(1) | 22(1)           | 1        |
| C(26) | 4886(1) | 5172(1)  | 4531(1) | 15(1)           | 1        |
| C(27) | 4977(1) | 6228(1)  | 3886(1) | 19(1)           | 1        |
| C(28) | 5570(1) | 4412(1)  | 4742(1) | 22(1)           | 1        |
| C(29) | 6386(1) | 9267(1)  | 4851(1) | 15(1)           | 1        |
| C(30) | 5784(1) | 9947(1)  | 4389(1) | 21(1)           | 1        |
| C(31) | 6710(1) | 8072(1)  | 4415(1) | 23(1)           | 1        |
| C(32) | 6947(1) | 8187(1)  | 6297(1) | 14(1)           | 1        |
| C(33) | 7009(1) | 8547(1)  | 7150(1) | 20(1)           | 1        |
| C(34) | 7039(1) | 6613(1)  | 6200(1) | 23(1)           | 1        |
| C(35) | 5309(1) | 6931(1)  | 7056(1) | 14(1)           | 0.964(3) |
| O(1)  | 5387(1) | 6565(1)  | 7684(1) | 29(1)           | 0.964(3) |
| ciú   | 5375(5) | 6771(8)  | 7456(5) | 19(3)           | 0.036(3) |

**Table S10.** Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for **6a** (CCDC 857167). U(eq) is defined as the trace of the orthogonalized U<sup>ij</sup> tensor.

 Table S11.
 Selected bond lengths [Å] and angles [°] for 6a.

| Ni(1)-C(35) | 1.7472(10) | C(35)-Ni(1)-P(2)  | 109.28(3)  |
|-------------|------------|-------------------|------------|
| Ni(1)-P(2)  | 2.1950(2)  | C(35)-Ni(1)-P(1)  | 112.14(3)  |
| Ni(1)-P(1)  | 2.2048(2)  | P(2)-Ni(1)-P(1)   | 129.471(8) |
| Ni(1)-C(18) | 2.2763(7)  | C(35)-Ni(1)-C(18) | 111.58(3)  |
| Ni(1)-Cl(1) | 2.465(8)   | P(2)-Ni(1)-C(18)  | 93.132(18) |
|             |            | P(1)-Ni(1)-C(18)  | 97.360(18) |
|             |            | C(35)-Ni(1)-Cl(1) | 1.9(2)     |
|             |            | P(2)-Ni(1)-Cl(1)  | 107.7(2)   |
|             |            | P(1)-Ni(1)-Cl(1)  | 114.0(2)   |
|             |            | C(18)-Ni(1)-Cl(1) | 110.80(19) |

| Table S12. | Bond lengths [A | Å] and angles [°] for <b>6a</b> . |
|------------|-----------------|-----------------------------------|
|------------|-----------------|-----------------------------------|

| Ni(1)-C(35) | 1.7472(10) | Ni(1)-C(18) | 2.2763(7) |
|-------------|------------|-------------|-----------|
| Ni(1)-P(2)  | 2.1950(2)  | Ni(1)-Cl(1) | 2.465(8)  |
| Ni(1)-P(1)  | 2.2048(2)  | P(1)-C(1)   | 1.8354(7) |

| P(1)-C(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8582(7)              | C(1)-C(6)-C(7)          | 121.69(6)              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|------------------------|
| P(1)-C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8723(7)              | C(8)-C(7)-C(18)         | 119.77(6)              |
| P(2) - C(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 8452(7)              | C(8) - C(7) - C(6)      | 117 75(6)              |
| P(2) C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0452(7)<br>1.9602(7) | C(19) C(7) C(6)         | 117.73(0)<br>122.42(5) |
| P(2)-C(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8093(7)              | C(18)-C(7)-C(0)         | 122.43(5)              |
| P(2)-C(29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8745(7)              | C(7)-C(8)-C(9)          | 121.65(6)              |
| C(1)-C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3983(9)              | C(10)-C(9)-C(8)         | 118.03(6)              |
| C(1) C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 4148(0)              | C(10) C(0) C(10)        | 123 50(6)              |
| C(1)- $C(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.4148(9)              | C(10)-C(3)-C(13)        | 123.30(0)              |
| C(2)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3881(10)             | C(8)-C(9)-C(19)         | 118.42(6)              |
| C(3)-C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3877(11)             | C(9)-C(10)-C(11)        | 122.23(6)              |
| C(4)- $C(5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 3879(10)             | C(18) - C(11) - C(10)   | 118 66(6)              |
| C(4) - C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2024(10)             | C(10) C(11) C(10)       | 110.00(0)              |
| C(5)-C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3924(10)             | C(18) - C(11) - C(12)   | 122.10(5)              |
| C(6)-C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.4907(9)              | C(10)-C(11)-C(12)       | 118.78(5)              |
| C(7)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3942(8)              | C(13)-C(12)-C(17)       | 118.63(6)              |
| C(7) C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 4054(9)              | C(13) C(12) C(11)       | 117 40(6)              |
| C(7)- $C(18)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4034(9)              | C(13)-C(12)-C(11)       | 117.49(0)              |
| C(8)-C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.4043(9)              | C(17)-C(12)-C(11)       | 123.88(6)              |
| C(9)-C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.3791(10)             | C(14)-C(13)-C(12)       | 121.81(6)              |
| C(9) - C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 5367(9)              | C(13) - C(14) - C(15)   | 119 43(6)              |
| C(10) C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.41(((9))             | C(16) C(15) C(14)       | 110.15(0)              |
| C(10)- $C(11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.4100(8)              | C(16)-C(15)-C(14)       | 119.45(7)              |
| C(11)-C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4106(9)              | C(15)-C(16)-C(17)       | 121.84(6)              |
| C(11)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4798(9)              | C(16)-C(17)-C(12)       | 118.76(6)              |
| C(12) C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 4044(9)              | C(16) C(17) P(2)        | 120 42(5)              |
| C(12)- $C(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.4044(9)              | C(10)-C(17)-F(2)        | 120.42(3)              |
| C(12)-C(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4101(9)              | C(12)-C(17)-P(2)        | 120.58(5)              |
| C(13)-C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3837(10)             | C(7)-C(18)-C(11)        | 119.58(5)              |
| C(14)-C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3936(10)             | C(7)-C(18)-Ni(1)        | 97 16(4)               |
| C(15) C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 2074(10)             | C(11) C(19) N(1)        | 20, 20(4)              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.38/4(10)             | C(11) - C(10) - NI(1)   | 07.38(4)               |
| C(16)-C(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3979(10)             | C(21)-C(19)-C(22)       | 108.86(6)              |
| C(19)-C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5307(11)             | C(21)-C(19)-C(9)        | 109.67(5)              |
| C(19) - C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 5315(10)             | C(22) - C(19) - C(9)    | 112 16(6)              |
| C(10) C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5313(10)             | C(21) = C(10) = C(20)   | 100 47(0)              |
| C(19)-C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5384(10)             | C(21)-C(19)-C(20)       | 109.47(6)              |
| C(23)-C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5301(10)             | C(22)-C(19)-C(20)       | 108.03(6)              |
| C(23)-C(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 5311(11)             | C(9)-C(19)-C(20)        | 108.60(5)              |
| C(26) C(28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 5289(11)             | C(25) C(23) C(24)       | 100.00(2)<br>100.70(7) |
| C(20)- $C(20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5266(11)             | C(23)-C(23)-C(24)       | 109.70(7)              |
| C(26)-C(27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5343(10)             | C(25)-C(23)-P(1)        | 117.25(5)              |
| C(29)-C(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5223(11)             | C(24)-C(23)-P(1)        | 111.00(5)              |
| C(29) - C(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 5288(11)             | C(28) - C(26) - C(27)   | 111 34(6)              |
| C(22) C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5219(10)             | C(28) C(20) C(27)       | 100 59(5)              |
| C(32)-C(33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5318(10)             | C(28)-C(20)-P(1)        | 109.58(5)              |
| C(32)-C(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5327(11)             | C(27)-C(26)-P(1)        | 111.30(5)              |
| C(35)-O(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.157(2)               | C(30)-C(29)-C(31)       | 111.98(6)              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | C(30)-C(29)-P(2)        | 109 98(5)              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.00(2)              | C(50)- $C(29)$ - $I(2)$ | 109.98(3)              |
| C(35)-Ni(1)-P(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.28(3)              | C(31)-C(29)-P(2)        | 113.42(5)              |
| C(35)-Ni(1)-P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112.14(3)              | C(33)-C(32)-C(34)       | 109.10(6)              |
| P(2)-Ni(1)-P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 129 471(8)             | C(33)-C(32)-P(2)        | 113 20(5)              |
| C(25) Ni(1) C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111 59(2)              | C(34) C(32) P(2)        | 100.71(5)              |
| C(33)-IN(1)-C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111.38(3)              | C(34)-C(32)-F(2)        | 109.71(3)              |
| $P(2)-N_1(1)-C(18)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93.132(18)             | O(1)-C(35)-Ni(1)        | 179.55(9)              |
| P(1)-Ni(1)-C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97.360(18)             |                         |                        |
| C(35)-Ni(1)-Cl(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19(2)                  |                         |                        |
| P(2) Ni(1) Cl(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 107 7(2)               |                         |                        |
| $1(2) - 1 \times 1 \times$ | 107.7(2)               |                         |                        |
| P(1)-Ni(1)-Cl(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 114.0(2)               |                         |                        |
| C(18)-Ni(1)-Cl(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110.80(19)             |                         |                        |
| C(1)-P(1)-C(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101 98(3)              |                         |                        |
| C(1) P(1) C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 102 54(2)              |                         |                        |
| C(1) - F(1) - C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102.34(3)              |                         |                        |
| C(26)-P(1)-C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101.69(3)              |                         |                        |
| C(1)-P(1)-Ni(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 113.99(2)              |                         |                        |
| C(26)-P(1)-Ni(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 123 08(3)              |                         |                        |
| $C(20)^{-1}(1)^{-1}V(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 123.00(3)              |                         |                        |
| C(23)-P(1)-Ni(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111.05(2)              |                         |                        |
| C(17)-P(2)-C(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101.33(3)              |                         |                        |
| C(17)-P(2)-C(29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98,40(3)               |                         |                        |
| C(32) P(2) C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101 03(3)              |                         |                        |
| C(32) - F(2) - C(29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 101.05(5)              |                         |                        |
| C(17)-P(2)-Ni(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 107.99(2)              |                         |                        |
| C(32)-P(2)-Ni(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 114.72(2)              |                         |                        |
| C(29)-P(2)-Ni(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 129 17(2)              |                         |                        |
| C(2) C(1) C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119 20(6)              |                         |                        |
| (2) - (1) - (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110.30(0)              |                         |                        |
| C(2)-C(1)-P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 123.09(5)              |                         |                        |
| C(6)-C(1)-P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 118.58(5)              |                         |                        |
| C(3) - C(2) - C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121 71(7)              |                         |                        |
| C(4) C(2) C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110 64(0)              |                         |                        |
| U(4) - U(3) - U(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.04(0)              |                         |                        |
| C(5)-C(4)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.61(7)              |                         |                        |
| C(4)-C(5)-C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121.42(7)              |                         |                        |
| C(5) C(6) C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                         |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110 27(6)              |                         |                        |
| C(3)-C(0)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.32(6)              |                         |                        |

|       | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Ni(1) | 100(1)          | 95(1)           | 102(1)          | -1(1)           | 4(1)            | -9(1)           |
| P(1)  | 102(1)          | 90(1)           | 105(1)          | -10(1)          | -5(1)           | 9(1)            |
| P(2)  | 85(1)           | 91(1)           | 111(1)          | -6(1)           | 12(1)           | 4(1)            |
| C(1)  | 108(3)          | 112(3)          | 98(2)           | 2(2)            | 2(2)            | 7(2)            |
| C(2)  | 153(3)          | 142(3)          | 120(2)          | -19(2)          | -10(2)          | -5(2)           |
| C(3)  | 136(3)          | 188(3)          | 115(2)          | 12(2)           | -23(2)          | -24(3)          |
| C(4)  | 100(3)          | 195(3)          | 145(3)          | 42(2)           | -11(2)          | 3(2)            |
| C(5)  | 109(3)          | 139(3)          | 139(3)          | 13(2)           | 20(2)           | 10(2)           |
| C(6)  | 104(3)          | 105(2)          | 89(2)           | 12(2)           | 17(2)           | -7(2)           |
| C(7)  | 92(3)           | 91(2)           | 104(2)          | -2(2)           | 8(2)            | 10(2)           |
| C(8)  | 93(3)           | 120(3)          | 110(2)          | -7(2)           | 18(2)           | -12(2)          |
| C(9)  | 102(3)          | 112(3)          | 98(2)           | -8(2)           | 15(2)           | 6(2)            |
| C(10) | 112(3)          | 129(3)          | 102(2)          | -10(2)          | 9(2)            | -12(2)          |
| C(11) | 99(3)           | 104(3)          | 115(2)          | 6(2)            | 18(2)           | -5(2)           |
| C(12) | 99(3)           | 102(3)          | 105(2)          | 11(2)           | 4(2)            | -5(2)           |
| C(13) | 123(3)          | 117(3)          | 150(3)          | -6(2)           | 24(2)           | 9(2)            |
| C(14) | 156(3)          | 95(3)           | 185(3)          | -26(2)          | 9(2)            | -4(2)           |
| C(15) | 119(3)          | 117(3)          | 194(3)          | 5(2)            | 3(2)            | -32(2)          |
| C(16) | 106(3)          | 123(3)          | 167(3)          | -5(2)           | 30(2)           | -15(2)          |
| C(17) | 97(3)           | 88(3)           | 124(2)          | 4(2)            | 7(2)            | 0(2)            |
| C(18) | 98(3)           | 98(2)           | 100(2)          | 6(2)            | 27(2)           | 4(2)            |
| C(19) | 112(3)          | 150(3)          | 97(2)           | -9(2)           | 26(2)           | -11(2)          |
| C(20) | 232(4)          | 183(4)          | 139(3)          | 36(2)           | 57(2)           | -4(3)           |
| C(21) | 176(4)          | 240(4)          | 145(3)          | -7(3)           | 51(2)           | 52(3)           |
| C(22) | 199(4)          | 282(4)          | 109(3)          | -28(2)          | 28(2)           | -59(3)          |
| C(23) | 152(3)          | 114(3)          | 158(3)          | 15(2)           | -26(2)          | -8(2)           |
| C(24) | 221(4)          | 173(3)          | 178(3)          | 22(2)           | 26(3)           | -53(3)          |
| C(25) | 272(4)          | 131(3)          | 246(3)          | -11(3)          | -4(3)           | -60(3)          |
| C(26) | 146(3)          | 144(3)          | 149(3)          | -48(2)          | 10(2)           | 19(2)           |
| C(27) | 205(4)          | 212(4)          | 148(3)          | -23(2)          | 43(2)           | 13(3)           |
| C(28) | 191(4)          | 222(4)          | 237(3)          | -63(3)          | 12(3)           | 71(3)           |
| C(29) | 142(3)          | 185(3)          | 130(3)          | 1(2)            | 35(2)           | -26(3)          |
| C(30) | 258(4)          | 230(4)          | 149(3)          | 29(3)           | 1(3)            | 24(3)           |
| C(31) | 175(4)          | 319(4)          | 188(3)          | -69(3)          | 55(3)           | 12(3)           |
| C(32) | 109(3)          | 135(3)          | 183(3)          | -12(2)          | -16(2)          | 18(2)           |
| C(33) | 200(4)          | 207(4)          | 179(3)          | 13(3)           | -55(3)          | 9(3)            |
| C(34) | 215(4)          | 156(3)          | 314(4)          | -21(3)          | -58(3)          | 77(3)           |
| C(35) | 174(4)          | 113(3)          | 145(4)          | 6(3)            | 2(3)            | -15(3)          |
| 0(1)  | 435(6)          | 277(5)          | 143(4)          | 87(3)           | -36(4)          | -49(4)          |
| Cl(1) | 280(30)         | 160(30)         | 140(50)         | 80(20)          | 10(30)          | 30(20)          |

 Table S13. Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>4</sup>) for 6a. The anisotropic displacement factor exponent takes the form:  $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$ .

### III. Nuclear Magnetic Resonance Spectra









Figure \$11<sup>-1</sup>H<sup>-13</sup>C aHSOC spectrum of 2a in C.D.



Figure \$12<sup>1</sup>H<sup>13</sup>C aHMRC spectrum of 20 in C.D.





Marl 8.0 7.0 6.0 3.0 2.5 7.5 6.5 5.5 5.0 4.5 f1 (ppm) 4.0 3.5 2.0 1.5 1.0 0.5 Figure S17. <sup>1</sup>H NMR spectrum of 1b in  $C_6D_6$  at 75°C -3.19 -2.15 -2.92 77.68 77.62 -6.76 11 1 ſ 1 ሥተ ተ ٣ 12.32 <del>|</del> 12.64 <del>|</del> ۲ ٣ -----6.16 3.00 4.17 2.21 1.81 3.68 1.94 8.0 7.5 6.0 3.0 2.5 0.5 7.0 6.5 5.5 5.0 3.5 20 1.5 1.0 4.5 ft (ppm) 4.0 Figure S18.  ${}^{13}C{}^{1}H$  NMR spectrum of 1b in C<sub>6</sub>D<sub>6</sub> at 25°C 148.52 147.48 145.60 √136.84 √136.50 √132.43 128.18 -117.41 41.20 -60.17 26.79 24.95 -20.82 115 110 105 100 95 90 85 80 ft (ppm) 135 120 150 145 140 130 125 75 70 65 60 55 50 45 40 35 30 25 20

Figure S16. <sup>1</sup>H NMR spectrum of 1b in C<sub>6</sub>D<sub>6</sub> at 25°C



Figure 20.  ${}^{31}P{}^{1}H$  NMR spectrum of 1b in C<sub>6</sub>D<sub>6</sub> at 75°C















#### IV. Hydrogenolysis Studies

**General considerations**. Syntheses of 2-(trideutromethoxy)naphthalene,<sup>9</sup> 2-(hexyloxy)naphthalene,<sup>10</sup> 1,1-dideuteroiodohexane,<sup>11</sup> and 1,3-bis(2,6-diisopropylphenyl)-imadzolinium chloride<sup>12</sup> (SIPr·HCl) were performed as described in the literature. m-Xylene was dried with sodium benzophenone ketyl and stored in an inert atmosphere glovebox. Hexanol was dried with sodium, distilled, and used in an inert atmosphere glovebox.

**Synthesis of 2-(1,1-dideuterohexyloxy)naphthalene**. A procedure was adapted from the literature.<sup>10</sup> A Schlenk tube was charged with a stir bar, 2-hydroxynaphthalene (0.72 g, 5.0 mmol),  $K_2CO_3$  (1.05 g, 7.6 mmol), 1,1-dideuteroiodohexane (1.65 g, 7.7 mmol), and acetone (7.5 mL) under a  $N_2$  counterflow. The tube was sealed with a Teflon screw-stopper and heated at 70 °C for 14h. The reaction mixture was washed with hexanes and the combined organic washes were concentrated under vacuum to an orange oil. The organics were run through a silica gel plug with hexanes and concentrated under vacuum to obtain pure product as an oil (1.04 g, 91%). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.80-7.67 (m, 3H), 7.47-7.39 (app td, 1H), 7.35-7.29 (app td, 1H), 7.18-7.11 (m, 2H), 1.84 (app t, 2H), 1.59-1.31 (m, 8H), 1.02-0.81 (m, 3H). GC-MS (m/z): calcd, 230.16 (M+); found 230.2.

**Synthesis of 2-deuteronaphthalene**. A Schlenk tube was charged with 2-bromonaphthalene (100 mg, 0.780 mmol), a stir bar, and  $Et_2O$  (10 mL) and stirred at -78 °C under N<sub>2</sub>. A solution of 1.7 M <sup>t</sup>BuLi (0.96 mL, 1.638 mmol) was added dropwise. After 30 min, the reaction mixture was allowed to warm to room temperature over 10 min. Then D<sub>2</sub>O (0.16 mL, 7.8 mmol) was added to the reaction. The reaction mixture was washed with H<sub>2</sub>O, extracted with DCM, dried with MgSO<sub>4</sub>, and filtered. After removing volatiles via rotary evaporation and redissolution in DCM, the mixture was analyzed by GC-MS and <sup>2</sup>H NMR. GC-MS (m/z): calcd, 129.07 (M+); found 129.1. <sup>2</sup>H NMR (74 MHz, CH<sub>2</sub>Cl<sub>2</sub> with internal CD<sub>2</sub>Cl<sub>2</sub> standard): 7.52 (s).





**Hydrogenolysis of 2-methoxynaphthalene (and deuterated variants)**. A procedure was adapted from the literature.<sup>10</sup> In a N<sub>2</sub>-atmosphere glovebox, a Schlenk tube was carefully charged with a stir bar, SIPr·HCl (27.5 mg, 0.062 mmol), and NaO'Bu (37.5 mg, 0.389 mmol) with the aid of weighing paper and an anti-static bar. Ni(COD)<sub>2</sub> (8.5 mg, 0.031 mmol) was affected by static too much to consistently transfer as a solid, so for reproducibility a suspension in minimal hexanes was employed to add to the reaction mixture. Immediately thereafter, the reaction flask was placed under vacuum to remove hexanes.

A solution (0.8 mL) of 2-methoxynaphthalene (23.5 mg, 0.149 mmol) and tetradecane (8.1  $\mu$ L, 0.031 mmol) in m-xylene was added with a pipette. The reaction mixture was sealed with a Teflon screw-stopper and stirred for 10 minutes at room temperature. The mixture was degassed with two freeze-pump-thaw cycles, warmed to room temperature, and treated with 1 atm H<sub>2</sub> (as regulated by a mercury bubbler). The reaction mixture was once again sealed with a Teflon screw-stopper and placed in a 120 °C oil bath for 16h. The reaction flask was removed from heat, allowed to cool to room temperature, and quenched with 1 mL Et<sub>2</sub>O and 1.5 mL 1M HCl aqueous solution. After 5 minutes of vigorous stirring, the top organic phase was separated via pipet. The aqueous phase was washed with 1 mL Et<sub>2</sub>O. The combined organic solutions were pushed through successive MgSO<sub>4</sub> and Celite plugs, and analyzed by GC-MS and GC. Naphthalene yield relative to internal tetradecane standard (GC FID): 74%. Analogous reactions with 2-(trideuteromethoxy)naphthalene or D<sub>2</sub> were performed by the same procedure.



Figure S38. MS of naphthalene from hydrogenolysis of 2-methoxynaphthalene under H<sub>2</sub>.



Figure S39. MS of naphthalene from hydrogenolysis of 2-(trideuteromethoxy)naphthalene under H<sub>2</sub>.



Figure S40. MS of naphthalene from hydrogenolysis of 2-methoxynaphthalene under D<sub>2</sub>.

Hydrogenolysis of 2-(n-hexyloxy)naphthalene (and deuterated variants). A procedure was adapted from the literature.<sup>10</sup> In a N<sub>2</sub>-atmosphere glovebox, a Schlenk tube was carefully charged with a stir bar, SIPr·HCl (25.8 mg, 0.060 mmol), and NaO'Bu (37.4 mg, 0.389 mmol) with the aid of weighing paper and an anti-static bar.  $Ni(COD)_2$  (8.5 mg, 0.031 mmol) was affected by static too much to consistently transfer as a solid, so for reproducibility a suspension in minimal hexanes was employed to add to the reaction mixture. Immediately thereafter, the reaction flask was placed under vacuum to remove hexanes. A solution (0.8 mL) of 2-(n-hexyloxy)naphthalene (33.9 mg, 0.148 mmol) and tetradecane (8.1 µL, 0.031 mmol) in m-xylene was added with a pipette. The reaction mixture was sealed with a Teflon screwstopper and stirred for 10 minutes at room temperature. The mixture was degassed with two freeze-pumpthaw cycles, warmed to room temperature, and treated with 1 atm  $H_2$  (as regulated by a mercury bubbler). The reaction mixture was once again sealed with a Teflon screw-stopper and placed in a 120 °C oil bath for 16h. The reaction flask was removed from heat, allowed to cool to room temperature, and quenched with 1 mL Et<sub>2</sub>O and 1.5 mL 1M HCl aqueous solution. After 5 minutes of vigorous stirring, the top organic phase was separated via pipet. The aqueous phase was washed with 1 mL Et<sub>2</sub>O. The combined organic solutions were pushed through successive MgSO4 and Celite plugs and analyzed by GC and GC-MS. Naphthalene yield relative to internal tetradecane standard (GC FID): 98%. <sup>2</sup>H NMR spectra (74 MHz, CH<sub>2</sub>Cl<sub>2</sub> with CD<sub>2</sub>Cl<sub>2</sub> internal standard), although broad, indicated <sup>2</sup>H incorporation at the 2-position of naphthalene product. Analogous reactions with 2-(trideuteromethoxy)naphthalene or  $D_2$  were performed by the same procedure.



Figure S41. MS of naphthalene from hydrogenolysis of 2-(n-hexyloxy)naphthalene under H<sub>2</sub>.



Figure S42. MS of naphthalene from hydrogenolysis of  $2-(1,1-d_2-n-hexyloxy)$  naphthalene under H<sub>2</sub>.



Figure S43. MS of naphthalene from hydrogenolysis of 2-(n-hexyloxy)naphthalene under D<sub>2</sub>.

**Exposure of naphthalene to hydrogenolysis conditions under D**<sub>2</sub>. Naphthalene was submitted to hydrogenolysis conditions under D<sub>2</sub> (vide supra) in place of alkylnaphtylether substrate. The reaction mixture was analyzed by GC and GC-MS.



Figure S44. MS of naphthalene from exposure to hydrogenation conditions under D<sub>2</sub>.

**Derivatization of hexanol byproducts**. A procedure was adapted from the literature.<sup>10</sup> Authentic hexanol or the organic extracts from hydrogenolysis of 2-(n-hexyloxy)naphthalene (and deuterated variants) were pushed through a  $MgSO_4$  plug into a Schlenk tube under  $N_2$  counterflow. N-methyl-N-

(trimethylsilyl)trifluoroacetamide (0.10 mL) was added to the tube. The tube was sealed and heated to 60 °C for 1h to derivatize hexanol into (n-hexyloxy)trimethylsilane. The reaction mixture was analyzed by GC-MS and GC without further purification. The base peak in the mass spectrum of (n-hexyloxy)trimethylsilane (for  $d_0$ , m/z = 159) corresponds to fragmentation of a methyl off of the molecular ion. Near quantitative methyl fragmentation is also observed for this compound in the NIST database reference spectrum. It is assumed that the fragmented methyl group is not <sup>2</sup>H-enriched. Products derived from under D<sub>2</sub> display  $d_{0.4}$  isotopologues. Two C-D bonds could be formed from reversible hydrogenation of an aldehyde intermediate. Another two C-D bonds could be formed from  $\beta$ -position deuteration via enolates formed from an aldehyde intermediate under the basic reaction conditions.



**Figure S45.** MS of (n-hexyloxy)trimethylsilane from hydrogenolysis of 2-(n-hexyloxy)naphthalene under  $H_2$  and derivatization.



**Figure S46.** MS of (n-hexyloxy)trimethylsilane from hydrogenolysis of  $2-(1,1-d_2-n-hexyloxy)$ naphthalene under H<sub>2</sub> and derivatization.



**Figure S47.** MS of (n-hexyloxy)trimethylsilane from hydrogenolysis of 2-(n-hexyloxy)naphthalene under  $D_2$  and derivatization.

Reaction of 2-methoxynaphthalene under hydrogenolysis conditions with H<sub>2</sub> pre-activation. In a N<sub>2</sub>atmosphere glovebox, a Schlenk tube was carefully charged with a stir bar, SIPr·HCl (27.5 mg, 0.0618 mmol), and NaO'Bu (37.5 mg, 0.3894 mmol) with the aid of weighing paper and an anti-static bar. Ni(COD)<sub>2</sub> (8.5 mg, 0.0309 mmol) was transferred as a suspension in minimal toluene (ca. 1 mL) to the reaction mixture. The reaction mixture was sealed with a Teflon screw-stopper and stirred for 10 minutes at room temperature. The mixture was degassed with two freeze-pump-thaw cycles, warmed to room temperature, and treated with 1 atm  $H_2$  (as regulated by a mercury bubbler). The reaction mixture was once again sealed with a Teflon screw-stopper and placed in a 120 °C oil bath for 5h. The reaction mixture was placed under vacuum, removing all volatiles and leaving a dark red crude mixture. The reaction flask was brought back into a glovebox, and a solution (0.8 mL) of 2-methoxynaphthalene (23.5 mg, 0.1485 mmol) and tetradecane (8.1 mL, 0.0309 mmol) in m-xylene was added with a pipette. The reaction mixture was then sealed and placed in a 120 °C oil bath for 16h. The reaction flask was removed from heat, allowed to cool to room temperature, and quenched with 1 mL Et<sub>2</sub>O and 1.5 mL 1M HCl aqueous solution. After 5 minutes of vigorous stirring, the top organic phase was separated via pipet. The aqueous phase was washed with 1 mL Et<sub>2</sub>O. The combined organic solutions were pushed through successive MgSO<sub>4</sub> and Celite plugs, and analyzed by GC-MS and GC. Naphthalene yield relative to internal tetradecane standard: 49% (GC FID).

#### V. Reductive Cleavage Studies with Triethylsilane

**General Procedure**. A procedure was adapted from the literature.<sup>10</sup> In a N<sub>2</sub>-atmosphere glovebox, a Schlenk tube was carefully charged with a stir bar, SIPr·HCl (25.8 mg, 0.062 mmol), and NaO'Bu (37.4 mg, 0.389 mmol) with the aid of weighing paper and an anti-static bar. Ni(COD)<sub>2</sub> (8.5 mg, 0.031 mmol) was affected by static too much to consistently transfer as a solid, so for reproducibility a suspension in minimal hexanes was employed to add to the reaction mixture. Immediately thereafter, the reaction flask was placed under vacuum to remove hexanes. A solution (0.8 mL) of 2-methoxynaphthalene (23.6 mg, 0.149 mmol) and tetradecane (8.1  $\mu$ L, 0.031 mmol) in m-xylene was added with a pipette. Then Et<sub>3</sub>SiD (48.9  $\mu$ L, 0.297 mmol) was added via microsyringe. The reaction flask was removed from heat, allowed to cool to room temperature, and quenched with 1 mL Et<sub>2</sub>O and 1.5 mL 1M HCl aqueous solution. After 5 minutes of vigorous stirring, the top organic phase was separated via pipet. The aqueous phase was washed with 1 mL Et<sub>2</sub>O. The combined organic solutions were pushed through successive MgSO<sub>4</sub> and Celite plugs, and analyzed by GC-MS and GC. These isotopic labeling studies suggest that hydrogens from moieties other than OCX<sub>3</sub> and SiX (X = H or D) are incorporated into the arene product. Studies beyond the subject of this paper are necessary to fully elucidate the mechanism of isotopic scrambling.

Table S14. Results of various labeling studies with triethylsilane

| Substrate            | Silane                         | Naphthalene yield (%) | $d_0$ (% vs $d_1$ ) |
|----------------------|--------------------------------|-----------------------|---------------------|
| NaphOCD <sub>3</sub> | 2 equiv. Et <sub>3</sub> SiH   | 81                    | 95                  |
| NaphOCH <sub>3</sub> | 2 equiv. Et <sub>3</sub> SiD   | 56                    | > 95                |
| NaphOCH <sub>3</sub> | 8.3 equiv. Et <sub>3</sub> SiD | 85                    | 81*                 |
| NaphOCD <sub>3</sub> | 2 equiv. Et <sub>3</sub> SiD   | 68                    | 85*                 |

\*Schlenk tube was successively rinsed three times with  $D_2O$  under  $N_2$  and flame-dried under vacuum prior to use for this reaction.

#### References

- (1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organomet. **1996**, *15*, 1518-1520.
- (2) Burger, A.; Wilson, E. L.; Brindley, C. O.; Bernheim, F. J. Am. Chem. Soc. **1945**, 67, 1416-1419.
- (3) Schmittel, M.; Ammon, H. Synlett **1999**, *6*, 750-752.
- (4) Lista, L.; Pezzella, A.; Napolitano, A.; d'Ischia, M. Tetrahedron. 2008, 64, 234-239
- (5) Pandiarajan, K.; Kabilan, S.; Sankar, P.; Kolehmainen, E.; Nevalainen, T.; Kauppinen, R.; *Bull. Chem. Soc. Jpn.* **1994**, *67*, 2639-2646
- (6) Feng, X.; Pisula, W.; Mullen, K. J. Am. Chem. Soc. 2007, 129, 14116-14117.
- (7) Hodges, J. A.; Raines, R. T.; Org. Lett., 2006, 8, 4695-4697
- (8) Xiao, Z-P.; Wang, Y-C.; Du, G-Y.; Wu, J.; Luo, T.; Yi, S-F.; *Synthetic Commun.* **2010**, *40*, 661-665
- (9) Álvarez-Bercedo, P.; Martin, R. J. Am. Chem. Soc. 2010, 132, 17352.
- (10) Sergeev, A. G.; Hartwig, J. F. Science 2011, 332, 439.
- (11) Beckmann, C.; Rattke, J.; Sperling, P.; Heinz, E.; Boland, W. Org. Biomol. Chem. 2003, 1, 2448.
- (12) Kuhn, K. M.; Grubbs, R. H. Org. Lett. 2008, 10, 2075.