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Subjects and Demographics. Children ages 6–17 y participated in
this study. They were recruited via widespread community out-
reach (public advertisements, mass mailings to advertiser lists,
radio ads, and fliers at clinics) to recruit a sample that would not be
biased by clinical referral but would reflect children with possible
attention deficit/hyperactivity disorder (ADHD) and typically
developing controls (TDC). Children were evaluated with an ex-
tensive battery of measures including a structured clinical in-
terview, parent and teacher rating scales, and intelligence quotient
(IQ) and achievement measures. These data were combined to
create a best estimate assignment of children to either ADHD or
TDC groups (children who were not able to be reliably clinically
assigned due to borderline symptom scores were excluded from
the present analysis), as detailed elsewhere (1). Demographic
details are listed in Table S1.

Diagnostic Evaluation. Psychiatric diagnoses were evaluated with
the Kiddie Schedule for Affective Disorders and Schizophrenia
(KSADS-I) (2) administered to a parent and with a parent and
teacher Conners Rating Scale, Third Edition (3). Intelligence was
evaluated with a three-subtest short form (block design, vocabu-
lary, and information) of the Wechsler Intelligence Scale for Chil-
dren, Fourth Edition (WISC-IV) (4). A diagnostic team (a board-
certified child psychiatrist and licensed clinical psychologist) in-
dependently reviewed the case records and interviewer notes to
arrive at a decision regarding ADHD (and ADHD subtype) and
comorbid disorders. If they disagreed, the case was conferenced; if
consensus was not easily obtained, the case was excluded. Their
agreement rates were acceptable (κ > 0.80 for all disorders with
base rate >5%). Children were classified as ADHD combined
subtype if they currently met criteria for ADHD and ever met
criteria for combined subtype and as primarily inattentive subtype
if they met criteria for ADHD and always met criteria for in-
attentive subtype. We excluded two children with the primarily
hyperactive subtype from this report. For purposes of the current
study, all children with ADHD were pooled into a single group.
Children were excluded if they did not clearly meet criteria for

ADHD or non-ADHD groups (i.e., children deemed subthreshold
by the clinicians were excluded). Children were also excluded if
a history of neurological illness, chronic medical problems, sensori-
motor handicap, autistic disorder, mental retardation, or significant
head trauma (with loss of consciousness) was identified by parent
report or if they had evidence of psychotic disorder or bipolar
disorder on the structured parent psychiatric interview. Children
currently prescribed nonstimulant psychotropic medications (in-
cluding atomoxetine) were excluded. Children prescribed short-
acting stimulant medications underwent neuropsychological testing
after a minimum five half-life washout (i.e., 24–48 h depending on
the preparation). Typically developing control children were ex-
cluded for presence of conduct disorder, major depressive disorder,
or history of psychotic disorder, as well as for presence of ADHD.

Background Measures of Cognitive Functioning. Youth completed
two laboratory sessions. The first session was composed of the
diagnostic screening along with other testing, which included
a short form of the WISC-IV (4). The age-adjusted standardized
score was used as the estimate of full-scale IQ for each child.
They also completed the Wechsler Individual Achievement Test,
Second Edition (WIAT-II) (5) word reading subtest so we could
screen for possible learning disorder. The second session in-
cluded the experimental battery as described below.

Neuropsychological Measures Theorized to Relate to ADHD. We de-
vised a battery of measures intended to capture many different
hypotheses about possible cognitive problems in ADHD. The
battery thus was designed to capture workingmemory (6), response
inhibition (7, 8), response variability (9), temporal information
processing (10), arousal and activation (11), interference control
(12), and response speed (13). Because our focus was on cognitive
types and not motivation or emotion/reward processing, we did
not include measures of reward processing and reward discounting
(14) for this analysis (note that we did include a measure of delay
aversion in a subset of participants, but because it was not in-
cluded in all youth it is excluded here). All of our measures are
listed in Tables S4 and S5. Detailed explanation of each measure
and how we obtained them are provided here.
Working memory and memory span. Three tasks were used to capture
various components of working memory: (i) Digit Span: Youth
completed the WISC-IV Digit Span forward (DSF) and back-
ward (DSB) to assess verbal span and working memory abilities
using standard procedures (4). Raw scores on the backward trials
were retained for analyses. (ii) Spatial Span: Children next
completed a computerized version of the Spatial Span subtest
from the Wechsler Memory Scales (15) to examine visuospatial
span and working memory capabilities. On this task, children
were presented with a screen containing 10 squares arranged in
a fixed position. Individual squares then changed color (from
gray to yellow) in a fixed sequence. A tone sounded at the end of
the sequence to note when the sequence was finished. Youth
were then instructed to click on the squares in the order in which
they changed color. The number of squares in the sequence
began at three and increased to nine, with two trials for each
sequence length. Similar to Digit Span, youth completed both
Spatial Span forward (SSF) and backward (SSB) (i.e., recall the
sequence in reverse order) versions of the task. (iii) Stars Task:
We developed a computerized task modeled on work by Engel
(16). For each trial of the task, presentations alternated between
two types of trials: (a) “remember the number of stars,” in which
the screen displayed from one to three blue stars, and (b) “re-
member the location of the yellow star” in which the screen
displayed five transparent stars, of which one was yellow. For the
blue stars, participants were instructed to press the keyboard for
the number of blue stars shown. For the yellow star pre-
sentations, children were instead instructed to remember its
position within the row of five stars. Each block involved a series
of alternating blue and yellow star presentations and ranged
from one block of blue star/yellow star pairings (one-span set) to
five blocks of blue star/yellow star pairings (five-span set). At the
end of each set, youth were to circle on a corresponding page all
of the positions in which they had viewed yellow stars, in the
order in which they were presented. Children had to remember
the position of one to five yellow stars. Five blocks of each span
(one-, two-, three-, four-, and five-span) were presented for
a total of 25 blocks. To score this task, one- and two-span trials
were counted as indexing immediate recall whereas four- and
five-span trials were considered as indexing working memory
(blocks of 3 were omitted). To receive credit for a correct yellow
star position, their response to the corresponding blue star trial
also had to be correct to ensure they were engaged in the dual
task design. Accuracy scores for each span length were then
computed. The working memory trials (four- and five-span) were
retained for analyses.
Interference control. DKEFS color word interference. This subtest from
the DKEFS (17) (2001) was administered to assess interference
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control and is an analog to the classic Stroop task. Youth com-
plete four conditions as part of this task. In the first condition
(color naming: color word speed, CWSP) children were pre-
sented with a series of color patches on a page and instructed to
name the colors out loud without skipping any or making any
mistakes. In the second (word reading) they read aloud the color
names as quickly as possible without making mistakes. In the
third trial (inhibition/interference) youth viewed color names
printed in different-colored ink and were to name the color of
the ink (color word inhibition, CWIN). In the fourth (color word
switching, CWSW), color names in contrasting ink colors ap-
peared with or without a box around them. Youth were to name
the color of the ink for those items with no box, but to read the
word for those items in a box. The total completion times for
each trial were retained for analyses.

Delis–Kaplan Executive Function System (DKEFS) trailmaking task. The
DKEFS trailmaking task (17) (2001) was administered to assess
cognitive-control and set-shifting abilities. Youth completed
number and letter sequencing conditions (trails number and
letter naming speed average, TRSP), and switching conditions
(trails making task switching, TRSW). Number sequencing re-
quired youth to connect a series of numbers, in order (se-
quencing 1–16). Letter sequencing required connecting a series
of letters, in alphabetical order (sequencing A–P). Switching
required connecting numbers and letters in alternating sequence
(1-A-2-B, etc.). The total completion times and total errors were
recorded for each condition.
Response inhibition. The Stop Task (18) was administered to assess
response inhibition and requires the suppression of a prepotent
motor response. During this choice reaction time task, partic-
ipants see an X or an O on a computer screen and respond
rapidly with one of two keys to indicate which letter they had seen
(called Go Response trials). In 25% of trials, a tone sounds
shortly after the X or the O is displayed, indicating that partic-
ipants are to withhold their response. A stochastic tracking pro-
cedure was used; stop signal reaction time (SSRT) was computed
as an index of how much warning each participant needs to in-
terrupt a response. Trials were presented across eight blocks of
32 trials. SSRT was calculated by subtracting the average stop
signal delay from the average Go Response time (8, 18).
Response variability (SDX). The within-child variability of the re-
action time in theGoResponse trials was retained as ameasure of
response variability.
Arousal and activation. An identical pairs Continuous Performance
test modified for children (19) was used to examine vigilance and
sustained attention. In this task, children were presented with
a rapid series of four-digit numbers. Youth were told to press a red
button each time they saw a repeat of the exact digits (e.g., 2,524
followed by a second 2,524). The task was divided into five blocks
of 288 paired trials. There were three pair types: (i) stim trials, or
pairs of distinct digits (e.g., 6,923 and 2,524); (ii) catch trials, or
digit pairs that differed by only one number (e.g., 2,524 and 2,534);
and (iii) pair trials, or digit pairs that matched exactly (e.g., 2,524
and 2,524). Children received an accuracy score for each condi-
tion. To indicate arousal, we computed the signal detection index
d-prime (20). The signal detection index d-prime (d′) was com-
puted for each of the five blocks. A higher d-prime score tradi-
tionally indicates greater sensitivity in distinguishing the targets
(pair trials) from the nontargets (catch and stim trials). However,
this score was reverse scored to ensure that higher scores for all
measures indexed worse performance (weaker signal detection,
presumed to be due to suboptimal arousal in the case of ADHD).
Temporal information processing. Tapping task. A computerized tap-
ping task was administered to assess temporal information pro-
cessing abilities, modified from that used by Toplak et al. (21).
Youth were presented with either a visual or an auditory tapping
rate and instructed to tap along at the same rate by pressing
a red button. Two trials (slow rate of 1,000 ms between taps and

fast rate of 400 ms between taps) for each presentation modality
(visual and auditory) were administered to each child, for a total
of four trials. The 1,000-ms condition is thought to have more
memory demands than the 400-ms condition (22). A detrended
SD was computed for each trial for each individual child to
capture the extent to which each child’s tapping rate varied
against the target stimulus rate (400 ms or 1,000 ms) for each
modality (visual and auditory). Larger values indicate greater
deviation from the target tapping rate. These four detrended
SDs were retained for analyses.
Response speed. As noted in Table S2, several variables measured
aspects of response speed. We selected the subset of these
measures that allowed the best fit for our confirmatory factor
analysis (CFA) models—in this case, color naming and trail-
making number sequencing. The other speed variables listed in
Table S2 were omitted from the final analysis presented here.
Validity checks.All scores from each task were subjected to several
validity criteria to ensure that the participants were completing
the tasks correctly and that the data were providing an accurate
measure of each neuropsychological construct. For example, in
the continuous performance task (CPT) children’s data had to
show better accuracy in stim trials than in random trials for that
block of data to be considered valid; in the stop task overall
decision accuracy had to exceed 70% for that block of data to be
considered valid. Data validity was coded as yes/no (1/0) for each
task for each child. If a child failed to produce valid data on
a given task, then his or her score for that task was estimated
using full information maximum likelihood for the CFA and the
computation of the factor scores for the modularity analysis.
Similar quality checks were conducted on all of the data. In
addition, we examined results of these checks to ensure that data
excluded on the basis of these validity criteria did not differ
between children on the basis of diagnostic group, sex, or age.
All validity codes were unrelated to demographic (age, sex,
ethnicity, grade) or diagnostic variables (ADHD and disruptive
behavior disorder diagnosis, IQ; all P > 0.15).

Data Reduction for Neuropsychological Measures. A goal of our
approach was to use a broad set of neuropsychological variables
that would cover numerous domains that have been hypothesized
to be relevant to ADHD. At the same time, we did not wish to use
an excessive number of redundant indicators in our modularity
analysis. We therefore sought to conduct rational reduction of the
measures, according to the conceptual model that had guided our
work as implied in Tables S4 and S5 of the main text. All measures
were transformed such that higher scores were indicative of worse
performance (e.g., slower speed or worse accuracy), so that all
measures had the same valence. Fig. 2 of themain text portrays our
primary conceptual model for how the variables were expected to
relate. It also displays the factor loadings for the best-fitting seven-
factormodel.However, as noted in themain textMethods, because
we were sensitive to the possibility of equivalent models, we also
tested several competing models that conformed to our theorized
reasons for choosing these measures. In the best-fitting six-factor
model, we separated combined working memory and inhibition
factors into a single “executive” factor. In the best-fitting five-
factor model, we also combined “span” and “speed” factors into
a single attention factor. In the best-fitting four-factor model, we
also combined time reproduction with executive functioning.
Fit of all of these models was evaluated using several indexes,

including the χ2-value, the comparative fit index (CFI) (>0.90 =
adequate), the Tucker Lewis index (TLI) (>0.90 = acceptable),
and the root mean-square error of approximation (RMSEA)
(<0.05 = good, 0.05–0.08 = adequate, 0.08–0.10 = marginal,
>0.10 = poor). In these models, residual variances of measures
from the same task were allowed to correlate (e.g., color naming,
inhibition, and inhibition/switching from the DKEFS color word
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interference). Again, χ2, CFI, TLI, and RMSEA were used to
evaluate relative fit of the various models.
For the modularity analysis (below) factors were regressed for

age and standardized across all participants to a mean of zero and
SD of one, as we did not wish to cluster participants by age in this
analysis and wanted all measures on the same metric scale.

Identification of Subgroups via Community Detection. To examine
the strength of subject-to-subject relationships via graph theory,
correlation matrices were created between subjects across the
seven identified factor scores from the preceding feature re-
duction step. Each subject’s factor scores were then correlated to
every other subject’s seven-factor scores. This procedure created
two square correlation matrices (285 × 285 for ADHD and 213 ×
213 for TDC) providing distance information (i.e., a correlation)
between any given subject pair within the ADHD and TDC
cohorts. Subsequent community detection was applied to these
matrices separately.
Note that graph theoretic analyses, when applied to correlation

matrices, generally rely on the thresholding of r-values. Typically,
thresholding is a necessary step in the derivation of graphs (i.e.,
determining “connected” vs. “unconnected” pairs for either bi-
nary or weighted graphs). For our community detection proce-
dures not every subject pair was deemed connected. The choice
of threshold is therefore a critical decision point in the analytical
process. For example, a choice of r approaching 1.0 will generate
very sparse graphs, with a limited number of edges (i.e., few
connected child pairs). In this instance “unattached” clusters of
nodes could be deemed communities simply because of the
sparse matrix. On the other hand a choice of r approaching 0.0
will generate densely connected graphs (i.e., nearly all child pairs
would be deemed connected), where limited demarcations in the
graph would be able to be identified. As such, to determine
a proper threshold for which any two subjects were deemed
connected or similar, we chose the maximum threshold where
reachability remained equal to 1. Simply put, this is the maximum
threshold where every subject is connected via at least one path
to every other subject (no isolates). Thus, the graphs remain
sparse, but fully connected (i.e., there are no isolated individuals
lacking in any connections). This reachability threshold for the
TDC graph was at r = 0.56, and the threshold for the ADHD
graph was r = 0.73. However, to ensure our analysis did not
depend on threshold selection, we also ran our community de-
tection across multiple thresholds. In addition, we applied
a weight-conserving modularity algorithm not dependent on
thresholds (23). Both additional procedures yielded largely
consistent results (Fig. S2).
Among the many methods used to detect communities in

graphs, the modularity optimization algorithm of Newman is one
of the most efficient (24). This method uses a quantitative mea-
sure of the observed vs. expected intracommunity connections, as
a means to guide assignments of nodes (in this case subjects) into
communities. We applied the modularity optimization algorithm
to the group distance matrix noted above.
The strength of our modularity assignments was based on the

quality index (Q), variation of information (VOI), and simulations
created by repeating our analyses after 1,000 iterations of ran-
domizing the factor scores across participants, thus generating
a null distribution of Q (Fig. S3). Q of a graph is a quantitative
measure of the number of edges found within communities vs. the
number predicted in a random graph with equivalent degree
distribution. A positive Q indicates that the number of intra-
community edges exceeds those predicted statistically. Q can
range from −1.0 to +1.0, with 0 indicating there are no subgroups
and 1.0 indicating perfectly reliable division of groups. A wide
range ofQmay be found for a graph, depending on how nodes are
assigned to communities. The set of node assignments that returns

the highest Q is the optimal community structure sought by the
modularity optimization algorithm (for details see ref. 24).
The second index of robustness was VOI (25). As noted by

Karrer et al. (25),

Although it is true that networks with strong community structure have
high modularity, it turns out that not all networks with high modularity
have strong community structure. Indeed, there exist networks that
most observers would consider to have no community structure at all
that nonetheless have high modularity. . . . The reason for this at first
peculiar finding is actually quite straightforward: the number of
possible divisions of a network increases extremely fast with network
size (faster than any exponential), so that although it is highly im-
probable that any one division will, purely by chance, have high
modularity, it is, in the limit of large size, very likely that such a di-
vision will exist among the enormous number of possible candidates.
As a result, high modularity is only a necessary but not sufficient
condition for significant community structure.

As an example, Figs. S2C and S3A provide an instance from
one of our randomized simulations that produced relatively high
values of Q. Whereas the community pattern for the simulation
does not replicate with the ADHD and TDC sample (as it did
with the actual data), Q for this example was, nonetheless, high
enough to suggest meaningful groupings. For this reason we also
apply VOI as a secondary method for examining the robustness
of our community assignments (25). For this analysis the mod-
ularity or community structure in the graph is compared using
the same graph, but with a certain percentage (α) of random
perturbation (or rewiring) of the edges/connections. Graphs with
strong community assignments tend to remain the same even
after perturbation, meaning there is little change in the VOI (in
effect, the conclusions cannot be explained by any small portion
of the data, suggesting results are not capitalizing on chance).
This structure is distinct from a random network, wherein any
community assignment is greatly affected by very little pertur-
bation (i.e., results depend heavily on chance effects and are
altered by any change in the data). By comparing the VOI for the
actual data to the results for random data with the same pa-
rameters, we can evaluate whether our groupings do better than
chance assignments. After computing the VOI across many dif-
ferent levels of α, one can quickly identify whether the com-
munity assignments of the experimental dataset deviate strongly
from what might be expected in a random graph (Fig. S2 and ref.
25). We apply this method to both the true data and the ran-
domized simulation. All of the preceding calculations were
performed in MATLAB (Mathworks), using scripts generously
provided by Olaf Sporns, Mikail Rubinov, and other collabo-
rators (26).
Our last method to examine the robustness of our community

structure was to use a more familiar approach. We generate a null
distribution of Q on the basis of the weight-preserving modu-
larity algorithm (thus without using thresholds) (23) via 1,000
randomizations of our participant factor scores (Fig. S2). We
then use the Q-distribution to generate a z-score for measured
modularity Q values of the form

z ¼ Q− μ
σ

;

which measures how many SDs or how significantly our Q values
deviate from random. Although there is some criticism of this
particular approach (25), it is generally robust and has support
(27, 28), and we use it here only after having applied VOI, which
controls for its deficiencies (25).

Support Vector Machine-Based Multivariate Pattern Analysis. Having
formed our groups and tested their robustness, we proceeded to
evaluate our ability to predict at the individual level. To do so, we
used support vector machine (SVM)-based multivariate pattern
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analysis (MVPA) to identify whether (i) individual children can
be classified into their group assignments and (ii) ADHD status
could be discerned in the individual more effectively when these
group assignments were considered.
SVM is a supervised classification algorithm rooted in statis-

tical learning theory. Conceptually, input vectors are mapped to
a higher-dimensional feature space using special nonlinear
functions called kernels. Classification is performed by con-
structing a hyperplane in the feature space that optimally dis-
criminates between two classes of the training data by maximizing
the margin between two data clusters.
Given a training set of the form (xi, yi), where the vectors xi are

data points and yi are the class labels, the SVMs require the
solution to the optimization problem

min
w;b;ξ

1
2
wTwþ C

Xn

i¼i
ξi;

subject to

yiðw: xi þ bÞ ≥ 1− ξi and ξi ≥ 0;

where ξi are the slack variables, measuring the degree of a data
point’s misclassification, w are the weights defining the hyper-
plane, and C > 0 is the penalty parameter of the error term. The
resultant decision function implemented by SVM can be written as

f ðxÞ ¼ sign
�Xn

i¼1
yiαiKðx; xiÞ þ b

�
;

where K(xi, xj) is the kernel function. In our work, we use Radial
basis kernel given by

K
�
xi; xj

� ¼ exp

 
−
��xi − xj

��2
2σ2

!
:

SVMs are inherently two-class classifiers. Multiclass SVM aims to
handle the K-class pattern classification problem by reducing the
single multiclass problem into multiple binary classification
problems. The most common method for such reduction is to
build a set of one-vs.-rest binary classifiers that distinguish one of
the classes from the rest. Another strategy is to build a set of one-
vs.-one classifiers that distinguish between every pair of classes.
For the one-vs.-one approach, classification is done by a max-
wins voting strategy that chooses the class that is selected by the
most classifiers. For the one-vs.-rest case (used in this work),
classification of new instances is done by a winner-takes-all

strategy, in which the classifier with the highest output function
assigns the class. SVM classifications used a soft margin C = 10
and a radial basis function with σ = 4. We use Spider (http://
people.kyb.tuebingen.mpg.de/spider/main.html), an object-ori-
entated environment for machine learning in MATLAB, for
generating the SVM models.
Subtype assignment.We first used SVM-basedMVPA to determine,
within a diagnostic group, how well individual children can be
classified into their respective neuropsychological group assign-
ments (first in TDC and subsequently in the ADHD cohort). For
this determination we used a split replication procedure separately
for both the TDC and the ADHD cohorts, dividing each sample
on the basis of a balanced split procedure (Mahalanobis distance)
into two groups (i.e., we divided the splits such that the two groups
have the same N, age, sex, and IQ). Thus, for the ADHD group,
there were 143 children in the first sample and 142 children in the
second sample. For the TDC group, there were 107 in the first
sample and 106 in the second sample.
We then applied our community detection procedure to each

“split”, which in a confirmatory fashion showed a similar break in
the community structures within each split as it did in the whole
samples (Fig. S4). From here we could then apply our SVM
algorithm, using one split as our training set (i.e., to train our
SVM) and one as our test set (i.e., to test the SVM’s classifica-
tion accuracy).
ADHD status. To test how well the ADHD status of our individual
subjects could be determined using the neuropsychological
measures alone within the community detection-determined
groupings, we maximized the size of the training data by using
a leave-one-out cross-validation (LOOCV) procedure. LOOCV
involves removing a single subject as a test sample and then using
the remaining data for feature selection and as the training set for
the SVM predictor. This procedure is then repeated until each
subject is used once as the test case. LOOCV is a commonly
implemented cross-validation tool because it maximizes the
amount of data used for training, is widely used in machine
learning (29), and has been shown to provide a conservative
estimate of a classifier’s or predictor’s true accuracy. We first
used this procedure to identify how well an individual subject
could be predicted when considering the ADHD and TDC
populations as homogeneous groups. We then repeated the
procedure, looking within community types (i.e., subgroups 1–4)
(Results and Figs. 3 and 4 in main text) to determine whether the
inferential power of ADHD classification is improved by exam-
ining within each profile type.
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Fig. S1. Community detection applied to alternative five- and six-factor models. As noted in the main text because a limitation of confirmatory factor analysis
is the potential for untested models to have equivalent fit, we tested several competing models for our feature reduction step. (A) Community detection based
on the five-factor model. (B) Community detection based on the six-factor model. The main findings in the text did not deviate widely on the basis of the three
best-fitting models.
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Fig. S2. (A) To ensure our subgroups in both the ADHD and the TDC populations were not specific to a particular threshold, we reexamined our data using
a weight-preserving modularity algorithm (23). Our subgroupings in both the TDC and the ADHD populations replicated using this procedure. Q values were
high (Q = 0.5 TDC and 0.51 ADHD). The one deviation was in regard to the ADHD population, where profiles 2A and 2B as well as profiles 4A and 4B merged
into one profile as in the TDC population. (B) We also reexamined our subgroupings across multiple thresholds, as a secondary measure to show the com-
munities identified were largely independent of threshold selection. Here thresholds were applied from r = 0.4 to 0.8. The color codes correspond to profile
colors as in A. The y axis represents participants. Although there are small deviations across thresholds, group assignments remain largely similar across
thresholds. Not surprisingly, for the TDC population as the thresholds increase past 100% reachability (i.e., r = 0.53), the variability in community assignments
increases due to nodes and clusters of nodes becoming “disengaged” in the network. (C) Here we examine variation of information (VOI) across the identified
communities as a way to reveal a structure highly deviant from random. VOI is a measure of how much information is not shared between two sets of
community assignments and allows for the quantification of network robustness (1, 2). Values of 0 indicate identical community assignments, and values of 1
indicate maximally different community assignments. To assess the stability of community assignments, the edges of a network are randomized with prob-
ability α to perturb the network, and the VOI between the original and perturbed networks is calculated over a range of α. A random network with equivalent
degree and a network with high Q based on our random simulations (Fig. S3A) were generated for comparison. The entire perturbation process was repeated
20 times for each network. Compared with the random graphs, the community assignments in both ADHD and TDC are significantly robust.

1. Karrer B, Levina E, Newman ME (2008) Robustness of community structure in networks. Phys Rev E Stat Nonlin Soft Matter Phys 77:046119-1–046119-9.
2. Meila M (2007) Comparing clusterings - an information based distance. J Multivariate Anal 98:873–895.

Fig. S3. Generating a null distribution of Q on the basis of the weight-preserving modularity algorithm introduced by Rubinov and Sporns (23). (A) One
example of our simulations created by repeating our analyses after 1,000 iterations of randomizing the factor scores across participants. Whereas using
a threshold of 100% reachability yields an average of 11 communities in each cohort for these randomizations, for visualization and explanatory purposes we
reduced the threshold for this example, such that only 6 communities were present. Perhaps not surprisingly, the cohort community patterns do not replicate
across cohorts and factor distributions are highly varied. Even so, for this example from our 1,000 random iterations Q values were high (Q = 0.55 ADHD and
Q = 0.58 TDC) after thresholding, and moderately high using the weight-preserving modularity algorithm by Rubinov and Sporns (23) (Q = 0.36 ADHD and
Q = 0.38 TDC). As noted in SI Text, this result might occur in some random graphs and thus highlights the importance of secondary means by which to test
the robustness of modularity assignments (e.g., VOI, within-sample replication, z-score relative to null distribution, as used here). (B) Full Q null distribution
based on the 1,000-factor randomizations, using the weight-preserving algorithm used in Fig. S2A. As this modularity method does not rely on thresholding
of r-values, it is more easily calibrated for our networks to generate a null distribution. This distribution was used to generate z-scores for the Q values in
Fig. S2A on the basis of our original matrices (actual data). For the TDC cohort Z = 15.51. For the ADHD cohort Z = 16.51.
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Fig. S4. A split replication procedure was applied for the SVM-based MVPA analysis. To use our SVM to test the ability for single-subject classification into any
given community we split the data into a test and a training set. Community detection was applied to each split separately and revealed similar findings. The
one deviation for the full dataset was subgroup 4B in the ADHD set. The overall pattern appeared deviant when compared using the full ADHD sample, and
only one subject localized to this group in the second split. Because of this limitation, classification for this particular group was not applied.

Table S1. Descriptive and demographic statistics

Control ADHD-PI ADHD-C P Pairwise differences

N 213 107 137
% Male 42.3 57 75.9 <.001 Control<PI<C
% Caucasian 76.5 74.8 70.8 0.49 —

% African-American 8.9 5.6 9.5 0.5 —

% Latino 3.8 2.8 8.8 0.05 —

% Mixed/biracial 9.4 13.1 10.9 0.6 —

Age (SD) 11.0 (2.4) 11.3 (2.3) 9.9 (2.2) <.001 C<PI=Control
Income (SD)* 79.0 (47.4) 75.2 (36.4) 55.9 (38.0) <.001 C<PI=Control
Full-scale IQ (SD) 107.12 (14.14) 102.79 (16.18) 102.69 (14.33) 0.01 C=PI<Control
% Stimulant medication 1.4 28 45.3 <.001 Control<PI<C
KSAD diagnostics
Inattention symptoms (SD) .74 (1.4) 7.4 (1.5) 7.6 (1.6) <.001 Control<PI=C
Hyperactive symptoms (SD) .62 (1.2) 1.8 (1.7) 6.2 (2.0) <.001 Control<PI<C
% ODD 5.2 18.9 38.7 <.001 Control<PI<C
% CD 0 2.8 5.8 0.01 Control <C
Conners parent oppositionality 48.3 (9.5) 55.9 (12.7) 63.8 (13.2) <.001 Control<PI<C
Conners parent cognitive problems 48.2 (7.6) 72.8 (10.2) 69.9 (10.7) <.001 Control<C<PI
Conners parent hyperactivity 48.9 (8.2) 57.2 (11.9) 71.2 (12.3) <.001 Control<PI<C
Conners teacher oppostionality 48.5 (7.3) 52.0 (10.1) 58.4 (13.6) <.001 Control<PI<C
Conners teacher cognitive problems 49.6 (8.5) 66.7 (11.0) 68.5 (13.4) <.001 Control<PI=C
Conners teacher hyperactivity 49.6 (8.8) 57.7 (10.5) 62.2 (12.2) <.001 Control<PI=C

P values indicate 3-group significance test. Conners’ T scores and standard deviations provided reflect age and sex norms.
*Income reported in thousands.
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Table S2. Neuropsychological measures, variables, and constructs

Task Variables Construct

Spatial span Backward total correct Working memory
Forward total correct Encoding, span

Digit span Backward total correct Working memory
Forward total correct Encoding, span

Star span Long trials total correct Working memory
Short trials total correct Encoding, span

DKEF color word Color naming time Naming speed
Word reading time Reading speed*
Inhibition/interference time Interference control, executive function
Inhibition switch Switching speed, executive function

DKEF trailmaking Visual scanning time Scan speed*
Number sequencing time Speed
Letter sequencing time Speed
Number letter time Switching speed, executive function

Stop task Go reaction time Decision speed/speed
Reaction time SD Response variability
Stop signal reaction time Response suppression/inhibition

CPT d-prime Arousal
Tapping task 400-ms detrended sd visual Time reproduction

400-ms detrended sd auditory Time reproduction
1,000-ms detrended sd visual Time reproduction
1,000-ms detrended sd visual Time reproduction

CPT, continuous performance task; DKEF, Delis–Kaplan executive function battery; sd, standard deviation.
*Variables were excluded from final confirmatory factor model to improve model fit.
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Table S4. TDC cognitive profile (or subgroup) demographics

TDC Profile 1 Profile 2 Profile 3 Profile 4 P value

N 92 43 39 39 —

% male 45.65 46.51 38.46 33.33 —

% female 54.35 53.49 61.54 66.67 —

Age 11.38 11.50 11.74 11.57 0.89
FSIQ 109.64 100.88* 106.03 109.15 0.01
INT 0.79 0.70 0.63 0.74 0.94
HYP 0.54 0.62 0.79 0.65 0.72
% of sample 43.19 20.19 18.31 18.31 —

P values indicate N-group significance test. Profile 2 for both ADHD and
TDC had small but significant lower IQs relative to other profiles. FSIQ, full
scale IQ; INT, average number of inattentive symptoms; HYP, average num-
ber of hyperactive symptoms.
*Post hoc significant pairwise differences at P < 0.05 (profiles 1 and 4).

Table S5. ADHD cognitive profile (or subgroup) demographics

ADHD Profile 1 Profile 2A Profile 2B Profile 3 Profile 4A Profile 4B P value

N 61 49 56 71 24 24 —

% male 54.10 77.55 80.36 56.34 54.17 62.50 —

% female 45.90 22.45 19.64 43.66 45.83 37.50 —

Age 11.34 11.54 10.33 11.01 11.69 10.84 0.06
FSIQ 104.21 96.45* 99.07† 106.32 102.00 107.96 0.00
INT 6.32 7.23 7.00 6.84 6.65 7.06 0.80
HYP 3.84 3.68 3.91 4.08 3.98 5.35 0.31
% of sample 21.40 17.19 19.65 24.91 8.42 8.42 —

P values indicate N-group significance test. Profile 2 for both ADHD and TDC had small but significant lower
IQs relative to other profiles.
*Post hoc significant pairwise differences at P < 0.05 (profiles 3 and 4A).
†Post hoc significant pairwise differences at P < 0.05 (profiles 1, 3, and 4A).
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