Supporting Information

Gruszka et al. 10.1073/pnas.1119456109

А	
Jnet	
G5 ¹	APKTITELEKKVEEIPFKKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGVIISKGEPKEEITKDPINELTEYG
G5 ²	PVKGDSIVEK~~EEIPFEKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYG
G5 ³	PVKGDSIVEK~~EEIPFEKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGVIISKGEPKEEITKDPINELTEYG
G5 ⁴	PVKGDSIVEK~~EEIPFKKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYG
G5 ⁵	PVKGDSIVEK~~EEIPFEKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYG
G5 ⁶	PVKGDSIVEK~~EEIPFKKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYG
G57	PVKGDSIVEK~~EEIPFEKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYG
G5 ⁸	PVKGDSIVEK~~EEIPFEKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPVNELTEFG
G5 ⁹	${\tt PKTGTPETKT} \sim {\tt veipfetkrefnpklqpgeervkqegqpgsktittpitvnpltgekvgegqpteeitkqpvdkivefg}$
	· · · · · ****:·:*:*** ** *:*:*** *.**********
	4
Jnet	
E1	PETIAPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYG
E ²	PETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYG
E ³	PETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYG
E ⁴	PETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYG
ES	PETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYG
E6	PETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYG
E ⁷	PETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYG
E ⁸	GEKIPQGHKDIFDPNLPTDQTEKVPGKPGIKNPDTGKVIEEPVDDVIKHG
1000	* * * ** ** ***************************
В	
G5	PVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREGOKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYG
Е	PETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYG
	* * *

Fig. S1. Sequence alignment of *Staphylococcus aureus* surface protein G (SasG) domains. Conserved residues are indicated with an asterisk. (A) Alignment of G5 domains and E segments. The Jnet prediction indicates several regions of β -strand secondary structure for the G5 domain (1), whereas the E segment is predicted to be predominantly disordered (2, 3). (B) Alignment of the consensus sequences of G5 and E. The five conserved glycine residues associated with the β -triple helix– β fold are shown in red.

- 1. Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36(Web Server issue):W197-201.
- 2. Romero P, et al. (2001) Sequence complexity of disordered protein. Proteins 42:38–48.
- 3. Dosztányi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21:3433–3434.

Fig. S2. Crystal structure of a nonnative Zn^{2+} -mediated $G5^2$ dimer. Zn^{2+} (red) is coordinated by a nonnative histidine residue and two native glutamate residues (^{557}E and ^{559}E) from each of the two (cyan and blue) G5 molecules in the dimer.

Fig. S3. Size-exclusion chromatography with multiangle laser light scattering analysis of oligomeric state of SasG modules in the presence (red) and absence (black) of Zn²⁺. (A) GPHM-G5²: native sequence with four additional N-terminal amino acids (i.e., GPHM). (B) GPTK-G5²: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (i.e., GPHM). (D) E: native sequence with four additional N-terminal amino acids (

Fig. S4. Stereo images of interdomain interfaces in SasG highlighting the major differences between G5–E (A) and E–G5 (B). G5 and E domains are shown in red and blue, respectively. Electron density at 1.0 σ is shown for the labeled residues.

	Table S1.	Thermodynamic	parameters of	unfolding proces	s calculated for t	two-state and i	non-two-state mo	odels
--	-----------	---------------	---------------	------------------	--------------------	-----------------	------------------	-------

	Two-state model			Non-two-state model				
Module	T _m , ℃	ΔH_{cal} , kcal/mol	ΔC_{p} , kcal/mol/°C	T _m , ℃	ΔH_{cal} , kcal/mol	$\Delta H_{\rm VH}$, kcal/mol	$\Delta H_{cal} / \Delta H_{VH}$	
G5 ¹	52.80 ± 0.02	59.2 ± 0.1	0.623 ± 0.026	53.31 ± 0.01	58.2 ± 0.1	60.1 ± 0.1	0.97	
G5 ²	46.94 ± 0.05	58.2 ± 0.1	0.543 ± 0.032	47.61 ± 0.01	58.5 ± 0.1	57.1 ± 0.3	1.02	
E-G5 ²	53.57 ± 0.04	86.8 ± 0.2	0.598 ± 0.084	53.85 ± 0.02	88.1 ± 0.3	85.5 ± 0.4	1.03	
G5 ¹ -E	52.75 ± 0.04	58.0 ± 0.2	_	52.76 ± 0.04	59.6 ± 0.3	56.1 ± 0.4	1.06	
G5 ² -E	47.13 ± 0.04	57.8 ± 0.2	_	47.13 ± 0.04	57.6 ± 0.4	58.0 ± 0.5	0.99	
G5 ¹ -E-G5 ²	59.10 ± 0.01	147.0 ± 0.3	1.080 ± 0.085	59.12 ± 0.01	155.0 ± 0.6	140.0 ± 0.7	1.11	
E-G5 ² -E-G5 ³	57.63 ± 0.02	163.0 ± 0.5	1.240 ± 0.159	57.62 ± 0.02	183.0 ± 1.2	146.0 ± 1.2	1.25	

All errors quoted are for the fit to the data. Thermograms of folded SasG modules were fitted with the two-state model with ΔC_p . ΔC_p , change in heat capacity upon unfolding; ΔH_{cal} ; calorimetric enthalpy; ΔH_{VH} , Van't Hoff enthalpy; T_m , melting temperature.

Statistic	Native E-G5 ²		SeMet E-G5 ² -L17M-L103N	1
Data collection				
Space group	P2 ₁		<i>P</i> 2 ₁	
Cell dimensions				
a, b, c, Å	36.8, 34.7, 55.8	—	54.6, 37.4, 71.8	—
α, β, γ, °	90.0, 99.5, 90.0	—	90.0, 104.6, 90.0	—
		Peak	Inflection	Remote
Wavelength	0.9763	0.9793	0.9797	0.9763
Resolution, Å*	50.00–1.75 (1.86–1.75)	50.00-2.20 (2.28-2.20)	50.00-2.20 (2.28-2.20)	50.00–2.20 (2.28–2.20)
R _{sym} , %*	5.4 (45.2)	9.0 (18.9)	7.5 (18.4)	7.4 (17.9)
Ι /σ/*	17.4 (3.0)	12.7 (2.8)	12.2 (2.7)	12.1 (2.9)
Completeness, %*	99.5 (98.7)	85.5 (39.3)	82.4 (32.5)	83.0 (35.7)
Redundancy*	4.0 (4.0)	6.4 (3.9)	3.2 (2.0)	3.2 (2.0)
Refinement				
Resolution, Å	29.37-1.75	—		—
No. reflections	15,431	—		—
R _{work} /R _{free}	19.7/23.9	—	—	_
No. atoms				
Protein	1,028	—	—	_
Water	216	—		—
B-factors				
Protein	29.6	—	—	_
Water	35.5	_	_	—
rmsd				
Bond length, Å	0.011	—		—
Bond angle, °	1.6	—	—	—

Table S2. Crystallographic data and refinement statistics for E-G5²

*Highest resolution shell is shown in parentheses.

PNAS PNAS

Statistic	G5 ¹ -E-G5 ²
Data collection	
Space group	<i>P</i> 2 ₁
Cell dimensions	
a, b, c, Å	45.5, 84.8, 71.7
α, β, γ, °	90.0, 100.4, 90.0
Resolution, Å*	50.00–1.87 (1.99–1.87)
R _{sym} , %*	5.3 (36.7)
Ι /σ/*	14.9 (3.0)
Completeness, %*	98.1 (90.7)
Redundancy*	3.7 (3.7)
Refinement	
Resolution, Å	41.30–1.87
No. reflections	43,210
R _{work} /R _{free}	20.5/26.6
No. atoms	
Protein	3,324
Mg	5
Tris	8
Water	637
B-factors	
Protein	42.6
Mg	34.0
Tris	42.3
Water	43.3
rmsd	
Bond length, Å	0.014
Bond angle, °	1.4

Table S3. Crystallographic data and refinement statistics for $\mathrm{G5^{1}\text{-}E\text{-}G5^{2}}$

*Highest resolution shell is shown in parentheses.

Table S4. Surface area values for SasG domains and other proteins

		ASA, Å		RSA, %			
Protein	No. of residues	All	Nonpolar	All	Nonpolar	RSA ratio (nonpolar/all)	
G5 ¹ -E-G5 ²	214	15,826.1	9,408.9	46.88	48.65	1.04	
E-G5 ²	132	9,470.5	5,537.5	46.29	47.20	1.02	
G5 ¹	80	6,222.6	2,428.0	48.47	47.20	0.97	
G5 ²	78	6,122.4	3,542.0	49.53	51.26	1.03	
G5 from RpfB	80	6,317.8	3,688.9	50.62	51.79	1.02	
E	50	3,774.2	2,352.6	49.66	52.96	1.07	
1WJ2*	71	6,255.4	3,865.5	55.76	61.13	1.10	
1HMS [†]	132	7,318.2	4,303.2	35.21	35.86	1.02	
1MDC [†]	132	6,977.5	3,877.2	35.82	35.76	1.00	
3CO1 [†]	130	7,779.9	4,505.9	38.90	40.21	1.03	
1QX6 [†]	213	10,809.9	5,792.9	32.35	32.59	1.01	
1T2U [†]	210	10,128.7	6,413.2	33.32	36.61	1.10	
2IWS [†]	214	10,644.8	5,900.7	34.39	34.41	1.00	

ASA, accessible surface area; RSA, relative accessible surface area. ASA and RSA values, for all atoms and nonpolar side-chains, were calculated using NACCESS (1). RSA for each amino acid was calculated with respect to their ASA in an extended Ala-X-Ala tripeptide, imitating a random coil conformation. *Other protein with single-layer β -sheets.

[†]Globular proteins.

PNAS PNAS

1. Hubbard SJ, Thornton J (1993) NACCESS, Computer Program; Department of Biochemistry and Molecular Biology (University College, London).

Table S5.	Molar masses of SasG	constructs in the pres	sence and absence o	of zinc, determine	d by SEC-MALLS
-----------	----------------------	------------------------	---------------------	--------------------	----------------

		NAVA (kar)	SEC-MALLS molar mass (kg/mol)		
Module	Sequence	mol)	-Zn	+Zn	
E	GPHMITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRP PVDSVTK	5.29	5.6 ± 0.3	6.3 ± 0.2	
G5 ¹	GPHMAPKTITELEKKVEEIPFKKERKFNPDLAPGTEKVTREGQ KGEKTITTPTLKNPLTGVIISKGEPKEEITKDPINELTEYGPET	9.70	10.0 ± 0.7	11.6 ± 1.2	
G5 ²	MYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREGQKG EKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYGPET	9.36	9.3 ± 0.3	9.2 ± 0.3	
G5 ² -GPHM	GPHMYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREG QKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYGPET	9.65	9.8 ± 0.6	19.6 ± 1.6	
G5 ² -GPTK	GPTKYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREG QKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYGPET	9.62	10.3 ± 1.1	9.7 ± 0.7	
B ¹	GPHMAPKTITELEKKVEEIPFKKERKFNPDLAPGTEKVTREGQ KGEKTITTPTLKNPLTGVIISKGEPKEEITKDPINELTEYGPETIA PGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTK	14.5	15.1 ± 0.9	16.2 ± 1.0	
B ²	GPHMYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREG QKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYGPETI APGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPP VDSVTKYGP	14.8	14.7 ± 0.3	28.4 ± 0.3	
E-G5 ²	GPETIAPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRP PVDSVTKYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTR EGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINE LTEYGPET	14.4	14.2 ± 0.3	15.3 ± 0.3	
E-G5 ² -HM	GPHMIAPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRP PVDSVTKYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTR EGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPIN ELTEYGPET	14.5	14.5 ± 0.1	17.9 ± 1.4	
G5 ¹ -E-G5 ²	GPHMAPKTITELEKKVEEIPFKKERKFNPDLAPGTEKVTREGQ KGEKTITTPTLKNPLTGVIISKGEPKEEITKDPINELTEYGPETIA PGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVT KYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREGQKG EKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYGPET	23.7	24.3 ± 1.2	26.7 ± 2.9	
B ¹ B ²	GPHMAPKTITELEKKVEEIPFKKERKFNPDLAPGTEKVTREGQ KGEKTITTPTLKNPLTGVIISKGEPKEEITKDPINELTEYGPETIA PGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVT KYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREGQKG EKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYGPETIAPG HRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTK	28.6	29.9 ± 2.7	29.8 ± 1.5	
E-G5 ² -E-G5 ³	GPHMIAPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRP PVDSVTKYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTR EGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYGP ETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPV DSVTKYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREG QKGEKTITTPTLKNPLTGVIISKGEPKEEITKDPINELTEYGPET	28.5	28.5 ± 1.1	32.3 ± 2.3	

Nonnative amino acids (from the expression vector after His-tag cleavage) are marked in red. MW, molecular weight; SEC-MALLS, size-exclusion chromatography with multiangle laser light scattering.

PNAS PNAS