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1. Supplementary Information Materials and Methods 
 
Study population and samples 

Individuals included in this study were members of ten social groups of female rhesus 
macaques housed at the Yerkes NPRC. Most groups had been formed 5 years previously as a 
part of studies on the relationships between psychosocial stress, reproduction, metabolism, and 
behavior (e.g., 1). Two groups were formed more recently following the same protocols (Table 
S1). However, removing these two groups from the data set produced qualitatively similar results 
as including them (r = 0.950 for the correlation between rank effects on gene expression, by 
gene, estimated with and without including these new groups), and prediction accuracy for 
relative rank class for these females did not differ from that for other groups (p = 0.755). As 
described previously (2), groups were formed by removing females from the large breeding 
groups at the Yerkes NPRC Field Station and placing them in separate housing. Prior to new 
group formation, all females were ovariectomized. Females in the middle part of the dominance 
hierarchy were selected to ensure that all had a similar social history. Unfamiliar females were 
randomly introduced sequentially to indoor-outdoor run housing (25 m by 25 m for each area) 
over the course of one week, until all groups included five adult females. Dominance hierarchies 
formed quickly with minimal contact aggression. A single male was also housed in each social 
group at the time these individuals were sampled.  

Dominance rank at time of sampling was strongly correlated with order of introduction 
(Spearman’s rho = 0.61, p = 3.25 x 10-6; excluding one group with multiple rank shifts—used in 
our plasticity analysis—rho = 0.72, p = 2.94 x 10-8; note that because >1 individual is necessary 
to constitute a “group,” the first two individuals added were tied in terms of order of 
introduction, such that the maximum value of rho <1). In contrast, we identified no significant 
correlation between dominance rank and age (p = 0.34), parity (p = 0.12), time since 
oviarectomy (p = 0.16), or time since removal from the large breeding colonies (p = 0.52). 
Furthermore, we also identified no signal of any of these variables on gene expression after 
controlling for social group (beyond that expected by chance: see Figure S1).  

We chose to assess rank-dependent gene expression in PBMCs both because of the 
accessibility of this tissue, and because of the relevance of PBMCs to immune function, which 
has close ties to social stress. To sample PBMCs, we obtained blood samples for 49 of the 50 
individuals in these social groups in heparinized Vacutainer tubes, as well as replicate samples 
from a different sampling effort for 7 of these 49 females (changes in dominance rank in these 
samples occurred within the course of 1 year). For one group, we sampled only four individuals 
because the lowest ranking female had recently been removed from the group and had not yet 
been replaced. All study subjects had previously been habituated to conscious venipuncture, and 
group members were sampled within 10 minutes of entrance into the housing area. Peripheral 
blood mononuclear cells (PBMCs) were extracted from these samples using a Ficoll gradient, 
and RNA (for gene expression analysis) or DNA (for methylation analysis) was purified from the 
total PBMC fraction using the Qiagen RNEasy kit or the Qiagen Gentra Puregene kit 
respectively. For cell-type specific expression analyses, we physically separated CD3+/CD4+ 

(e.g., helper T cell), CD3+/CD8+ (e.g., cytotoxic T cell), monocyte (CD14+), and B cell (CD20+) 
populations prior to RNA extraction from each cell type.  

Blood samples for PBMC purification were collected over a period of three weeks (Table 
S1). During each sampling period, individual ranks were confirmed using focal sampling (3) to 
record the outcomes of dyadic agonistic interactions, with subordinate status defined when an 
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animal regularly emitted unequivocal submissive gestures to another animal. Agonistic behaviors 
were identified using a predefined ethogram. Dominance status was defined by which female 
submitted to which other females and not by which group member was the most aggressive: the 
5th ranking female within a group therefore submitted to all other group members, and the 
highest ranking (alpha) female submitted to none. However, as shown in Fig. 1a, aggression 
(largely non-contact threats) received by group mates occurred proportionately more often with 
lower status. In agreement with patterns of rank stability in large mixed-sex groups, these rank 
assignments have remained largely stable over the course of observation on these animals, with 
the exception of the 7 cases we used to test for plasticity of the rank-gene expression relationship  
 
FACS analysis 
 To assess the relative proportions of the major cell types found in PBMCs, we stained a 
subsample of the purified PBMCs for 39 individuals with five dye-labeled monoclonal 
antibodies: anti-CD3+ (T cells: CD3-PE-Cy7, BD 557749), anti-CD4+ (associated with helper T 
cells: CD4-PerCP-Cy5.5, BD Pharmingen 552838), anti-CD8+ (associated with cytotoxic T cells: 
CD8-APC, Beckman Coulter IM2469U), anti-CD14+ (monocytes: CD14-FITC, Beckman 
Coulter IM0645U), and anti-CD20+ (B-cells: CD20-PE, BD Pharmingen 555623). For the other 
ten individuals in our data set, a FACS machine was unavailable at the time of sampling. To 
account for differences in antibody staining efficiency between batches of samples, we used as 
our measurement, for each sample, the proportion of stained live cells of each cell type among 
the live cells of any type. To control for differences among social groups, we regressed out social 
group effects and used the residuals in our subsequent analyses. 
 To establish expectations for cell type-specific gene expression levels, we antibody stained 
purified PBMCs as described above for five individuals. These samples were collected 
separately from the samples used in our main analysis of dominance rank and gene expression 
levels, and were chosen to represent five different social groups and all five possible rank 
positions. We submitted the total PBMC samples to the University of Chicago Flow Cytometry 
Facility for physical separation of cell populations. A CD3+/CD4+ cell fraction, a CD3+/CD8+ 
fraction, a CD14+ fraction, and a CD20+ fraction were sorted on a BD FACSAria. RNA 
extractions were conducted separately for each individual-cell type combination (n = 20) for 
downstream gene expression profiling (see below; Fig S3). Two of these samples (one of B cells 
and one of CD3+/CD8+ T cells, both from the same individual) were clear outliers from all other 
samples and were therefore removed from subsequent analyses. 
 
Illumina HT-12 array cross-hybridization, probe quality control, and general gene expression 
patterns 

To measure gene expression levels, we utilized a human microarray platform, the 
Illumina HT-12 Expression BeadChip. The genome sequences of rhesus macaques and humans 
are largely similar, especially in coding regions (~96.5%). The set of probes we utilized 
contained only few mismatches (median sequence similarity = 48 of 50 base pairs), such that the 
attenuation of hybridization intensity was minimal. Since our study only involved comparisons 
of gene expression levels within a species, the sequence mismatches with respect to the array 
probes are not expected to result in biased estimates of gene expression levels (4). Indeed, we 
have previously demonstrated that cross-species hybridization to an array designed for a closely 
related species (and specifically cross-array hybridization involving rhesus macaques and probes 
based on human DNA sequence) does not produce measurable bias in analyses of differences in 
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gene expression levels, or greatly reduce power, for within-species comparisons (5). We 
acknowledge that a high-throughput sequencing strategy would have allowed us to capture gene 
expression variation in greater detail and avoided the need for cross-species hybridization. 
However, such an approach was cost prohibitive at the time we collected these data. 

All RNA samples were hybridized to Illumina HT-12 Expression BeadChips at the 
University of California Los Angeles Southern California Genotyping Consortium core facility. 
For the main analysis of rank-gene expression relationships, we conducted technical replicate 
hybridizations in duplicate (n = 47 individuals) or triplicate (n = 2 individuals). We performed 
one hybridization per sample for the cell-type specific analyses, based on the very high levels of 
concordance between technical replicates for our earlier analyses (mean r between technical 
replicates = 0.987, range = 0.978 – 0.995). Our study design resulted in 4 – 5 biological 
replicates of gene expression measurements per cell type.  

For probe quality control, we mapped the 50 base pair sequence for each Illumina HT-12 
probe to the rhesus macaque genome (rhemac 2.0) using blat. We removed any probe that failed 
to map to the macaque genome (n = 19,384 of 47,232 initial probes) or that mapped to multiple 
places (n = 3,728) in the macaque genome at 80% identity or higher (40 of 50 base pairs). Note 
that, although a large percentage of Illumina HT-12 probes were culled as a result of this 
procedure, this phenomenon also occurs when mapping Illumina HT-12 probes to the human 
genome (using the same methods, 10,981 probes fail to map uniquely to the hg18 version of the 
human genome). We also removed any probes that overlapped with the location of known 
segmental duplicates in rhesus macaque greater than 1 kb in length (n = 753 probes). These steps 
resulted in a set of 23,367 probes that uniquely mapped to the rhesus macaque genome outside of 
duplicated regions. We also eliminated probes that were not significantly detected in any sample 
at p < 0.001 (compared to Illumina HT-12 control probes), resulting in a set of 7,303 probes 
(representing 6,097 genes) in the final data set. For downstream analysis, the gene expression 
data were log2 transformed and quantile normalized between arrays using the R package lumi 
(6).  

Principal components analysis on mean-centered gene expression data (after regressing 
out differences in means across social groups) was performed in R using prcomp (stats package), 
with the data scaled to unit variance. In addition to investigating the relationship between 
dominance rank and the resulting PCs, we also explicitly checked for possible effects of age, 
parity, time since oviarectomy, and time since removal from the large breeding colonies from 
which these individuals originated. Among the top 10 PCs, which together account for 60% of 
the variance in the data, we found that dominance rank also correlates with PC4 (which explains 
5.1% of variance in the data; rank-PC4 correlation p = 0.001). Time since oviarectomy and time 
since removal from the breeding colony both correlated with PC8 (p = 0.016 and p = 0.008, 
respectively), which explained 3.1% of overall variance. These weak or absent effects of non-
rank variables are consistent with the absence of evidence for such effects in gene-by-gene 
analyses (Figure S1) and the absence of detectable correlations between these variables and 
dominance rank reported above. 
 
Linear effects of rank on gene expression 
 To assess linear relationships between inter-individual variation in dominance rank and 
expression levels for each gene, we used the following linear mixed-effects model, which 
accounts for relatedness in the sample (e.g., (7, 8)): 

yij = β jri +uij + bj +εij  
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Here, y represents the residuals of the normalized, log transformed gene expression levels after 
controlling for the effect of social group by regressing out mean differences across groups. We 
utilized these residuals as our measure of gene expression in all subsequent analyses in order to 
take account of possible biological differences in means across social groups, and to take account 
of batch effects: with few exceptions, all individuals in a group were sampled at the same time 
and processed together. Thus, controlling for social group also effectively controlled for sample 
batch effects, because social groups were subsumed within batches (multiple social groups were 
sometimes sampled on the same day). Individuals are indexed by i and genes are indexed by j. 
For gene j, βj is therefore the fixed effect of rank ri, bj is the intercept, and εij is the residual error, 
assumed to be normally distributed with mean zero and variance s2. The term uij refers to the 
random effect component of the model, where Var(uj) equals the estimated genetic variance in y 
multiplied by the pairwise kinship matrix, K. Models were fitted using the R package emma (7), 
with minor modifications to the source code to accommodate gene expression data (this code is 
available on the Gilad lab website: http://giladlab.uchicago.edu/data/Tung_Rcode/). We 
evaluated the significance of βj, the rank effect, as evidence for a linear relationship between 
dominance rank and gene expression (Figure S1). False discovery rates were evaluated using the 
method of Storey and Tibshirani (9), implemented in the R package qvalue. 

Because the social groups in this study were artificially constructed, the species-typical 
pattern of matrilineal rank inheritance in rhesus macaques did not pertain to our sample. 
However, some individuals in the data set as a whole were related. As genetic effects can also 
have an impact on gene expression levels, we evaluated pairwise relatedness between all 
individuals in the sample by genotyping 51 highly polymorphic microsatellite loci (2.32% 
missing data) and estimating relatedness using the program COANCESTRY (10, 11). Mean 
pairwise relatedness in the sample was 0.028 (+/- 0.051 s.d.), and estimated relatedness was 
highly correlated with pedigree-based estimates of relatedness available for 7 known dyads 
(Pearson’s r = 0.899, p = 0.00588). 

 
Prediction of rank class using gene expression data 

To investigate the predictive value of gene expression data for relative position in the 
social rank hierarchy, we defined relative ranks (i.e., rank classes) based on prior work, which 
treated ranks 1 and 2 in 5-female hierarchies as high ranking and ranks 3, 4, and 5 in these 
hierarchies as low ranking (e.g., 1). We also included an intermediate class based on the agonism 
data on these study subjects, which suggested additional separation between rank 3 and ranks 4 
and 5 (Figure 1; Tukey’s HSD test, p < 0.05 for the rank 3 – rank 5 contrast and p < 0.09 for the 
rank 3- rank 4 contrast; in contrast, p = 0.995 for the rank 4 – rank 5 contrast). We refer to these 
classes as class A (high), class B (middle), and class C (low).  

For each iteration of our prediction analysis, we divided the data set into a training set of 
39 individuals (~80% of the data) and a test set of 10 individuals (~20% of the data). Each test 
set contained 2 randomly chosen individuals of each rank (results were highly similar under 
completely random assignment that was not balanced across ranks: Figure S2). We used the 
support vector machine (SVM) approach implemented in the program svm-multiclass (12) to 
develop a model that related the combined gene expression data across all measured genes to 
rank class. The SVM model was fit using the training set data only, with gene expression values 
rescaled from 0 to 1 for stability. We then assessed model predictive ability as the percentage of 
the test set individuals for whom rank class was correctly assigned by the fitted model. We also 
performed a complementary assessment of model predictive ability by calculating the absolute 
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error in model prediction (the sum of the absolute value of the true rank class minus the 
predicted rank class, across all test set individuals: each classification mistake of individual of 
true rank class A into rank class C, or vice versa, added a value of 2 errors, while each 
classification mistake of individual of true rank class A or C into rank class B, or vice-versa, 
added a value of 1 error). We compared the median sum of absolute errors in our cross-
validation iterations to the distribution of sum of absolute errors under random assignment of 
rank class. Note that although we report the results of a three-class classification scheme in the 
main text, retaining a two-class division (high versus low) yielded as good or better prediction 
accuracy (average leave-k-out accuracy within the main sample set = 94.7%; prediction accuracy 
across temporally separated samples = 85%). 

We also tested whether gene expression data predicted rank class across time, in 
individuals who changed their ordinal rank positions. For prediction across temporal replicates, 
we restricted our analysis to probes represented on both the HT-12 v. 3.0 array (used for the 
seven temporal replicates) and the HT-12 v. 4.0 array (used to run all other arrays in the study). 
We normalized, log-transformed, and removed the effects of social group for this common set of 
probes only (6,735 probes with detectable signal in our data set versus 7,303 such probes in the 
main analysis). We then treated the main data set of 49 individuals as a training set and the 
expression data set for the 7 individuals when at an earlier rank as a test set. Model accuracy was 
calculated as the percentage of the unlabeled test set individuals for whom relative rank position 
was correctly assigned by the fitted model. Note that in the main text, we report the results of 
prediction across temporal replicates after normalizing and scaling (from 0 to 1 for each gene 
expression measurement, across samples) the training set and test set gene expression data 
together. An alternative approach is to normalize and scale each data set independently. This 
approach also resulted in excellent prediction accuracy (100% of test set samples were classified 
into the correct rank class, versus 85.7% accuracy achieved through normalizing all samples 
together; we report the more conservative estimate in the text). 

 
Effects of cell type proportion 
 To estimate the expected expression level of each gene based on the cell type 
composition of each sample, we first measured the expression level for each gene in pure 
populations of each of four cell types (helper T cells, cytotoxic T cells, monocytes, and B cells, 
obtained via FACS sorting described above). Pure populations were collected from five 
individuals across all ranks and five different social groups, and we considered the median 
expression value across individuals as the estimated expression level for each gene in a given 
cell type. For the 39 samples for which we were able to obtain cell type composition data, we 
then weighted the estimated cell type-specific expression levels for each gene by the proportion 
of the appropriate cell type in the PBMC pool for each sample. This value corresponded to the 
expected gene expression level in the PBMC sample from that individual, if cell type 
composition represented the sole mechanism underlying variation in gene expression. 
 We used these values to investigate the contribution of tissue composition to the rank-
gene expression relationship identified for the 987 rank responsive genes, using a partial 
correlations approach. We reasoned that, if tissue composition effects significantly contributed to 
the rank-gene expression relationship, then the magnitude of the rank-gene expression partial 
correlation should decrease when conditioned on the expected expression level of that gene 
based on the cell type composition data. The magnitude of this decrease should also be larger 
than that calculated when the rank-gene expression partial correlation was conditioned on 
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permuted values of these expected gene expression levels. Hence, cases in which the rank-gene 
expression relation was likely explained by tissue composition exhibited: 

||Cor(r,e | c) ||<||Cor(r,e | cpermuted ) ||  
where r represents dominance rank; e represents the residuals of the normalized, log transformed 
gene expression levels after controlling for the effect of social group; and c represents the 
expected expression level of a gene based on cell type composition alone.  

We conducted 1000 permutations of cpermuted in order to establish a null distribution. In 
cases in which the true rank-gene expression partial correlation fell within this null distribution, 
we failed to reject the null hypothesis (that tissue composition did not significantly contribute to 
the rank-gene expression relationship). In cases in which the true partial correlation was smaller 
than expected by chance based on the null distribution, we interpreted our results as supportive 
of a rank-gene expression relationship mediated, at least in part, by a tissue composition effect. 
Because we viewed such an effect as mechanistically conservative (i.e., it does not require 
additional changes in gene regulation), we set our p-value threshold at a nominal value of 0.05.  
 
Effects of glucocorticoid regulation 
 To investigate the relationship between dominance rank and glucocorticoid regulation, 
we used data from a dexamethasone (Dex; a synthetic glucocorticoid) suppression test, which 
assesses the state of GC negative feedback. Prior to Dex administration, serum samples were 
obtained from each female at 1100 hours on the day of the assay. At 1730 hours, females 
received an injection of Dex (0.25 mg/kg) and samples were obtained at 1100 hours the 
following morning to assay cortisol. The degree of GC negative feedback was assessed by the 
change in cortisol levels between the post Dex-treatment sample and the control sample. Cortisol 
assays were performed in the Yerkes NPRC Biomarkers Core Lab using established procedures. 
Serum levels of cortisol were determined by radioimmunoassay (RIA) with a commercially 
available kit (Beckman-Coulter/DSL, Webster TX) previously validated for rhesus macaques. 
Using 25 µl of serum, the assay has a range from 0.5 to 60 µg/dl with an inter- and intra-assay 
CV of 4.9% and 8.7%, respectively. To test the relationship between rank and degree of 
dexamethasone suppression (Dex resistance), we assessed the significance of the rank term in a 
linear model relating rank to the change in cortisol levels after Dex administration. 
 To evaluate the contribution of GC regulatory state to the variation in the expression 
levels of the 987 rank-responsive genes, we again employed a partial correlations approach. This 
analysis paralleled the analysis we conducted for tissue composition effects, except that the 
relationship we evaluated was: 

||Cor(r,e | g) ||<||Cor(r,e | gpermuted ) ||  
where r represents dominance rank and e represents gene expression levels, as before; and g 
represents the residuals of data from the Dex clearance trials after controlling for social group 
effects. As before, we established a null distribution using 1000 permutations of gpermuted. In cases 
in which the true rank-gene expression partial correlation fell within this null distribution, we 
failed to reject the null hypothesis (that glucocorticoid resistance did not significantly contribute 
to the rank-gene expression relationship). Conversely, in cases in which the true partial 
correlation was smaller than expected by chance from the null distribution, we interpreted our 
results as supportive of a rank-gene expression relationship mediated, at least in part, by a GC 
regulatory effect. Because such an effect is conservative with respect to prior knowledge about 
the physiology of dominance rank effects, and does not require additional changes in gene 
regulatory mechanisms, we again set our p-value threshold to a relatively relaxed nominal value 
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of 0.05. Note however that, unlike the case of for tissue composition, we were not able to 
estimate gene expression levels under a scenario in which GC-mediated effects are the sole 
contributor. Thus, it is possible that for some genes identified via this method, the rank-gene 
expression relationship and the rank-GC signaling relationship are statistically correlated but 
mechanistically independent. 
 Joint analysis of tissue composition effects and GC effects were pursued in a parallel 
manner, except that we evaluated whether: 

||Cor(r,e | c,g) ||<||Cor(r,e | cpermuted,gpermuted ) ||  
 
Bisulfite sequencing and low level data processing for DNA methylation 

To measure DNA methylation levels via whole genome bisulfite sequencing, we prepared 
four sequencing libraries for each individual from DNA obtained from purified PBMCs, 
following the method of Lister et al (13). Unmethylated lambda phage DNA was incorporated 
into each library in order to assess the efficiency of bisulfite conversion. We then sequenced 8 
Illumina HiSeq flow cell lanes for each individual, with each library represented on 2 lanes to 
minimize PCR duplicates (see Figure S6; with the exception of 2 individuals, for whom low 
coverage and a truncated sequencing run motivated us to conduct four additional lanes of 
sequencing). All sequencing runs were single-ended and 75 base pairs in length. We truncated 
the resulting reads to 70 base pairs to remove lower quality bases near the end of the reads, and 
used the tool cutadapt (14) to trim off any remaining adapter sequence incorporated in the read. 

The resulting reads were mapped to a combined rhesus macaque genome (rheMac 2.0) 
and lambda phage genome using bismark (15), which uses a fully bisulfite converted reference 
genome sequence as the basis for read mapping (Table S2). Total coverage for each CpG site and 
the number of reads for each site that were methylated were evaluated using the 
methylation_extractor tool in bismark. In doing so, we masked the first three base pairs of each 
aligned read based on evidence that the methylation estimates for these positions were 
systematically biased (Fig S5, see also (16) for description of a similar phenomenon).  
 
Analysis of rank-related DNA methylation levels  
 For the neighbor-joining and hierarchical clustering analyses of DNA methylation data, 
we identified the locations of Ensembl-annotated transcription start sites for the set of 987 rank-
responsive genes (based on the gene expression data). Annotated TSSs were available for 811 of 
these genes, and we randomly chose one TSS per gene if multiple TSS were associated with the 
same gene. We then calculated methylation levels for each CpG site within 20 kb of each of 
these TSS, based on the raw percentage of reads for that site with evidence for a methylated 
CpG. We excluded sites with 0 coverage in any individual. Over all sites, this procedure 
produced a data matrix of 445,059 CpG methylation levels for each of the six individuals in the 
sample. We used these data for the neighbor-joining (conducted using the R package ape) and 
hierarchical clustering analyses depicted in Figure 5, after regressing out social group from the 
data for each site.  

To assess whether features based on differential methylation data could predict rank-
associated differential expression, we used leave-one-out cross-validation on a data set consisting 
of transcripts from the 987 rank-responsive genes and transcripts from the 1,000 genes with the 
least evidence for rank-associated variation in expression levels (i.e., largest p-values in the 
initial analysis of the rank-gene expression relationship). For each leave-one-out iteration, we fit 
a model relating features based on differential methylation (Table S3) to a binary differential 
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expression variable (rank-associated genes were assigned a value of 1 and rank-independent 
genes were assigned a value of -1) using svm-perf (12, 17). Overall prediction accuracy was 
measured as the percent of “left-out” genes (of 1,987 total genes) for which the gene expression 
state was correctly predicted. We evaluate significance of this prediction accuracy by 
comparison to prediction accuracies calculated in the same way, but on our data set with the 
labels (rank-associated or rank-independent) permuted, across 100 permutations. 
 To identify rankDMRs, we used the bsmooth method implemented in the R package 
bsseq. Briefly, this approach uses windows of 70 CpG sites or 1,000 base pairs (whichever is 
larger) to estimate the binomial probability that a CpG site is methylated, smoothing these 
estimates across nearby CpG sites. This method allowed us to take account of spatial correlations 
between nearby CpG sites and weight CpG sites with greater coverage more heavily. We limited 
our analysis to CpG sites with at least 2x coverage in each of the six individuals. We then 
analyzed the set of CpG t-statistics produced by comparing the smoothed probabilities of 
methylation for low ranking individuals to the same values for high ranking individuals. We 
empirically classified differentially methylated regions as regions in which (i) contiguous CpGs 
were no further than 300 base pairs away from each other, (ii) all t-statistics were in the extreme 
end (0.5%) of the genome wide distribution of t-statistic magnitudes, (iii) all t-statistics were in 
the same direction (consistently more methylated in high ranking individuals, or consistently 
more methylated in low ranking individuals), and (iv) at least 3 CpG sites were covered and 
exhibited at least a 10% difference in mean methylation levels between the two classes. DMRs 
were merged if they were called within 1 kilobase of each other, with no intervening analyzed 
CpGs.  
 To test for overrepresentation of rankDMRs near rank-associated differentially expressed 
genes, we used bedtools (18) to identify the TSS closest to each DMR, within 20 kb or less 
intervening distance (our results are consistent if we use a smaller cutoff of 15 kb or a larger 
cutoff of 30 kb: p < 0.03 for 30 kb and p < 0.05 for 15 kb; smaller distances greatly reduce the 
sample size of genes). This procedure assigned one transcript (gene) to each DMR, provided that 
the DMR was close to a genic region. Within this set, we counted the number of appearances of 
rank-associated differentially expressed genes (n = 164 TSS, representing 162 discrete genes) 
and the number of appearances of non-differentially expressed genes (n = 654 TSS). We used a 
two-tailed Fisher’s exact test to compare these numbers to the numbers of cases of differentially 
expressed (1,351 TSS) and non-differentially expressed (6,577 TSS) genes in general. In all 
cases in which multiple transcripts for a gene utilized the same TSS, we counted that TSS only 
once.  
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2. Supplementary Tables 
 
Table S1. Study subjects1. 
Animal ID Social group Date of 

introduction 
(month/year) 

Rank (at time of 
sampling) 

Sample date 
(month/year) 

Time in group 
(months) 

RBm4 1 07/05 1 07/10 60 
ROh4 1 07/05 2 07/10 60 
RHn6 1 07/05 3 07/10 60 
RMg5 1 10/08 4 07/10 21 
RVi4 1 07/05 5 07/10 60 
RBe5 2 07/05 1 08/10 61 
RHc4 2 07/05 2 07/10 60 
RMg3 2 07/05 3 07/10 60 
RRb7 2 07/05 4 07/10 60 
RZt5 2 07/05 5 07/10 60 
RZr2 3 03/10 1 07/10 4 
RVh5 3 03/10 2 07/10 4 
RNu7 3 04/10 3 07/10 3 
RBk7 3 08/10 4 08/10 <1 
RGv6 4 07/05 1 07/10 60 
RTr4 4 07/05 2 07/10 60 
RCk4 4 07/05 3 07/10 60 
RWe7 4 07/05 4 07/10 60 
RCt4 4 07/10 5 08/10 1 
RZp6 5 07/05 1 07/10 60 
RIz6 5 07/05 2 07/10 60 
RYn5 5 07/05 3 07/10 60 
RRu6 5 07/05 4 07/10 60 
RZd7 5 07/05 5 07/10 60 
RWu4 6 07/05 1 08/10 61 
RCv6 6 07/05 3 08/10 61 
RDv6 6 07/05 4 08/10 61 
RId7 6 07/05 2 08/10 61 
RJc6 6 07/10 5 08/10 61 
RNf6 7 07/05 1 08/10 61 
RZk6 7 07/05 2 08/10 61 
RQq4 7 07/05 3 08/10 61 
RFc6 7 07/05 4 08/10 61 
RNf4 7 12/08 5 08/10 20 
REm6 8 07/05 1 08/10 61 
RTv6 8 07/05 2 08/10 61 
ROb6 8 07/05 4 08/10 61 
RRa7 8 07/05 3 08/10 61 
RGs6 8 07/05 5 08/10 61 
ROy4 9 07/05 1 08/10 61 
RYh4 9 07/05 2 08/10 61 
RWb7 9 07/05 3 08/10 61 
RFp8 9 02/10 4 08/10 6 
RIp7 9 07/09 5 08/10 13 
RMu3 10 03/10 1 08/10 5 
RVg5 10 03/10 2 08/10 5 
RDe3 10 03/10 3 08/10 5 
RUo4 10 03/10 5 08/10 5 
RMf4 10 03/10 4 08/10 5 
1Individuals highlighted in red were those sampled at two different times while occupying 2 different ranks. At the alternative 
time point, RRa7 was ranked 4, RWb7 was ranked 5, RVi4 was ranked 2, RBm4 was ranked 4, ROh4 was ranked 1, RId7 was 
ranked 4, and RMg5 was ranked 5. 
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 Table S2. Summary of raw bisulfite sequencing data. 
Individual Rank Total number 

of reads1 
Total uniquely 
mapped reads2 

Number of 
spike-in reads3 

Conversion 
efficiency 

Mean CpG 
coverage 

REm6 1 7.24e8 4.39e8 2.99e5 99.6% 11.30 
RGs6 5 7.95e8 4.61e8 3.28e5 99.6% 11.78 
RNf4 5 6.57e8 4.41e8 3.27e5 99.5% 13.91 
RNf6 1 6.04e8 3.91e8 3.22e5 99.6% 11.80 
RZd7 5 6.36e8 4.11e8 3.37e5 99.5% 14.05 
RZp6 1 5.76e8 3.58e8 2.91e5 99.6% 10.90 
1For REm6 and RGs6, 2.00e8 and 2.18e8 reads were 50 bp reads instead of 75 (truncated to 70 base pairs for mapping purposes) 
bp reads 
2With apparent PCR duplicates removed 
3Reads mapped to cl857 lambda DNA after filtering for PCR duplicates and removing non-uniquely mapped reads 
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 Table S3. Features used for SVM classification of rank-associated or rank-independent gene 
expression using DNA methylation data. 
1 distance to nearest DMR  

2 log10 distance (in base pairs) to the nearest DMR  

3 t-statistic area (sum of all t-statistics for CpGs in a DMR) for the nearest dmr  

4 number of CpG sites covered by the nearest dmr  

5 width of the nearest DMR in base pairs  

6 t-statistic area x distance (bps) to the nearest DMR  

7 t-statistic area x log10 distance (bps) to the nearest DMR  

8 mean t-statistic across all CpGs 1kb upstream of the TSS 

9 mean t-statistic across all CpGs 5kb upstream of the TSS 

10 mean t-statistic across all CpGs 20kb upstream of the TSS 

11 mean t-statistic across all CpGs 50kb upstream of the TSS 

12 maximum absolute value of the t-statistic 1kb upstream of the TSS 

13 maximum absolute value of the t-statistic 5kb upstream of the TSS 

14 maximum absolute value of the t-statistic 20kb upstream of the TSS 

15 maximum absolute value of the t-statistic 50kb upstream of the TSS 

16 mean t-statistic across all CpGs 1kb downstream of the TSS 

17 mean t-statistic across all CpGs 5kb downstream of the TSS 

18 mean t-statistic across all CpGs 20kb downstream of the TSS 

19 mean t-statistic across all CpGs 50kb downstream of the TSS 

20 maximum absolute value of the t-statistic 1kb downstream of the TSS 

21 maximum absolute value of the t-statistic 5kb downstream of the TSS 

22 maximum absolute value of the t-statistic 20kb downstream of the TSS 

23 maximum absolute value of the t-statistic 50kb downstream of the TSS 

24 number of CpGs with t-stats in the majority direction, 1 kb upstream of the TSS 

25 % of CpGs in the majority direction, 1 kb upstream of the TSS 

26 number of t-stats for which abs(t-stat) > 2.97 (0.5% of the genome-wide distribution), 1 kb upstream of the TSS 

27 % of t-stats for which abs(t-stat) > 2.97, 1 kb upstream of the TSS 

28 number of CpGs with t-stats in the majority direction, 5 kb upstream of the TSS 

29 % of CpGs in the majority direction, 5 kb upstream of the TSS 

30 number of t-stats for which abs(t-stat) > 2.97 (0.5% of the genome-wide distribution), 5 kb upstream of the TSS 

31 % of t-stats for which abs(t-stat) > 2.97, 5 kb upstream of the TSS 

32 number of CpGs with t-stats in the majority direction, 20 kb upstream of the TSS 

33 % of CpGs in the majority direction, 20 kb upstream of the TSS 

34 number of t-stats for which abs(t-stat) > 2.97 (0.5% of the genome-wide distribution), 20 kb upstream of the TSS 

35 % of t-stats for which abs(t-stat) > 2.97, 20 kb upstream of the TSS 

36 number of CpGs with t-stats in the majority direction, 50 kb upstream of the TSS 

37 % of CpGs in the majority direction, 50 kb upstream of the TSS 

38 number of t-stats for which abs(t-stat) > 2.97 (0.5% of the genome-wide distribution), 50 kb upstream of the TSS 

39 % of t-stats for which abs(t-stat) > 2.97, 50 kb upstream of the TSS 

40 % of CpGs in the majority direction, 1 kb downstream of the TSS 

41 1kb num t stats > abs(2.97) downstream 
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42 number of t-stats for which abs(t-stat) > 2.97 (0.5% of the genome-wide distribution), 1 kb downstream of the TSS 

43 % of t-stats for which abs(t-stat) > 2.97, 1 kb downstream of the TSS 

44 number of CpGs with t-stats in the majority direction, 5 kb downstream of the TSS 

45 % of CpGs in the majority direction, 5 kb downstream of the TSS 

46 number of t-stats for which abs(t-stat) > 2.97 (0.5% of the genome-wide distribution), 5 kb downstream of the TSS 

47 % of t-stats for which abs(t-stat) > 2.97, 5 kb downstream of the TSS 

48 number of CpGs with t-stats in the majority direction, 20 kb downstream of the TSS 

49 % of CpGs in the majority direction, 20 kb downstream of the TSS 

50 number of t-stats for which abs(t-stat) > 2.97 (0.5% of the genome-wide distribution), 20 kb downstream of the TSS 

51 % of t-stats for which abs(t-stat) > 2.97, 20 kb downstream of the TSS 

52 number of CpGs with t-stats in the majority direction, 50 kb downstream of the TSS 

53 % of CpGs in the majority direction, 50 kb downstream of the TSS 

54 number of t-stats for which abs(t-stat) > 2.97 (0.5% of the genome-wide distribution), 50 kb downstream of the TSS 

55 % of t-stats for which abs(t-stat) > 2.97, 50 kb downstream of the TSS 

56 total number of t-stats for which abs(t-stat) > 2.97, within 1 kb on either side of the TSS 

57 total number of t-stats for which abs(t-stat) > 2.97, within 5 kb on either side of the TSS 

58 total number of t-stats for which abs(t-stat) > 2.97, within 20 kb on either side of the TSS 

59 total number of t-stats for which abs(t-stat) > 2.97, within 50 kb on either side of the TSS 
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Figure S1. Quantile-quantile plot of p values. a) Quantile distribution of p values for the 
relationship between dominance rank and gene expression levels in the 6,097 genes we analyzed 
in our main data (y-axis) compared to quantiles from theoretical p values from a uniform 
distribution (x-axis); b) Q-Q plots of p values for possible confounding variables (age, parity, 
time since oviarectomy, time since removal from breeding groups) analyzed using a linear mixed 
effects model parallel to that run for dominance rank. None of these variables exhibits an 
enrichment for low p-values, indicating that they do not explain substantial variance in the gene 
expression data set.
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Figure S2. Leave-k-out prediction results, under random assignment of test set/training set 
membership instead of random assignment with removal of an equal number of individuals of 
each rank (as reported in the main text). a) boxplot of predictive accuracy for 10 training set 
individuals obtained across 1000 leave-k-out iterations followed by cross-validation, and b) 
histogram of the sum of absolute error between predicted rank class and true rank class, if rank 
classes were randomly assigned. The black arrow and asterisk show the median sum of absolute 
error across the 1000 true leave-k-out iterations (p = 0.011).  
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Figure S3. Hierarchical clustering relationships for cell type-specific gene expression 
profiles. T cells and B cells cluster together, with all monocyte cell fractions outside of this 
aggregate lymphocyte cluster. Gene expression profiles are more similar within cell types than 
within individuals, with the exception of CD4+ and CD8+ T cells, which group together within 
individuals. 
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Figure S4. The acute stress response to social isolation tends to be less pronounced in low-
ranking individuals. Y-axis depicts the change in cortisol levels between baseline and after 
social isolation of each individual. Gray line depicts the intercept and slope of a linear regression 
of this change on dominance rank (p = 0.067, R2 = 0.070 n = 49).  
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Figure S5. Effect size estimates for putative regulatory mechanisms. a) Reduction in the 
strength of the dominance rank-gene expression partial correlation when conditioning on tissue 
composition data (expected gene expression levels based on expression of each gene in each of 
four individual PBMC cell types and on proportions of these cell types per individual), GC 
resistance data, or both tissue composition and GC resistance data jointly (e.g., Cor(rank, gene 
expression | tissue composition, GC resistance)). Each line represents a gene for which a 
significant rank association was detected (n = 987); genes are ordered alphabetically from top to 
bottom. Darker colors represent larger effect sizes and values for genes for which no significant 
effect of the mechanism was detected are zeroed out. All effect sizes were calculated by 
comparing the median value of the dominance rank-gene expression partial correlation, 
conditioned on permuted data, to the value of the rank-gene expression partial correlation, 
conditioned on the candidate mechanism(s). b) Distribution of effect sizes when conditioning the 
rank-gene expression relationship on tissue composition effects, GC resistance data, or both 
mechanisms jointly. 
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Figure S6. Proportion of CpG sites classified as methylated, by a) base pair position in the 
sequencing read. The proportion of methylated CpGs observed at each position is expected to be 
uniform across the length of the read. We observed a systematic bias in DNA methylation 
estimates for the first three base pair positions in the read, and therefore masked CpG data from 
these sites when estimating CpG coverage and methylation; and b) distance from annotated 
transcription start sites. As expected, mean methylation levels drop close to TSS, for all 
individuals.  
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