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SUPPLEMENTAL DATA

COORDINATE TRANSFORMATION FOR FORCE CALCULATIONS

β defines an internal coordinate system along the backbone of a protein based on relative positions of three
contiguous Cα (refer to Fig. 2), where by the law of cosines:
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Let B =
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With respect to the figure, we’re interested in the force on on Cα2. From the chain rule we can introduce the
coordinate β from eqs. 2 and 3:
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The−∂U/∂~r2 term is solved by CHARMM in terms of Cartesian coordinates. The ∂ r2/∂β term is one that
must be evaluated in terms of Cartesian coordinates, where ∂~r2/∂β = 1/(∂β/∂~r2). To evaluate ∂β/∂~r2,
where β = arccos f (xi,yi,zi) and i = 1,2,3, we see from derivative tables:
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In order to evaluate ∂β/∂~r2, we will let:

f (~r) = |~R12|2 + |~R23|2−|~R13|2 and g(~r) = 2|~R12||~R23| ⇒ B =
f (~r)
g(~r)

(6)

We first evaluate ∂ f(~r)/∂~r2:

∂ f(~r)
∂x2

= 2(2x2− x1− x3)î,
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Then evaluate ∂g(~r)/∂~r2:
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Together, we can evaluate ∂~r2/∂β :
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with similar expressions for y2 and z2. Therefore,
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This gives an expression of the force on Cα2 in terms of a coordinate system defined by three adjoining
Cα ’s and an angle β , which can be explicitly described in terms of Cartesian coordinates. This should allow
us to use CHARMM’s output to express this force as a function of an intrinsically defined coordinate system.




