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Supporting Analysis of Recruitment. Five-node neighborhood topologies.
As an extension of Fig. 1 B–D, we present the recruitment rates
for invitation neighborhoods consisting of five nodes (Fig. S1).
We note that when studying neighborhoods with more than five
nodes, the recorded data are spread thinly across an over-
whelming number of possible graph topologies, and considering
every topology is no longer possible.
Structural vs. demographic diversity.As a potential confounder for our
findings, we consider the fact that neighborhoods with many
components are comparatively likely to also exhibit increased de-
mographic diversity, which may figure into conversion in a manner
outside our structural analysis. To control for this, to the extent that
it is possible, we condition our data on neighborhoods that are
demographically homogenous with respect to self-reported sex,
geography, and age, meaning that all of the site users within the
neighborhood are of the same sex, from the same country, and all
contained within a 5-year range of age. We note that for neigh-
borhoods >2 in size, this homogeneity requirement entails an ag-
gressive restriction on the amount of admissible data, to the point
that for neighborhoods composed of a four-node cycle, we observe
no converted registrations. We find that the significance of our
structural measure of neighborhood diversity persists in this de-
mographically controlled dataset (Fig. S2).
Embeddedness and weak ties. Here we study the role of Gran-
ovetter’s structural measure of weak and strong ties, termed
embeddedness. For an individual i ∈ V in a social graph G = (V,
E), let his or her neighborhood graph Ni be the subgraph of G
induced by his or her neighboring nodes Vi ¼ fj∈V : eij ∈Eg.
Weak ties, in a structural sense, are ties with low embeddedness
in the social graph, where the embeddedness of edge eij is the
number of common neighbors of the two node endpoints,
EmðeijÞ ¼ jNi ∩Njj. As an equivalent definition, the embedded-
ness of edge eij is also equal to the degree of node vj within the
neighborhood of node vi, EmðeijÞ ¼ degNi

ðjÞ. Through this, we
observe that the embeddedness distribution of a neighborhood,
EmðNiÞ ¼ fEmðeijÞ : j∈Nig, is the same as the degree distribu-
tion of the neighborhood.
Granovetter’s work on “the strength of weak ties” found that

unembedded edges—those with embeddedness zero, termed
local bridges—play an important role in the spread of awareness for
new opportunities, specifically in the labor market (1). Applying
this principle of information novelty to our recruitment domain
suggests that invitations arriving along edges with low embedd-
edness may be more likely to result in successful recruitment. As a
consequence, if i is a node who accepts an invitation, one might
expect that at least some neighbors j of i will tend to be connected
via edges eij of low embeddedness. In other words, the embedd-
edness distribution EmðNiÞ will have small values: Viewed as a
multiset, it will contain small numbers as elements.
This observation leads to a potential confounding effect in our

analysis of connected components, in the following way. As
noted above, the embeddedness distribution of the neighbor-
hood Ni is the same as its degree distribution; hence, small values
in this distribution are consistent with a sparse structure for Ni
and hence with the potential for Ni to have many components.
What if the relationship between the number of components and
the probability of recruitment is in fact a consequence of the
relationship between small numbers in the embeddedness dis-
tribution and the probability of recruitment?
Fortunately, we can separate these effects quite cleanly, as

follows. There exist pairs of graphs on five and six nodes with

precisely the same degree distribution, but with different numbers
of connected components (Fig. S3A). If we look for invitees i
whose contact neighborhoods come from these pairs, we will
have neighborhoods whose degree distributions—and hence
whose embeddedness distributions—are identical, but have dif-
ferent numbers of connected components. Any argument based
on embeddedness values has no way to distinguish among these
pairs of graphs and hence would necessarily predict equivalent
rates of recruitment.
Analyzing recruitment rates on precisely these five- and six-

node topologies pushes the resolution limits of what is possible
even with huge amounts of data, but even so we see that for every
such pair of graphs in which the embeddedness distributions are
identical but the component counts differ, the neighborhood with
more components has a higher rate of recruitment (Fig. S3B).
Thus, diversity, measured by component count, appears to play
an important role in recruitment conversion in a manner de-
cidedly outside traditional theories of information diffusion.

k-Braces. In this section we present formal results regarding the
notion of a k-brace defined in this work. Recall from the main text
that the k-brace is constructed by repeatedly deleting edges of
embeddedness less than k until there are no such edges remain-
ing, followed by a single pass in which all isolated nodes are de-
leted. The first thing we prove is that this procedure leads to a
well-defined outcome. Indeed, some iterative update procedures
of this general flavor can potentially produce different end results
depending on the order in which the updates are performed; what
we wish to show is that the final subgraph produced by the k-brace
procedure does not in fact depend on the order in which the edge
deletions are performed. To do this, we provide a succinct graph-
theoretic characterization of this final subgraph and then show
that all ways of scheduling the edge deletions lead to this sub-
graph. Finally, we give an efficient algorithm, adapted from the
work of Cohen (2), for computing the k-brace.
To characterize the end result of the edge deletion process, we

begin with the following definition. Given a graph G = (V, E),
a subgraph H of G is a pair (W, F), where W ⊆ V and F ⊆ E, and
each edge in F has both endpoints in W. We now define the
following collection of subgraphs BkðGÞ : We say that a subgraph
H of G belongs to BkðGÞ if (i) each edge of H belongs to at least
k distinct triangles in H and (ii) each node of H has at least one
incident edge in H. We observe that BkðGÞ is a nonempty set,
because the subgraph consisting of no nodes and no edges sat-
isfies conditions i and ii and hence belongs to BkðGÞ.
To motivate the definition of BkðGÞ, note that the outcome of

the procedure defining the k-brace of G produces a subgraph in
BkðGÞ. We wish to show more, namely that the k-brace is in fact
the unique maximal element of BkðGÞ under a certain natural
partial order. In particular, for two subgraphs of G, denoted
H1 ¼ ðW1;F1Þ and H2 ¼ ðW2;F2Þ, we say that H16H2 ifW1 ⊆W2
and F1 ⊆F2. We now claim.

Proposition 1. In the set BkðGÞ, partially ordered by 6, there is
a unique maximal element.

Proof. Let us define the following union operation on subgraphs:
If H1 ¼ ðW1;F1Þ;H2 ¼ ðW2;F2Þ; . . . ;Hs ¼ ðWs;FsÞ are subgraphs
of G, then we define their union ∪s

i¼1Hi to be the subgraph
ð∪s

i¼1Wi;∪s
i¼1FiÞ.

The key fact underlying the proof is that ifH1 ¼ ðW1;F1Þ;H2 ¼
ðW2;F2Þ; . . . ;Hs ¼ ðWs;FsÞ are subgraphs in BkðGÞ, then ∪s

i¼1Hi
also belongs to BkðGÞ. To see why, we simply observe that
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(i) every edge in ∪s
i¼1Hi belongs to at least one of the Hi and

hence is part of at least k triangles and (ii) every node in ∪s
i¼1Hi

belongs to at least one of the Hi and hence is incident to at least
one edge.
Given this result, if we enumerate all of the subgraphs

H1;H2; . . . ;Ht in BkðGÞ, then their union ∪t
i¼1Hi is also an ele-

ment of BkðGÞ. It is the unique maximal element of BkðGÞ, be-
cause for any subgraph H in BkðGÞ, the subgraph H is one of the
elements in the union ∪t

i¼1Hi, and hence H6∪t
i¼1Hi. ∎

Let βkðGÞ denote the unique maximal element of BkðGÞ. We
now claim the following.

Proposition 2. Any execution of the procedure defining the
k-brace, regardless of the order of edge deletions, results in the sub-
graph βkðGÞ.
Proof. Consider an execution of the edge deletion procedure,
removing edges in the order e1; e2; . . . ; es. Let Gj ¼ ðV ;E−
fe1; e2; . . . ; ej−1gÞ be the subgraph of G after the first j− 1 edge
deletions, at the moment just before ej was deleted.
We claim that none of the deleted edges e1; e2; . . . ; es belong to

any subgraph in BkðGÞ. Indeed, suppose by way of contradiction
that this were not the case, and consider the first edge ej that
does belong to a subgraph H ¼ ðW ;FÞ in BkðGÞ. In H ¼ ðW ;FÞ,
the edge ej belongs to a set of k distinct triangles; let T ⊆F be the
set of 2k edges other than ej that constitute these triangles. None
of the edges e1; e2; . . . ; ej−1 can belong to T, because by as-
sumption ej is the first edge in the sequence of deletions to belong
to any subgraph in BkðGÞ. However, this observation implies that
all of the edges of T were still present in the underlying graph Gj
at the moment that ej was considered for deletion, and because ej
therefore belonged to at least k distinct triangles in Gj, it should
not have been deleted—a contradiction.
Similarly, we claim that none of the isolated nodes deleted at

the end of the procedure belong to any subgraph in BkðGÞ.
Again, suppose by way of contradiction that one of the deleted
nodes v belonged to a subgraph H ¼ ðW ;FÞ in BkðGÞ. In H,
node v is incident to some edge e. However, e was not present
when v was deleted, and hence e itself must have been deleted
earlier in the procedure; hence, e∈ fe1; e2; . . . ; esg. However,
we have just shown that none of the edges in fe1; e2; . . . ; esg
belong to any subgraph in BkðGÞ, whereas e belongs to H, a
contradiction.
Finally, consider any execution of the edge deletion procedure,

and let H* denote the subgraph that results from it. H* belongs
to BkðGÞ, because at the termination of the procedure all edges
in H* have embeddedness at least k and there are no isolated
nodes, and hence by Proposition 1, H*6 βkðGÞ. On the other
hand, we have just established that any node or edge that belongs
to any subgraph in BkðGÞ also belongs to H*, and hence
βkðGÞ6H*. It follows that H* ¼ βkðGÞ, as desired. ∎
Finally, we describe the following efficient implementation of

the edge deletion procedure for computing the k-brace, adapted
from Cohen (2).
Algorithm 1: Extracting the k-brace. Given a graph G and a parameter
k, use a queue q to efficiently traverse the graph and iteratively re-
move all edges with embeddedness <k:

for e∈ G.edges() do
Em(e) ← size(G.neighbors(e [0]) ∩ G.neighbors(e [1]));
if Em(e)< k then
q.append(e);
G.removeEdge(e);

end if
end for
while size(q) != 0 do
e← q.pop();
I ← G.neighbors(e [0]) ∩ G.neighbors(e [1])
for v∈ I do
e′ ← (e [0],v);
Em(e′) ← Em(e′) − 1;
if Em(e′) < k then
q.append(e′);
G.removeEdge(e′);

end if
e″ ← (e [1],v);
Em(e″) ← Em(e″) − 1;
if Em(e″) < k then
q.append(e″);
G.removeEdge(e″);

end if
end for

end while
for v in G.nodes() do
if degree(v) == 0 then
G.removeNode(v);

end if
end for

For a graph with n nodes and m edges, a straightforward
analysis shows that the runtime for this algorithm is at most
OðPv∈Vdegree

2ðvÞÞ ¼ Oðm2Þ, which is rather expensive, but
fortunately our focus on neighborhood graphs implies that all of
the graphs we consider are very modest in size.
As mentioned in the text, the k-brace is always a subgraph of

the ðkþ 1Þ-core. Because finding the ðkþ 1Þ-core takes merely
OðnþmÞ, in practice it is more efficient to first compute the
ðkþ 1Þ-core of a graph G and then find the k-brace of the
ðkþ 1Þ-core rather than the full graph G; the analog of this
optimization is also present in Cohen’s work (2).

Supporting Analysis of Engagement. Predicted engagement for other
neighborhood sizes. Here we present results that extend Fig. 4 D–F
from the main text (Fig. S4). Similar to our comments in the main
text, note that when comparing neighborhoods of different sizes,
we can see that having a 30-node neighborhood with two com-
ponents in the 1-brace predicts as much engagement as having
a 50-node neighborhood with only one component in the 1-brace.
Controlling for k-brace size.Fig. S5 presents a control of the potential
confounding factor that k-braces with multiple components may
have a tendency to be larger. Here we control for the size of the
1-brace to show that predicted engagement is still an increasing
function of component count when controlling for size.

1. Granovetter M (1973) The strength of weak ties. Am J Sociol 78:1360–1380. 2. Cohen JD (2008) Trusses: Cohesive subgraphs for social network analysis. National
Security Agency Technical Report (National Security Agency, Fort Meade, MD).

Ugander et al. www.pnas.org/cgi/content/short/1116502109 2 of 4

www.pnas.org/cgi/content/short/1116502109


Fig. S1. Invitation conversion rates of size five neighborhoods, labeled by their number of connected components and their degree distribution, which
uniquely determines the topology (for graphs of size 4 or smaller, degree distribution is a unique determinant of component count, but this uniqueness is not
true for graphs of size 5 or larger). For example, the label “1:[4,4,4,4,4]” indicates the clique, 1 component where all of the nodes have degree 4. The label “2:
[1,1,2,2,2]” indicates a graph of two components (a triangle and a pair), whereas the label “1:[1,1,2,2,2]” indicates the one-component line graph. The five-
cycle topology “1:[2,2,2,2,2]” was exceedingly rare, and no conversions for this topology were observed. The conversion scale is the same as for Fig. 1 in the
main text. Error bars are 95% confidence intervals.

A B C

Fig. S2. Recruitment conversion for demographically homogeneous neighborhoods, as a function of (A) two-node, (B) three-node, and (C) four-node contact
neighborhood graphs. The conversion scale is the same as for Fig. 1 in the main text. Error bars represent 95% confidence intervals.

A

B

Fig. S3. Recruitment conversion rates for the nine most frequent pairs of graphs with matched embeddedness distributions. (A) Illustrations of the three most
frequent neighborhood graph pairs with identical embeddedness distributions but differing component counts. The invited node is shaded, and the em-
beddedness distribution refers to the embeddedness of the shaded edges. The other six frequent graph topology pairs all contain one of these pairs, up to the
addition of a node singleton. (B) The importance of diversity when controlling for embeddedness, examining the nine most common neighborhood graph
pairs with identical embeddedness distributions but differing component counts. Each data point is labeled by its degree distribution and its connected
component count, as in Fig. S1. The conversion scale is the same as for the recruitment figures in the main text. Error bars are 95% confidence intervals.
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Fig. S4. Engagement as a function of diversity in a neighborhood, conditioned on size. For each size n ¼ 10; 20; 30; 40;50; plots are shown that correspond to
Fig. 4 D–F in the main text, showing the relative engagement rate as a function of component counts. The 50-node neighborhood plots correspond exactly to
the plots in Fig. 4 D–F. All engagement rates are reported on a single relative scale, where 1.0 signifies the average conversion rate across all 50-node
neighborhoods. Error bars are 95% confidence intervals.

Fig. S5. Controlling for the size of the k-brace. We focus on neighborhoods of size 50 with exactly 35 and 45 nodes in their 1-brace and again see that
engagement is an increasing function of 1-brace component count. All engagement rates are reported on a single relative scale, where 1.0 signifies the
average conversion rate across all 50-node neighborhoods. Error bars are 95% confidence intervals.
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