#### SUPPLEMENTARY INFORMATION

#### **1. Supplementary Methods**

- 2. Figure S1. Organism identification in mixed culture.
- 3. Figure S2. Organism identification: clinical isolates
- 4. Table S1. Genes used for bacterial organism identification probes
- 5. Table S2. Numbers of laboratory and clinical isolates tested with organism identification probes
- 6. Table S3. Laboratory and clinical isolates tested for susceptibility profiling.
- 7. Table S4. Genes used for viral organism identification
- 8. Table S5. Genes used for *Plasmodium falciparum* organism identification
- 9. Table S6. Genes used for Candida albicans organism identification
- **10. Figure S3.** Squared projected distance (SPD) comparison of gentamicin or ampicillin-sensitive and -resistant *E. coli* strains
- **11. Figure S4.** Squared projected distance comparison of ciprofloxacin-sensitive and -resistant *P. aeruginosa* strains
- **12. Figure S5.** Squared projected distance comparison of streptomycin (SM) or ciprofloxacin (CIP)-sensitive and -resistant *M. tuberculosis* strains
- 13. Table S7. Genes associated with bacterial antibiotic sensitivity signatures
- **14. Table S8.** Microbiological evaluation of clinical urine specimens assayed for organism identification
- 15. Table S9. E. coli isolates from clinical urine specimens assayed for ciprofloxacin sensitivity
- 16. Table S10. Genomes included in algorithm for organism identification probe selection
- 17. Figure S6. Limits of organism ID assay sensitivity

### **Supplementary Methods**

**Derivation of resistant laboratory bacterial strains:** *E. coli* laboratory strain J53 with defined fluoroquinolone-resistant chromosomal mutations in gyrA (gyrA1 - G81D; gyrA2 - S83L) were obtained from the Hooper lab, Massachusetts General Hospital, Boston, MA. Plasma-mediated quinolone resistance determinants (oqxAB, qnrB, aac6-Ib) were purified from clinical isolates previously determined to contain these plasmids. Electrocompetent cells of *E. coli* parent strain J53 was transformed with these plasmids, and their presence was confirmed with PCR.

**Sample processing:** For Gram negative isolates in liquid culture,  $5 - 20 \ \mu$ l of culture was added directly to 100 \mu RLT buffer and vortexed. For Gram-positive isolates, the samples were additionally mechanically disrupted with bead beating after the addition of RLT. For spiked blood samples,  $1 \times 10^7$  bacteria were added per ml of blood. Samples were then added to PAXgene blood RNA tubes (PreAnalytiX), and processed according to the manufacturer's protocol through the first centrifugation. Supernatant was then aspirated, pellets were resuspended in 350 \mu RLT buffer, and 4 \mu were used directly in hybridizations. For spiked urines and clinical specimens, 5-20 \mu l of urine was added directly to 5 volumes of RLT buffer. For mycobacteria, 1.5 ml of culture was centrifuged, then resuspended in Trizol (Gibco) with or without mechanical disruption by bead beating, and the initial aqueous phase was collected for analysis. Viral and parasite RNA were similarly prepared using Trizol and chloroform. For all lysates, 3-5 \mu were used directly in hybridizations according to standard nCounter protocols. For organism identification, raw scores were normalized to internal hybridization controls. For antibiotic susceptibility determination, raw counts were normalized to the mean of the middle 50% of all probes for a sample, and fold induction for each gene was determined by comparing antibiotic-treated to untreated samples.

Selection of organism identification probes: To select nCounter probes for differential detection of organisms, we compared all publically available sequenced genomes for relevant organisms. We identified genes conserved within each species by selecting coding sequences (CDS) having at least 50% identity over at least 70% of the CDS length for all sequenced genomes for pathogenic strains of that species available at the time that the probe sets were generated. For a complete list of included genomes for each organism see Supplementary Table S9. We broke the CDS into overlapping 50-mers and retained only those 50-mers with 100% identity within a species and having no greater than 50% identity to a CDS in any other species in the study. Available published expression data in Gene Expression Omnibus was reviewed, and genes with good expression under most conditions were selected. To identify unique *M. tuberculosis* probes, published microarray data was used to identify highly expressed genes falling into one of two classes: those unique to the *M. tuberculosis* complex (>70% identity to any other gene in the non-redundant database using BLASTN and conserved across all available *M. tuberculosis* and *M. bovis* genomes), as well as those with >85% identity across a set of clinically relevant mycobacteria including M. tuberculosis, M. avium, and M. paratuberculosis. C. albicans probes were designed against 50-mer segments of C. albicans genome unique in comparison with the complete genomes of ten additional pathogenic organisms that were included in its probe set. Viral probes were designed against highly conserved genes within a virus (i.e. all HSV-2 or HIV-1 isolates) that were less conserved among viruses within the same family, (i.e. between HSV-1 and HSV-2). Plasmodium falciparum probes were designed against genes expressed abundantly in each of the blood stages of the parasite life cycle. All probes were screened to avoid cross hybridization with human RNA.

**Description of Probe Sets:** For Gram-negative organism identification, a pooled probe-set containing probes for *E. coli, K. pneumoniae*, and *P. aeruginosa* were used. For mycobacterial organism identification, species-specific probes for *M. tuberculosis* and broader mycobacterial genus probes were among a larger set of probes against microbial pathogens. For expanded bacterial and fungal organism identification, probe sets included probes to *S. pyogenes, S. aureus, S. pneumoniae, S. mitis, S. agalactiae, H. influenzae, S. proteamaculans, A. baumanii, S. maltophilia, C. albicans*, and *P. mirabilis*. For viral and parasitic organism identification, probe sets included probes to *HSV-1*, *HSV-2*, *influenza A, HIV-1*, *P. falciparum*, and *M. tuberculosis*. Unless otherwise indicated, non-organism probes consist of all other organism identification probes in the probe set.

**nCounter data analysis and calculation of distance metric mean squared distance for drugsensitivity:** To transform qualitative expression signatures into a binary outcome of sensitive or resistant we developed an algorithm that collapses the response signature of each sample into a single value. This metric, which we term the Squared Projected Distance, or SPD, is calculated as follows:

- 1. First, variation in sample amount is corrected for by normalizing raw nCounter values to the geometric mean of the middle fifty percent of all probes in a sample.
- 2. The expression levels for each strain before or after drug treatment were denoted  $C_{i,P_j}^{before}$  or  $C_{i,P_j}^{after}$ , where *i* indicates the sample index and  $P_j$  denotes the *j*<sup>th</sup> probe measured.
- 3. Next the "log induction ratio", denoted *LIR*, is computed for each probe:

$$LIR_{P_j}^i \equiv \ln \left[ C_{i,P_j}^{before} / C_{i,P_j}^{after} \right]$$

Probes that do not change expression levels upon drug treatment will possess an *LIR* near zero, whereas induced or repressed genes with possess *LIR* scores greater or less than zero, respectively.

4. We group all drug sensitive strains, which number  $N^s$ , and compute the average *LIR* for each probe  $P_j$ :

$$\overline{LIR_{P_j}^S} \equiv \frac{\sum_{i=1}^{N^S} LIR_{P_j}^i}{N^S}$$

This represents a one-dimensional vector with a number of elements equal to the number of probes.

5. The same process is repeated to find the center of the  $N^R$  drug resistant samples:

$$\overline{LIR_{P_j}^R} \equiv \frac{\sum_{i=1}^{N^*} LIR_{P_j}^i}{N^R}$$

6. A vector  $\vec{A}$  that points from  $\overline{LIR_{P_j}^S}$  to  $\overline{LIR_{P_j}^R}$  is defined as:

$$\vec{A} \equiv \overline{LIR_{P_j}^R} - \overline{LIR_{P_j}^S}$$

Similarly a vector  $\overline{B^i}$  is calculated that points from  $\overline{LIR_{P_i}^S}$  to each sample  $LIR_{P_i}^i$ :

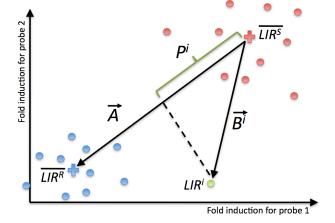
$$\overrightarrow{B^{i}} \equiv LIR^{i}_{P_{i}} - \overline{LIR^{S}_{P_{i}}}$$

These vectors are schematically represented in SI appendix Fig S1.

7. The projection of  $\overline{B^i}$  in the direction of  $\overline{A}$  is next calculated for every sample:

$$P^{i} = \vec{A} \cdot \vec{B^{i}} / \vec{A} \cdot \vec{A}$$

where here dots signify vector dot products.


8. Multiplying  $P^i$  by its absolute value to preserve sign information results in the Squared Projected Distance, our chosen metric:

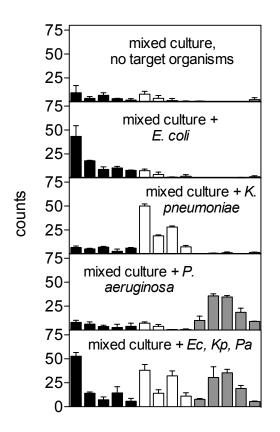
$$SPD^i = P^i \left| P^i \right|$$

Here vertical bars represent the absolute value. All strains are transformed in this manner.

9. Finally, to assess the significance of the observed scores, all SPD are converted to z-scores, defined to be the number of standard deviations a sample lies relative to all the drug-sensitive strains in our data set.

A graphical representation of this methodology is shown below:




Schematic in two dimensions of methodology for collapsing signatures into a single value, the squared projected distance (SPD). Red circles represent the log induction ratio of sensitive samples, blue circles represent the log induction ratio for resistant samples. The red and blue plus signs represent the centers of these two populations and define  $\overline{LIR^s}$ ,  $\overline{LIR^k}$ , and the vector A between them. The green circle represents an unknown sample of index i to be interrogated and defines the vector  $B^i$ .  $P^i$  is the projection of  $B^i$  in the direction of A.

The acquisition of clinical materials enabled us to experimentally evalute the predictive capabilities of this assay. To do this, we treated the data obtained from known isolates that had been spiked into urine (shown in Fig. 5E) as a training data set, and the clinical samples as true unknowns. The training data (spiked urines) were used to define the sensitive and resistant centroids. Hence, in the analysis of the clinical specimens, the vector *A* is identical to that used in

the computation of the SPD scores in Fig. 5E. The SPD scores of the clinical samples reflect their projected distance from the centroid of the sensitive spiked urines along this vector.

**Microbiological evaluation of clinical urine specimens:** For independent microbial identification and determination of antibiotic susceptibilities,  $5 \ \mu l$  of a 1:1000 dilution of the urine specimen was spotted onto HardyCHROM<sup>TM</sup> Urine Biplates, Red (R) Gram negative colonies are confirmatory of *E. coli*, thus no further testing of these samples was done. Blue (B) or white (W) Gram negative colonies required additional testing, so samples were streaked for individual colonies and tested using API 20 E system (BioMérieux). Blue (B) Gram positive colonies observe on HUrBi plates indicated the copresence of *Enterococcus faecalis*, and white (W) Gram-positive colonies were identified as *Staphylococcus aureus* by the production of red pigment on HardyCHROM (Hardy Diagnostics) *Staphylococcus aureus* plates. MICs were determined by microtiter broth dilution.

**Organism identification sensitivity determination:** *Klebsiella* or *Pseudomonas* cultures were inoculated in LB media from single colonies. Cultures were grown to an OD600 of approximately 1, and serially diluted 10-fold in LB media. 10µl of each dilution were then lysed in 40µl of RLT buffer; 4µl of lysate was used directly in the nCounter assay according to the manufacturer's protocol.



**Figure S1. Organism identification in mixed culture.** Bacterial cultures were lysed and analyzed with nCounter probes for species-specific transcripts. Y-axis: transcript raw counts; X-axis: gene. Probes for *E. coli* (black), *K. pneumoniae* (white), *P. aeruginosa* (grey). *E. coli*, *K. pneumoniae*, or *P. aeruginosa* were grown to log phase, then mixed in equal amounts with 8 additional bacterial species, i.e. 1 part *E. coli* to 8 parts mixed culture (Mixed culture = equal numbers of *Providencia stuartii*, *Proteus mirabilis*, *Serratia marcescens*, *Enterobacter aerogenes*, *Enterobacter cloacae*, *Morganella morganii*, *Klebsiella oxytoca*, *Citrobacter freundii*)

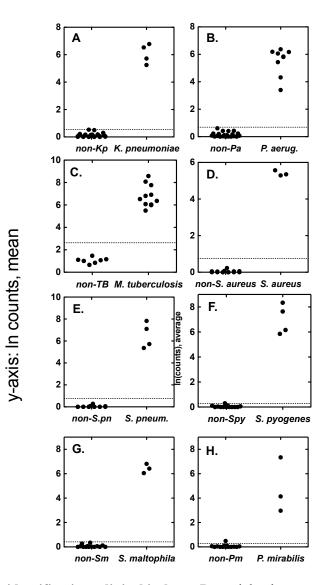



Figure S2. Organism identification: clinical isolates. Bacterial cultures were lysed and probes designed to detect species-specific transcripts were added, hybridized, and detected by standard nCounter protocol. A pooled probe-set containing probes for E. coli, K. pneumoniae, or P. aeruginosa was used in A and B. In C, speciesspecific probes for *M. tuberculosis* were among a larger set of probes against microbial pathogens. For (D-H), a pooled probe-set containing probes for the five organisms shown (Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Stenotrophomonas maltophilia, and Proteus mirabilis) along with six other organism (not tested) was used. Y-axis: sum of the log-transformed, normalized counts from 1-5 independent transcripts for each organism; X-axis; species tested. To account for any variability in assay efficiency, prior to log transformation, endogenous assay control probe counts were used to normalize the raw counts for each sample; based the observed counts for the highest of 5 endogenous control probes were normalized to an expected count value of 10,000. The dashed line indicates 3 standard deviations from the mean of the control ("non-organism") samples. "Non-organism" samples indicate samples tested that contained other bacterial organisms but where the defined organism was absent. For (A) and (B), non-E. coli isolates are K. pneumoniae and P. aeruginosa, non-K. pneumoniae strains are E. coli and P. aeruginosa, and non-P. aeruginosa strains are E. coli and K. pneumoniae. For (C), non-TB samples were non-tuberculous mycobacteria including M. intracellulare, M. paratuberculosis, M. abscessus, M. marinum, M. gordonae, and M. fortuitum. Each point represents a single clinical isolate tested once. Numbers of strains and clinical isolates tested are shown in Table S1 and genes used for pathogen identification are listed in Table S2.

| Organism                | Gene        | Annotated function                             |
|-------------------------|-------------|------------------------------------------------|
| E. coli                 | murC        | Peptidoglycan synthesis                        |
|                         | putP        | Sodium solute symporter                        |
|                         | иир         | Subunit of ABC transporter                     |
|                         | opgG        | Glucan biosynthesis                            |
| K. pneumoniae           | mraW        | S-adenosyl-methyltransferase                   |
|                         | ihfB        | DNA-binding protein                            |
|                         | clpS        | Protease adaptor protein                       |
|                         | lrp         | Transcriptional regulator                      |
| P. aeruginosa           | mpl         | Ligase, cell wall synthesis                    |
|                         | proA        | Gamma-glutamyl phosphate reductase             |
|                         | dacC        | Carboxypeptidase, cell wall synthesis          |
|                         | lipB        | Lipoate protein ligase                         |
|                         | sltB1       | Transglycosylase                               |
| Conserved Mycobacterium | carD        | Transcription factor                           |
| -                       | infC        | Translation initiation factor                  |
| M. tuberculosis         | Rv1398c     | Hypothetical protein                           |
|                         | mptA        | Immunogenic protein 64                         |
|                         | hspX        | Heat shock protein                             |
| P. mirabilis            | ackA        | Acetate metabolism                             |
|                         | ftnA        | Iron storage                                   |
|                         | pta         | Acetate metabolism                             |
|                         | secD        | Protein secretion                              |
| S. aureus               | ileS        | tRNA synthetase                                |
|                         | ppnK        | NAD kinase                                     |
|                         | pyrB        | Aspartate carbamoyltransferase                 |
|                         | rocD        | Ornithine aminotransferase                     |
| S. pneumoniae           | arcB        | Arginine deiminase                             |
| -                       | murZ        | Peptidoglycan synthesis                        |
|                         | phoP        | Two-component regulator                        |
|                         | prsA        | Foldase                                        |
| S. pyogenes             | <i>birA</i> | Biotin-protein ligase                          |
|                         | cysM        | Cysteine synthase                              |
|                         | hpt         | Hypoxanthine-guanine phosphoribosyltransferase |
|                         | scrR        | Transcriptional repressor                      |
| S. maltophilia          | clpP        | Protease                                       |
| 1                       | dnaK        | Chaperone                                      |
|                         | purC        | Phosphoribosylaminoimidazolesuccinocarboxamide |
|                         | adle A      | synthase                                       |
|                         | sdhA        | Succinate dehydrogenase                        |

## Table S1. Genes used for bacterial organism identification.

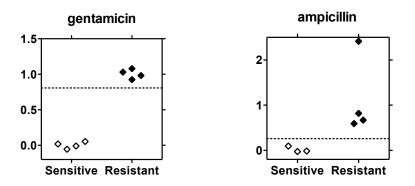
| Organism        | Laboratory strains tested | Clinical isolates tested |
|-----------------|---------------------------|--------------------------|
| E. coli         | 2                         | 17                       |
| K. pneumoniae   | 0                         | 4                        |
| P. aeruginosa   | 1                         | 9                        |
| M. tuberculosis | 1                         | 10                       |
| P. mirabilis    | 0                         | 3                        |
| S. aureus       | 0                         | 3                        |
| S. pneumoniae   | 0                         | 4                        |
| S. pyogenes     | 0                         | 4                        |
| S. maltophilia  | 0                         | 3                        |

 Table S2. Numbers of laboratory and clinical bacterial isolates tested with organism identification probes.

# Table S3. Laboratory and clinical isolates tested for susceptibility profiling. Clinical isolates are designated CI.

| Organism      | Antibiotic    | Sensitive<br>(S) or<br>Resistant<br>(R) | Strain   | MIC*         | SPD<br>culture | SPD<br>blood | SPD<br>urine |
|---------------|---------------|-----------------------------------------|----------|--------------|----------------|--------------|--------------|
| E. coli       | Ciprofloxacin | S                                       | K12      | 30 ng/ml     | -0.029         |              | 0.071        |
|               | 1             | S                                       | J53      | 30 ng/ml     | 0.001          |              |              |
|               |               | S                                       | CIEC9955 | < 0.1  mg/ml | 0.032          | 0.049        | 0.002        |
|               |               | S                                       | CICr07   | <0.1mg/ml    |                | -0.003       | -0.026       |
|               |               | S                                       | CICr08   | <0.1mg/ml    | 0.030          |              |              |
|               |               | S                                       | CICr10   | <0.1mg/ml    |                | -0.098       | -0.071       |
|               |               | S                                       | CICr11   | <0.1mg/ml    |                | -0.060       | 0.007        |
|               |               | R                                       | CIEC1686 | 50 mg/ml     | 1.018          | 0.973        | 1.020        |
|               |               | R                                       | CIEC9779 | 50 mg/ml     | 0.877          | 1.147        | 1.125        |
|               |               | R                                       | CIEC0838 | 50 mg/ml     | 1.113          | 0.825        | 0.829        |
|               |               | R                                       | CIEC1801 | >100 mg/ml   |                |              | 0.940        |
|               |               | R                                       | CIEC2219 | >100 mg/ml   |                |              | 1.002        |
|               |               | R                                       | CIEC4940 | 25 mg/ml     |                |              | 1.076        |
|               |               | R                                       | CIEC8040 | 100 mg/ml    |                |              | 1.049        |
| E. coli       | Gentamicin    | S                                       | K12      | 8 mg/ml      | -0.055         |              |              |
|               |               | S                                       | CIEC1676 | 8 mg/ml      | 0.054          |              |              |
|               |               | S                                       | CIEC9955 | 16 mg/ml     | 0.018          |              |              |
|               |               | S                                       | CIEC1801 | 8 mg/ml      | -0.010         |              |              |
|               |               | R                                       | CIEC4940 | >250 mg/ml   | 0.982          |              |              |
|               |               | R                                       | CIEC9181 | >250 mg/ml   | 0.926          |              |              |
|               |               | R                                       | CIEC2219 | 125 mg/ml    | 1.083          |              |              |
|               |               | R                                       | CIEC0838 | >250 mg/ml   | 1.026          |              |              |
| E. coli       | Ampicillin    | S                                       | K12      | 4 mg/ml      | -0.015         |              |              |
|               |               | S                                       | J53      | 4 mg/ml      | -0.025         |              |              |
|               |               | S                                       | DH5a     | 8 mg/ml      | 0.095          |              |              |
|               |               | R                                       | CIEC9955 | >250 mg/ml   | 2.414          |              |              |
|               |               | R                                       | CIEC2219 | >250 mg/ml   | 0.669          |              |              |
|               |               | R                                       | CIEC0838 | >250 mg/ml   | 0.818          |              |              |
|               |               | R                                       | CIEC9181 | >250 mg/ml   | 0.594          |              |              |
| P. aeruginosa | Ciprofloxacin | S                                       | PAO-1    | 1 mg/ml      | 0.009          |              |              |
| -             |               | S                                       | CIPA2085 | 0.4 mg/ml    | 0.007          |              |              |
|               |               | S                                       | CIPA1189 | 0.4 mg/ml    | 0.001          |              |              |
|               |               | S                                       | CIPA9879 | 0.4 mg/ml    | -0.023         |              |              |
|               |               | R                                       | CIPA2233 | 50 mg/ml     | 0.958          |              |              |
|               |               | R                                       | CIPA1839 | 25 mg/ml     | 1.452          |              |              |
|               |               | R                                       | CIPA1489 | 25 mg/ml     | 0.692          |              |              |

| Table S3        | (cont.)       | Sensitive<br>(S) or<br>Resistant |                      |             | SPD                             | SPD   | SPD   |
|-----------------|---------------|----------------------------------|----------------------|-------------|---------------------------------|-------|-------|
| Organism        | Antibiotic    | (R)                              | Strain               | MIC*        | culture                         | blood | urine |
| M. tuberculosis | Isoniazid     | S                                | H37Rv                | 0.05 mg/ml  | -0.013, 0.000<br>(1, 0.2 μg/ml) |       |       |
|                 |               | S                                | CIAS1                | <0.2 mg/ml  | -0.009                          |       |       |
|                 |               | S                                | CIAS2                | <0.2 mg/ml  | -0.058                          |       |       |
|                 |               | S                                | CIAS3                | <0.2 mg/ml  | 0.075                           |       |       |
|                 |               | S                                | CIAS4                | <0.2 mg/ml  | -0.007                          |       |       |
|                 |               | S                                | CIAS5                | <0.2 mg/ml  | -0.129                          |       |       |
|                 |               | S                                | CIAS10               | <0.2 mg/ml  | 0.293                           |       |       |
|                 |               | S                                | CIJ2                 | <0.2 mg/ml  | 0.059                           |       |       |
|                 |               | S                                | CIJ3                 | <0.2 mg/ml  | 0.058                           |       |       |
|                 |               | S                                | CIJ4                 | <0.2 mg/ml  | 0.170                           |       |       |
|                 |               | R                                | CIJ5                 | >5 mg/ml    | 0.962                           |       |       |
|                 |               | R                                | CIJ7                 | >5 mg/ml    | 1.077                           |       |       |
|                 |               | R                                | CIJ12                | >5 mg/ml    | 1.037                           |       |       |
|                 |               | R                                | CIJ13                | >5 mg/ml    | 0.896                           |       |       |
|                 |               | R                                | C4A50                | >6.25 mg/ml | 1.141, 0.917<br>(1, 0.2 μg/ml)  |       |       |
|                 |               | R                                | C1A10                | >6.25 mg/ml | 0820                            |       |       |
|                 |               | R                                | C2A10                | >6.25 mg/ml | 1.005                           |       |       |
|                 |               | R                                | BAA-812              | 0.4 mg/ml   | 0.041, 1.036<br>(1, 0.2 μg/ml)  |       |       |
| M. tuberculosis | Ciprofloxacin | S                                | mc <sup>2</sup> 6020 | 0.5 mg/ml   | -0.060                          |       |       |
|                 |               | S                                | CIAS1                | <1 mg/ml    | 0.000                           |       |       |
|                 |               | S                                | CIAS2                | <1 mg/ml    | -0.018                          |       |       |
|                 |               | S                                | CIAS3                | <1 mg/ml    | 0.200                           |       |       |
|                 |               | S                                | CIAS4                | <1 mg/ml    | 0.038                           |       |       |
|                 |               | S                                | CIAS5                | <1 mg/ml    | 0.032                           |       |       |
|                 |               | S                                | CIAS10               | <1 mg/ml    | -0.082                          |       |       |
|                 |               | R                                | C5A15                | 16 mg/ml    | 1.079                           |       |       |
|                 |               | R                                | 0.5D5                | 16 mg/ml    | 0.864                           |       |       |
| M. tuberculosis | Streptomycin  | S                                | H37Rv                | 1 mg/ml     | 0.059                           |       |       |
|                 |               | S                                | CIAS1                | <2 mg/ml    | -0.017                          |       |       |
|                 |               | S                                | CIAS2                | <2 mg/ml    | -0.005                          |       |       |
|                 |               | S                                | CIAS3                | <2 mg/ml    | 0.002                           |       |       |
|                 |               | S                                | CIAS4                | <2 mg/ml    | -0.015                          |       |       |
|                 |               | S                                | CIAS5                | <2 mg/ml    | 0.001                           |       |       |
|                 |               | R                                | C2A15                | >32 mg/ml   | 1.137                           |       |       |


| Organism               | Gene  | Annotated function                        |
|------------------------|-------|-------------------------------------------|
| Herpes simplex virus-2 | US4   | Envelope glycoprotein G, unknown function |
| Influenza A            | M1/M2 | Matrix, Ion channel in viral envelope     |
| HIV-1                  | Gag   | Core structural proteins of virus         |
|                        | Rev   | Exports viral mRNA from nucleus           |

## Table S5. Genes used for *Plasmodium falciparum* organism identification.

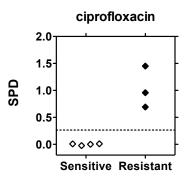
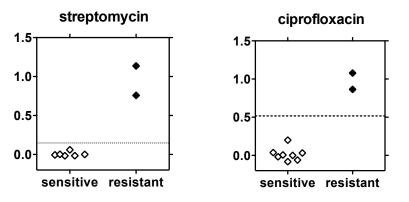

| Probe name/ stage Gene |           | Annotated function                                  |
|------------------------|-----------|-----------------------------------------------------|
| Ring/troph 1 PFI1020c  |           | Inosine-5'-monophosphate dehydrogenase              |
| Ring/troph 2           | PFA_0660w | Protein with DNAJ domain                            |
| Troph/early schizont 1 | PFC0800w  | Band 7 related protein                              |
| Troph/early schizont 2 | PFE0660c  | Putative purine nucleotide phosphorylase            |
| Schizont 1             | PF07_0128 | Erythrocyte binding antigen 175                     |
| Schizont 2             | PF13_0233 | Myosin A                                            |
| Early ring 1           | PFD1170c  | Plasmodium exported protein, unknown function       |
| Early ring 2           | PFA0110w  | Ring-infected erythrocyte surface antigen precursor |

Table S6. Genes used for *Candida albicans* organism identification.


| Gene      | Annotated function   |  |
|-----------|----------------------|--|
| CaJ7_0103 | Hypothetical protein |  |
| CaJ7_0146 | Hypothetical protein |  |
| CaJ7_0197 | Hypothetical protein |  |
| CaJ7_0339 | Hypothetical protein |  |



**Figure S3. Squared projected distance (SPD) comparison of gentamicin or ampicillinsensitive and -resistant** *E. coli* **strains.** Y-axis: SPD of each sample relative to the centroid of the response of known sensitive strains. For gentamicin, the dashed line indicates three standard deviations from the mean of the resistant samples. For ampicillin, the dashed line indicates one standard deviation from the mean of the resistant samples. Strains tested are listed in Table 1, and the genes that define the sensitive signature are listed in Table S3.



**Figure S4. Squared projected distance (SPD) comparison of ciprofloxacin-sensitive and -resistant** *P. aeruginosa* **strains.** Y-axis: SPD of each sample relative to the centroid of the response of known sensitive strains. The dashed line indicates two standard deviations from the mean of the resistant samples. Strains tested are listed in Table 1, and the genes that define the sensitive signature are listed in Supplementary Table 3.



**Figure S5. Squared projected distance comparison of streptomycin or ciprofloxacinsensitive and -resistant** *M. tuberculosis* **strains.** Y-axis: SPD of each sample relative to the centroid of the response of known sensitive strains. The dashed line indicates three standard deviations from the mean of the resistant samples. Strains tested are listed in Table 1, and the genes that define the sensitive signature are listed in Table S3.

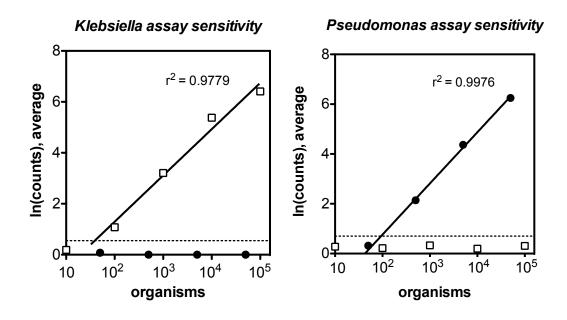
| Organism        | Antibiotic       | Gene        | Annotated function                        |
|-----------------|------------------|-------------|-------------------------------------------|
| E. coli         | Ciprofloxacin    | dinD        | DNA-damage-inducible protein D            |
|                 | (broth or blood) | recA        | DNA repair, SOS response                  |
|                 |                  | uvrA        | ATPase and DNA damage recognition protein |
|                 |                  | иир         | predicted subunit of ABC transporter      |
|                 |                  | argB        | acetylglutamate kinase                    |
|                 | Ciprofloxacin    | dinD        | DNA-damage-inducible protein D            |
|                 | (urine)          | recA        | DNA repair, SOS response                  |
|                 |                  | ftsQ        | Cell division                             |
|                 |                  | murC        | UDP-N-acetylmuramyl-l-alanine ligase      |
|                 | Gentamicin       | dinD        | DNA-damage-inducible protein D            |
|                 |                  | <i>recA</i> | DNA repair, SOS response                  |
|                 |                  | b1649       | lipopolysaccharide biosynthesis           |
|                 |                  | ftsQ        | cell division                             |
|                 | Ampicillin       | иир         | ATP-binding protein                       |
|                 |                  | proC        | pyrroline reductase                       |
|                 |                  | opgG        | glucan biosynthesis                       |
|                 |                  | secA        | preprotein translocase subunit            |
| P. aeruginosa   | Ciprofloxacin    | PA_4175     | probable endoprotease                     |
|                 |                  | mpl         | peptidoglycan biosynthesis                |
|                 |                  | proA        | glutamate-semialdehyde dehydrogenase      |
|                 |                  | lexA        | Regulator of SOS response                 |
| M. tuberculosis | Ciprofloxacin    | lhr         | helicase                                  |
|                 |                  | rpsR        | ribosomal protein S18-1                   |
|                 |                  | ltp1        | lipid transfer                            |
|                 |                  | alkA        | base excision repair                      |
|                 |                  | efpA        | efflux pump                               |
|                 |                  | accD6       | mycolic acid synthesis                    |
|                 |                  | fadD32      | mycolic acid synthesis                    |
|                 |                  | moaB2       | Molybdopterin biosynthesis                |
|                 |                  | bcpB        | bacterioferritin comigratory protein      |
|                 | Isoniazid        | efpA        | efflux pump                               |
|                 |                  | <i>kasA</i> | mycolic acid synthesis                    |
|                 |                  | accD6       | mycolic acid synthesis                    |
|                 |                  | fadD32      | mycolic acid synthesis                    |
|                 |                  | Rv3675      | Possible membrane protein                 |
|                 | Streptomycin     | Rv0813      | conserved hypothetical protein            |
|                 |                  | groEL       | heat shock protein                        |
|                 |                  | lhr         | helicase                                  |
|                 |                  | ltp1        | lipid transfer                            |
|                 |                  | efpA        | efflux pump                               |

 Table S7. Genes associated with bacterial antibiotic sensitivity signatures

|                 |                                  | <u>HUrBI</u> | <u>HUrBI</u> | <u>API 20E</u> | <u>API 20E</u> |
|-----------------|----------------------------------|--------------|--------------|----------------|----------------|
| <b>Specimen</b> | <u>Contents</u>                  | Gram-        | Gram+        | profile        | profile 2      |
| 110415-04       | Citrobacter koseri               | В            | -            | 3340513        | 3344513        |
| 110415-05       | Enterobacter aerogenes           | В            | -            | 5305773        |                |
| 110415-06       | Klebsiella pneumoniae ssp.       | В            | -            | 1215773        |                |
|                 | pneumoniae                       |              |              |                |                |
| 110415-07       | Escherichia coli                 | R            | -            | ND             |                |
| 110415-08       | K. oxytoca, C. freundii          | В            | -            | 5245773        | 1204572        |
| 110415-10       | E. cloaceae. Enterococcus        | В            | В            | 3305573        |                |
|                 | faecalis                         |              |              |                |                |
| 110415-11       | Proteus vulgaris, E. faecalis    | В            | В            | 2774521        | 6774311        |
| 110415-13       | E. coli                          | R            | -            | ND             |                |
| 110415-16       | E. coli, E. faecalis             | W            | В            | 4144532        |                |
| 110415-17       | E. coli, K. pneumo., E. faecalis | В            | В            | 5044572        | 7315773        |
| 110415-19       | K. pneumoniae ssp. pneumoniae    | В            | -            | 1215773        |                |
| 110415-20       | E. coli                          | R            | -            | ND             |                |
| 110415-21       | E. coli                          | R            | -            | ND             |                |
| 110415-22       | C. freundii, E. coli             | В            | -            | 5144512        | 3604773        |
| 110415-23       | P. aeruginosa                    | W            | -            | 2202000        |                |
| 110415-31       | E. coli                          | R            | -            | ND             |                |
| 110415-32       | E. coli                          | R            | -            | ND             |                |
| 110518-49       | E. coli                          | R            | -            | ND             |                |
| 110518-51       | E. coli                          | R            | -            | ND             |                |
| 110518-56       | K. pneumoniae ssp. pneumoniae    | В            | -            | 5215773        |                |
| 110518-59       | E. coli                          | R            | -            | ND             |                |
| 110518-60       | E. coli                          | R            | -            | ND             |                |
| 110518-61       | E. coli                          | R            | -            | ND             |                |
| 110518-64       | E. coli                          | R            | -            | ND             |                |
| 110519-49       | E. cloacae/agglomerans           | В            | -            | 3205573        |                |
| 110519-54       | E. coli                          | R            | -            | ND             |                |
| 110519-55       | Staphylococcus aureus            | -            | W            | ND             |                |
| 110519-56       | S. aureus                        | -            | W            | ND             |                |
| 110519-58       | K. pneumoniae ssp. pneumoniae    | В            |              | 5215773        |                |
| 110519-60       | uninfected                       | -            | -            | ND             |                |
| 110519-65       | E. coli, E. faecalis             | R            | В            | ND             |                |
| 110519-67       | uninfected                       | -            | -            | ND             |                |
| 110519-72       | K. pneumoniae ssp. pneumoniae    | В            |              | 5215773        | 7215773        |
| 110519-74       | E. coli                          | R            | -            | ND             |                |

Table S8. Microbiological evaluation of clinical urine specimens assayed fororganism identification.

| isolate   | Sensitive (S) or<br>Resistant (R) | CIP MIC    | SPD, CIP |
|-----------|-----------------------------------|------------|----------|
| 110415-20 | R                                 | 64 μg/ml   | 0.755    |
| 110415-21 | S                                 | <125 ng/ml | 0.036    |
| 110415-31 | R                                 | >64 µg/ml  | 0.841    |
| 110415-32 | R                                 | >64 µg/ml  | 0.917    |
| 110518-49 | S                                 | <125 ng/ml | 0.464    |
| 110518-51 | R                                 | >32 µg/ml  | 1.31     |
| 110518-59 | S                                 | <125 ng/ml | 0.122    |
| 110518-60 | S                                 | <125 ng/ml | -0.031   |
| 110518-61 | S                                 | <125 ng/ml | 0.265    |
| 110518-64 | R                                 | >32 µg/ml  | 1.07     |
| 110519-54 | S                                 | <125 ng/ml | 0.340    |
| 110519-65 | R                                 | >32 µg/ml  | 0.869    |
| 110519-74 | S                                 | <125 ng/ml | 0.626    |


 Table S9. E. coli isolates from clinical urine specimens assayed for ciprofloxacin sensitivity

## Table S10. Genomes included in algorithm for organism identification probe selection.

| Organism              | Genome name                                       |
|-----------------------|---------------------------------------------------|
| Escherichia coli      | Escherichia coli 0127 H6 E2348 69                 |
|                       | Escherichia coli 536                              |
|                       | Escherichia coli 55989                            |
|                       | Escherichia coli BW2952                           |
|                       | Escherichia coli C ATCC 8739                      |
|                       | Escherichia coli CFT073                           |
|                       | Escherichia coli E24377A                          |
|                       | Escherichia coli IAI39                            |
|                       | Escherichia coli K 12 substr DH10B                |
|                       | Escherichia coli K 12 substr MG1655               |
|                       | Escherichia coli K 12 substr W3110                |
|                       | Escherichia coli O157H7                           |
|                       | Escherichia coli O157 H7 EC4115                   |
|                       | Escherichia coli O157H7 EDL933                    |
|                       | Escherichia coli S88                              |
|                       | Lisenentenna_con _500                             |
| Klebsiella pneumoniae | Klebsiella pneumoniae 342                         |
| -                     | Klebsiella pneumoniae NTUH-K2044                  |
|                       | Klebsiella pneumoniae subsp. pneumoniae MGH 78578 |

| Table S10 (cont.)<br>Organism   | Genome name                                                   |
|---------------------------------|---------------------------------------------------------------|
| UI ZAIIISIII                    |                                                               |
| Pseudomonas aeruginosa          | Pseudomonas aeruginosa LESB58                                 |
|                                 | Pseudomonas aeruginosa PA7                                    |
|                                 | Pseudomonas aeruginosa PAO1                                   |
|                                 | Pseudomonas aeruginosa UCBPP-PA14                             |
|                                 |                                                               |
| Staphylococcus aureus           | Staphylococcus aureus 04-02981                                |
|                                 | Staphylococcus aureus ED98                                    |
|                                 | Staphylococcus aureus RF122                                   |
|                                 | Staphylococcus aureus subsp. aureus COL                       |
|                                 | Staphylococcus aureus subsp. aureus JH1                       |
|                                 | Staphylococcus aureus subsp. aureus JH9                       |
|                                 | Staphylococcus aureus subsp. aureus MRSA252                   |
|                                 | Staphylococcus aureus subsp. aureus MSSA476                   |
|                                 | Staphylococcus aureus subsp. aureus MW2                       |
|                                 | Staphylococcus aureus subsp. aureus Mu3                       |
|                                 | Staphylococcus aureus subsp. aureus Mu50                      |
|                                 | Staphylococcus aureus subsp. aureus N315                      |
|                                 | Staphylococcus aureus subsp. aureus NCTC 8325                 |
|                                 | Staphylococcus aureus subsp. aureus USA300_FPR3757<br>FPR3757 |
|                                 | Staphylococcus aureus subsp. aureus USA300_TCH1516            |
|                                 | Staphylococcus aureus subsp. aureus str. Newman               |
| Stanotrophomonas                |                                                               |
| Stenotrophomonas<br>maltophilia | Stenotrophomonas maltophilia K279a                            |
|                                 | Stenotrophomonas maltophilia R551-3                           |
|                                 | Sichon opnomonus mutophilu 18551 5                            |
| Streptococcus pneumoniae        | Streptococcus pneumoniae 70585                                |
|                                 | Streptococcus pneumoniae ATCC 700669                          |
|                                 | Streptococcus pneumoniae CGSP14                               |
|                                 | Streptococcus pneumoniae D39                                  |
|                                 | Streptococcus pneumoniae G54                                  |
|                                 | Streptococcus pneumoniae Hungary19A-6                         |
|                                 | Streptococcus pneumoniae JJA                                  |
|                                 | Streptococcus pneumoniae P1031                                |
|                                 | Streptococcus pneumoniae R6                                   |
|                                 | Streptococcus pneumoniae TIGR4                                |
|                                 | Streptococcus pneumoniae Taiwan19F-14                         |
| Stuarto co cours                | Stuanta co cours muccours MC A \$10270                        |
| Streptococcus pyogenes          | Streptococcus pyogenes MGAS10270                              |
|                                 | Streptococcus pyogenes MGAS10394                              |
|                                 | Streptococcus pyogenes MGAS10750                              |
|                                 | Streptococcus pyogenes MGAS2096                               |
|                                 | Streptococcus pyogenes MGAS315                                |
|                                 | Streptococcus pyogenes MGAS5005                               |
|                                 | Streptococcus pyogenes MGAS6180                               |

| Table S10 (cont.)      |                                      |
|------------------------|--------------------------------------|
| Organism               | Genome name                          |
| Streptococcus pyogenes | Streptococcus pyogenes MGAS8232      |
| (cont.)                | Streptococcus pyogenes MGAS9429      |
|                        | Streptococcus pyogenes NZ131         |
|                        | Streptococcus pyogenes SSI-1         |
|                        | Streptococcus pyogenes str. Manfredo |
| Proteus mirabilis      | Proteus mirabilis HI4320             |
| Candida albicans       | Candida albicans WO-1                |
|                        | Candida albicans SC5314              |



**Figure S6. Limits of organism identification assay sensitivity.** Klebsiella: open squares, Pseudomonas: solid circles. *Klebsiella pneumoniae* or *Pseudomonas aeruginosa* was grown in LB media to an OD600 of approximately 1. Culture was then serially diluted in LB media, lysed in RLT buffer, and lysates were used in the nCounter assay. Dashed line indicates 3 standard deviations from the mean score of "non-organism" samples (same as Figure S1). Solid line indicates linear regression of log-transformed data. Limit of sensitivity is defined as the X-value where the fitted line crosses the dashed line. For Klebsiella, this equates to 39 organisms; for Pseudomonas, this equates to 93 organisms.