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Supplementary Material A: Selective Dynamical Recoupling Driven by
a High-Field J-Coupling.Assuming a system made up by two spin-1/
2 qubits with zero average chemical shifts and a coupling among
them, the total Hamiltonian of concern is (1)

Ht ¼
πJ∕2 0 0 0

0 ωo − πJ∕2 πJ 0

0 πJ −ωo − πJ∕2 0

0 0 0 πJ∕2

0
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1
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where ωo is the semidifference between the two-spins’ chemical
shifts and J is the spin-spin coupling. Focusing only on the zero-
quantum subspace containing the off-diagonal elements, we have:

Hzero ¼ ωo − πJ∕2 πJ
πJ −ωo − πJ∕2

� �
:

In a toggling reference frame (2) and over a cyclic RF pertur-
bation of the form τ − π − 2τ − π − τ where ideal pulses are as-
sumed, this Hamiltonian becomes

Hzero
0 ¼ hðtÞ · ωo − πJ∕2 πJ

πJ −htðtÞ · ωo − πJ∕2

� �

where the hðtÞ square-wave modulation introduced in Fig. 1, is a
function that assumes a value of 1 for 0 < t < τ and 3τ < t < 4τ,
and a value of −1 for τ < t < 3τ. It is possible to transform to an
interaction frame where the chemical shift terms are accounted
for using the following evolution operator

UCS ¼ exp ½ − iωoϕðtÞ� 0

0 exp ½iωoϕðtÞ�
� �

where ϕðtÞ ¼ ∫ t
0hðt 0Þdt 0. This leaves a Hamiltonian

Hzero
″ðtÞ ¼ −πJ∕2 πJ exp ½2iωoϕðtÞ�

πJ exp ½ − 2iωoϕðtÞ� −πJ∕2

� �
;

whose average to zero order is given by

H̄ ¼ 1

Tc

Z
Tc

0

Hzero
″ðtÞdt

This average Hamiltonian can be found by breaking up the RF
cycle into parts and calculating each element of the Hamiltonian
matrix individually. For instance the following integrals:

yield the 1,2 matrix element of interest

h̄1;2 ¼
πJ
4τ

Z
τ

0

dt½2 expð2iω0tÞ þ 2 expð−2iω0tÞ�

¼ πJ
τ

Z
τ

0

dt cosð2ω0tÞ ¼
πJ
2ω0τ

sinð2ω0τÞ;

Likewise, the remainder of the average zero-quantum Hamil-
tonian

H̄ ¼ −πJ∕2 πJk
πJk −πJ∕2

� �

follows, where k ¼ sincð2ω0τÞ. As the toggling frame’s final refer-
ence position coincides at the conclusion of each cycle with the
original reference frame, it is unnecessary to transform back to
the latter—all propagations will be carried out stroboscopically
and at the end of such cycles. Returning back to the full 4 × 4

two-spin Hilbert space, the problem can then be cast as a need
to diagonalize the average Hamiltonian:

H̄t ¼
πJ∕2 0 0 0

0 −πJ∕2 πJk 0

0 πJk −πJ∕2 0

0 0 0 πJ∕2

0
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which leads to the corresponding propagator

Ut ¼
expði πJt

2
Þ 0 0 0

0 cosðπJktÞ expð−i πJt
2
Þ i sinðπJktÞ expð−i πJt

2
Þ 0

0 i sinðπJktÞ expð−i πJt
2
Þ cosðπJktÞ expð−i πJt

2
Þ 0

0 0 0 expði πJt
2
Þ

0
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If ρ0 ¼ I1x þ I2x then the observable response will be
hI1þi ¼ TrfU −1

t ðI1x þ I2xÞUt · I1þg; an expression leading to
hI1þi ∝ cos½πJtð1 − kÞ�. Such result agrees with that reported
by Allerhand (3) and, more recently, by Kowalewski and cowor-
kers (4).

To calculate from this derivation the observable NMR signal
at the conclusion of an SDR sequence like that introduced
in Fig. 1E, two propagators need to be considered: one for which
the expression for k utilizes τ ¼ x∕2 and t ¼ ðN − 1Þx, and
another for which t ¼ TE − xðN − 1Þ and τ ¼ TE∕2−
xðN − 1Þ∕2 (TE being the overall time of the π-pulse train
and N the number of pulses applied during this train). As these

propagators commute, the overall evolution becomes hI1þi ¼
TrfU −1

2 U −1
1 ðI1x þ I2xÞU1U2 · I1þg with U1 ¼ Utðt ¼ xðN − 1Þ;

τ ¼ xÞ and U2 ¼ Utðt ¼ TE − xðN − 1Þ; τ ¼ t∕2Þ. This leads to

hI1þi ¼ cos
�
πJ · TE −

πJ
ωo

½ðN − 1Þ sin ðωoxÞ

þ sin ðωoðTE − xðN − 1ÞÞÞ�
�

which is Eq. 4 in the paper and was used as the “analytical” pre-
diction in Fig. 2.
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Supplementary Material B: Selective Dynamical Recoupling Driven by
Chemical Exchange. We next look at a spin-1/2 system that can ex-
change its environment at a rate κ, among two equally populated
states possessing chemical shifts �ωo. As before, this ensemble
will be subject to a sequence composed of 1 ≤ i ≤ N segments
of duration 2τi each, possessing an echoing π-pulse in their center
and timed such that ∑N

i¼1 ¼ TE∕2. Because of this pulsing a
spin’s phase will be refocused at the conclusion of each segment
regardless of its environment—this, as long as no exchange has
occurred during that segment. On the other hand, should a single
exchange event happen during a segment i, the normalized mag-
netization amplitude would become

hI iþi ¼ heiΔΦi2τiþωo↔−ωo
¼ sinð2ωoτiÞ

2ωoτi

For the slow, infrequent exchange regime where rates κ < TE−1

that will here be assumed, the probability that such a single ex-
change has happened during a segment i is Pið1Þ ¼ κ2τi. The
probability that one single exchange has happened throughout
the π-pulse train is thenPð1Þ ¼ ∑N

i¼1 Pið1Þ ¼ κTE, and the pos-
sibility of two or more spectral changes will be disregarded as too
unlikely. This means that the probability of having a spin under-
going zero exchanges becomes Pð0Þ ¼ 1 − κTE; as in this latter,
exchange-free case, the π-pulse train will entirely refocus the
phases of the qubits, the resulting amplitude hIþi observed at
the conclusion of the SDR train can be approximated as

hIþi ¼ ∑
∞

j¼1

PðjÞhIþ;ji ≈ Pð0Þ · 1þ∑
N

i¼1

Pið1ÞhI iþi

From here one can find the first-order approximation to the re-
sonance amplitude:

hIþi ≈ 1 − κ · TEþ κ

ωo ∑
N

i¼1

sinð2ωoτiÞ;

which is the expression used to derive Eq. 5 in the main text.
It is interesting to reflect on three additional aspects of this

scenario. A first issue to remark is that the hIþi equation just de-
rived remains valid in cases where the two states are not equally
populated, provided one takes κ ¼ 2ðκ1→2 þ κ2→1ÞPop1Pop2,
where Popi is the population of state i and κi→j is the exchange
rate between states i and j. As illustrated in Fig. S1 even in such
cases chemical shift modulations can be measured on the major
component’s peak, that reveals the nature of its less-abundant
exchange partner.

Also interesting to investigate is what would be the optimal
pulse arrangement for minimizing the exchange-induced decay
effects; i.e., the τi’s that minimize the dynamics-induced decoher-
ence that the “noise” (i.e., the exchange) imparts on the qubit
(i.e., the NMR amplitude). Given a number N of segments span-
ning a total echo time TE, one can use Euler-Lagrange methods
to maximize such signal amplitude. Two domains result from
these constraints. One arises when the average τ̄ ¼ TE

2N is such that

τ̄ · ωo < π
2
Δτ̄ < π

2
. In this case the optimal solution to minimize

the effect of the noise is a CPMG sequence where all τi are
set equal to the average τ̄. This is to be expected, as for small
ωo’s only linear frequency terms remain in the signal’s amplitude
and the problem reverts to the canonical DD domain. This con-
trasts with a second possible scenario, where the average τ̄ is such
that τ̄ · ωo > π

2
. In such cases, minimizing the signal’s decay re-

quires choosing the τi’s in such a way as to set all sinð2ωoτiÞ terms
in Eq. 1 equal to 1. This can be achieved by setting the durations
of certain segments to τj ¼ ðπ

2
þ2πmþ2πÞ

ωo
> τ̄ and the rest to

τi ¼ ðπ
2
þ2πmþ2πÞ

Δ > τ̄, and by selecting the size of each group in such
a way so as to keep the average τ as desired. Choosing in such
fashion the sequence’s timing according to ωo, is something that
has no parallel in any of the hitherto proposed DD methods.

A final interesting issue to consider concerns an exchange sce-
nario where the dynamics can connect several 1 ≤ k ≤ Mex sites,
each with population Pk and frequency ωk, by a series of fκk→igi≠k
exchange rates. Like before we assume that this system is subject
to N segments of duration 2τi such 2∑N

i¼1 τi ¼ TE, with an echo
pulse in the middle of each segment and the infrequent jump con-
dition κk→i · TE ≈ 1 still valid. At the end of each segment the
spins’ evolution phases will be refocused unless there has been
a state exchange during that segment. One can then calculate
the average dephasing accumulated throughout the system and
all segments, as

hIþi ¼ ∑
Mex

i¼1

Pi

�
1 − TE∑

Mex

k≠i

κi→k

�

Contribution of non-exchanged k 0s

þ∑
Mex

i¼1
∑
k≠i

∑
N

n¼1

ðPi2κi→kτnÞheiΔΦi2τnωi↔ωk

Contribution of all i → k exchanges

The microscopic detailed balance condition Pkκk→i ¼ Piκi→k
leads to:

hIþi ≈ 1 − TE∑
Mex

k¼1
k≠i

Piκi→k þ 2∑
Mex

i¼1
i≠k

Piκi→k

ωi − ωk ∑
N

n¼1

sin ½ðωi − ωkÞτn�;

which is very similar to the result obtained earlier, only summed
over all the possible site exchanges. On the basis of this modula-
tion it follows that the behavior arising from site k from a SDR
sequence like the one implemented in Fig. 3, leads to

hI kþi ≈ 1 − TE∑
Mex

i¼1
i≠k

Piκi→k þ 2∑
Mex

i¼1
i≠k

ðN − 1ÞPiκi→k

ωi − ωk
sin ½ðωi − ωkÞx�

This is once again a linear superposition, now involving all fre-
quency differences connected by the exchange.
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Fig. S1. Behavior expected upon applying selective dynamical recoupling to a two-site chemically exchanging system involving differing relative populations.
Only the amplitude modulation expected for the resonance with the majority population component is plotted, and for all cases the �ωo value was kept
constant. The graphs show the progression as exchange shifts from (A) equally populations, to (B–I) sites populated with increasingly different ratios. All curves
were calculated for an exchange train TE ¼ 1 sec; (B–E) were calculated for a global κ ¼ 1 sec−1 and normalized to an average signal intensity of unity for the
major component; (F–I) repeat these calculations but for a constant κ1→2 ¼ 1 sec−1 forward rate of the process, and highlight the nearly constant sensitivity of
the initial modulation despite the decreasing populations of the minority component.
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