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Histology and Immunohistochemistry. For the tissue microarray,
immunohistochemistry was visualized using theUniversal LSAB+
Kit (Dako) after deparaffinization, heat-induced antigen retrieval
with vegetable steamer for 20min in citrate buffer (pH6.0), and 1 h
of incubation with primary antibodies against δ-1-catenin (1:100,
ab92514; Abcam) and GNAQ (1:800, ab75825; Abcam). Three
separate 1.0-mm cores for each tumor in the tissue microarray
were independently scored by a blinded observer using semi-
quantitative histoscores (range = 0–300) representing the prod-
uct of staining intensity (0–3) and percentage of tumor cells
staining at that intensity (0–100). Membrane staining was scored
for δ-1-catenin, whereas cytoplasmic staining was scored for
GNAQ. For dichotomization, each tumor was assigned into a
low- or high-level staining group based on its average histoscore.
Survival estimates were generated using the Kaplan–Meier
method and compared using log-rank tests (1). Overall survival
time was measured from the date of surgery to the date of death
because of any cause or last follow-up.
Mouse tissues were fixed in 10% formalin overnight and em-

bedded in paraffin. For immunohistochemistry of Pdx1 and cyto-
keratin-19, 5-μm sections were deparaffinized in xylene and
rehydrated in descending percentages of ethanol to water. Endog-
enous peroxidase was inhibited using 1% H2O2 in methanol. The
sections were then washed in distilled water and heated in a pres-
sure cooker for 45min in pH9 for epitope retrieval followed by 10%
goat serum block for 40 min. The slides were then incubated for 1 h
with monocolonal antibodies Troma III (Ck19; dilution 1:10) or
anti-Pdx1 (clone F109-D12; dilution 1:100) followed by incubation
with HRP polymer anti-rat Envision System from Dakocytomation
for 30 min. Envision 3, 3′ Diaminobenzidine (DAB) substrate was
used to visualize, and counterstaining was performed with hema-
toxylin. Primary antibodies were obtained from the Developmental
Studies Hybridoma Bank developed under the auspices of the
National Institute of Child Health and Human Development and
maintained by the Department of Biology, University of Iowa, Iowa
City, IA.
Immunohistochemistry for smooth muscle actin was performed

using the Leica Bondmaxý autostainer; 5-μm formalin-fixed
paraffin sections were deparaffinized in BOND Dewax solution
and rehydrated in descending percentages of ethanol to water.
The slides were then heat-exposed with BOND Retrival solution
2 (pH 9), and endogenous peroxidase was inhibited using 3%
H2O2 in methanol for 15 min. The slides were incubated for 45
min with monoclonal mouse anti-human actin (smooth muscle
actin, clone 1A4, dilution 1:200, M0851; Dako) and then in-
cubated with HRP polymer anti-mouse for 10 min. DAB sub-
strate was applied for 3 min to visualize, and counterstaining was
performed with hematoxylin. Masson’s Trichome Staining was
performed as previously described (2).

Gaussian Kernel Convolusion Method for Common Insertion Site
Determination. Any insertions sites on the transposon donor
chromosomes, mouse chromosome 1 for tumors derived from T2/
Onc2, andmouse chromosome9 for tumors derived fromT2/Onc3
were excluded from common insertion site (CIS) analysis. The
likelihood of local hopping of the transposon is increased where
the transposon array is located (3). This phenomenon can sig-
nificantly increase the background level of transposon insertion
events, thereby complicating CIS analysis; 19,927 nonredundant
insertion sites were used to identify CISs using a Gaussian kernel
convolution (GKC) statistical framework (4). The previous GKC

analysis approach (5) was enhanced by using multiple kernel
scales (widths of 30-, 50-, 75-, 120-, and 240-K nt). CISs predicted
across multiple scales and overlapping in their genomic locations
were clustered together such that the CIS with the smallest ge-
nomic footprint was reported as the representative CIS. For
highly significant CISs with narrow spatial distributions of in-
sertion sites, the 15-K kernel is typically the scale on which CISs
are identified. The P value for each CIS was adjusted by chro-
mosome, and a cutoff of P < 0.05 was used.

Gene centric CIS Computational Method.Gene centric CISs (gCISs)
were analyzed using the methods published in the work by Brett
et al. (6) with slight modifications. We only considered trans-
poson insertions at uniquely mappable TA dinucleotides within
the coding regions of all RefSeq genes. A mappable TA is de-
fined by the presence of a uniquely mapped 40-bp junction on
either side of the TA in the mouse genome.

Pathway Analysis Using Ingenuity Pathway Analysis and DAVID.GKC
candidate cancer genes (CCGs; 136) and gene centric CCGs
(gCCGs; 653) from Sleeping Beauty (SB) -driven pancreatic tu-
mors and the sensitizing oncogene Kras were considered for
placement in canonical signaling pathways and cellular functions
(functional analysis) using ingenuity pathway analysis (7); 132
GKC CCGs and 645 gCCGs were associated with biological
functions and/or diseases in the ingenuity knowledge base and
were considered for the analysis. Gene ontology terms and sig-
naling pathways in the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) database (8, 9) were queried using the Database
for Annotation, Visualization and Integrated Discovery (DAVID)
(10, 11); 135 GKC CCGs and 653 gCCGs were associated with
biological functions and/or diseases in this database and were
considered for the analysis. Right-tailed Fisher exact test was
used to calculate a P value determining the probability that each
biological function and/or disease assigned to that dataset was
caused by chance alone. P values for pathway enrichment were
adjusted for multiple testing using the Benjamini–Hochberg
method for control of the false discovery rate (12).

Statistical Analysis. Enrichment of CISs in human cancer mutation
datasets. The hypergeometric distribution was used to test for
overrepresentation of the SB CCG and SB gCIS in the Cancer
Genome Consensus database with somatic mutations identi-
fied in the works by Jones et al. (13) and Campbell et al. (14).
A P value <0.05 was considered to represent a significant
association.
Gene expression and patient survival analysis. Publicly available pan-
creatic cancermicroarraydataweredownloaded from theNational
Center for Biotechnology Information Gene Expression Omnibus
database (GSE 21501) (15). These data comprised 132 samples
from primary pancreatic ductal adenocarcinomas; overall survival
data were available for 102 patients (16). Gene expression data
relating to human homologs of SB pancreatic candidate cancer
genes were extracted by matching on gene symbol. We found 124
of the GKC CCGs to be represented.
For each gene, Cox proportional hazards regression was used to

examine the association between gene expression level and overall
survival. P values were corrected for multiple testing to control
the false discovery rate, and Cox regression P values from all
genes were used to estimate the proportion of genes for which the
null hypothesis was true (12). Genes were considered to be sig-
nificantly associated with overall survival if at least one probe for
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that gene had an adjusted P value of<0.05. To determine whether
the list of concordant GKC CCGs was significantly enriched for
genes associated with survival, a resampling approach was taken.
Random gene lists of 124 genes were generated and analyzed
using the Cox regression method described above. This procedure
was repeated 1,000 times, and for each random gene set, the
number of genes with at least one probe significantly associated

with overall survival was recorded. These values were then com-
pared with the values that were observed for the gene lists derived
from the GKC CCGs, with P values calculated based on how
many times the random gene lists showed equal or greater
numbers of genes associated with survival. A resampling-based P
value of <0.05 was considered to provide evidence of significant
enrichment for survival-associated genes.
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Fig. S1. Histological and immunohistochemical analysis of oncogenic KrasG12D-induced pancreatic tumors. Preinvasive early adenocarcinomas representing
several different subtypes were observed in oncogenic KrasG12D-induced pancreatic tumors. Early adenocarcinomas with clear ductal morphology (A) were
observed in several KrasG12D-induced pancreatic tumors. In some cases, early adenocarcinomas with papillary characteristics (B) or early adenocarcinoma (black
arrow; C) with a prominent stromal component (red arrow; C) diagnosed as scirrhous adenocarcinoma were also observed. Staining sections for mucin using
Alcian blue (D) showed high mucin content in early progressive neoplastic lesions (red arrows) that was reduced or absent in early adenocarcinomas (black
arrow). Many adenocarcinomas had a prominent stromal component containing smooth muscle, which was shown by staining for smooth muscle actin (brown
staining; E) and collagen as shown by Masson’s trichome (blue staining; F). Primary adenocarcinomas and metastatic lesions were characterized for the ex-
pression of Pdx1 (G–I) and cytokeratin-19 (J–L). G shows expression of Pdx1 in islets of the normal adult pancreas. Pdx1 is reexpressed in pancreatic ad-
enocarcinomas (H) and lung metastases (I). SB-driven pancreatic adenocarcinomas are of ductal origin as shown by positive staining for cytokeratin-19, a ductal
marker (J) in primary adenocarcinomas (K) and lymph node metastases (L).
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Fig. S2. (Continued)
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Fig. S2. Survival plots of human pancreatic cancer patients based on expression of 20 SB pancreatic CCGs. Gene expression levels and related patient outcome
for GKC CCGs identified in SB-driven pancreatic tumors were interrogated using publically available microarray data for human pancreatic adenocarcinomas
(National Center for Biotechnology Information Gene Expression Omnibus GSE21501) (SI Materials and Methods); 20 of the GKC CCGs showed significance for
predicting poor patient survival. Patient survival data were parsed based on gene expression at the median level (A–C, F, M, R, and T). In some cases, a smaller
proportion of the population (75th percentile; D, E, G, H, J, L, and S) or larger proportion (25th percentile; I, K, and N–Q) showed a significant relationship
between gene expression and poor survival. The adjusted Cox proportional hazards regression (CoxPH) P value (adj-p) is shown under each graph. The y axis
shows relative survival, whereas the x axis denotes months postsurgery.
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Fig. S3. CTNND1 and GNAQ staining in pancreatic adenocarcinoma with intact ductal morphology. Immunohistochemistry performed on a pancreatic ad-
enocarcinoma tissue microarray shows that CTNND1 stains positive in regions of tumor with intact ductal membranes (A). Cytoplasmic staining of GNAQ is also
observed in areas of tumor with intact ductal morphology (B). Kaplan–Meier plot of patient survival from a second independent 275-patient pancreatic cancer
tissue microarray stained for CTNND1 (C). Two patient groups dichotomized into the top two tertiles (green) vs. bottom tertile (blue) using the histoscore for
high and low staining.

Dataset S1. CISs identified by the GKC method

Dataset S1 (XLSX)

One hundred thirty-three CIS loci were identified from twenty-one SB-driven pancreatic tumors using the GKC statistical framework to analyze uniquely
mapped SB transposon integrations sites (SI Materials and Methods). The GKC output merges the data from five kernel widths (30, 50, 75, 120, and 240 K) and
reports the smallest kernel width that contains the CIS region. The gene name is listed for each CIS along with the chromosome and nucleotide position of the
CIS peak. The calculated raw P value for each CIS is shown alongside the corrected P value for multiple testing on a chromosome basis. Note that, for many loci,
the CIS width is smaller than the kernel width owing to the density and clustering of transposon integrations. The predicted mutagenic consequence of the
insertions (i.e., activation of an oncogene or disruption of a tumor suppressor gene) is also listed. The number of tumors contributing to CISs on chromosome 9
is derived only from tumors with T2Onc2 for which the donor site is located on chromosome 1.

Dataset S2. Pancreatic CCGs mutated in human cancers identified by exon resequencing or whole-genome sequencing

Dataset S2 (XLSX)

Human homologs of the CCGs identified in SB-driven pancreatic tumors that are mutated in human cancer as determined by exon resequencing or genome
sequencing are shown on a heat map with mutated genes denoted by blue rectangles. We considered all somatic mutations present in at least one sample
from each of 20 reports from either exon resequencing or whole-genome sequencing (1–15). The different sequencing studies are listed at the top of the table;
the mutated genes are listed on the left-hand column. We also queried the Cancer Gene Census (16) and Memorial Sloan Kettering Cancer Center database (17)
for genes that overlap in our CCGs dataset (first two columns).
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Dataset S3. Pairwise co-occurrences of pancreatic GKC CCGs in tumors

Dataset S3 (XLS)

Twelve significant co-occurrence pairs of CCGs were identified in our dataset. Fisher exact test was used to determine the probability of co-occurrence. The
raw (uncorrected) P value is shown.

Dataset S4. CISs identified by the gCIS computational method

Dataset S4 (XLSX)

Six hundred seventy-one gCIS loci were identified from twenty-one SB-driven pancreatic tumors using the gCIS statistical framework to analyze uniquely
mapped SB transposon integrations sites (SI Materials and Methods). Intragenic gCISs are defined by calculating the probability of transposon insertion events
within a gene given the number of available TA dinucleotides compared with the number of TA dinucleotides within the entire genome. The gene name is
listed for each gCIS along with the chromosome, total number of intragenic insertions, and number of tumors containing insertions. The P value for each gCIS is
based on χ2 analysis. The P value threshold using the Bonferroni correction (0.05/21508 RefSeq genes) is 2.32 × 10−6. The number of tumors contributing to CISs
on chromosome 9 is derived only from tumors with T2Onc2 for which the donor site is located on chromosome 1.

Dataset S5. Overlap of pancreatic CCGs identified by the GKC and gCIS methods with human pancreatic cancer mutations

Dataset S5 (XLSX)

Pancreatic CCGs identified by the GKC and gCIS methods with human homologs containing somatic mutations either listed in the Cancer Gene Census
database or identified from sequencing studies of human pancreatic cancer are plotted as a heat map. The GKC CCGs are in red. There is statistically significant
enrichment of both sets of CCGs for all three comparisons [P = 1.67E-12, Cancer Gene Census; P = 2.11E-09 (1); P = 1.80E-21 (2)].
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Dataset S6. Human pancreatic cancer coding mutations in SB CCGs

Dataset S6 (XLSX)

Nonsilent coding mutations for 11 homologs and 4 orthologs of SB CCGs were validated using targeted PCR and Ion Torrent sequencing of a collection of 60
pancreatic cancer patient DNAs with matched normal controls from the Australian Pancreatic Cancer Genome Initiative. The point mutations are listed by gene
name and patient sample. Genes highlighted in red are orthologs of SB CCGs that encode proteins similar in function to the SB CCG.

Other Supporting Information Files

SI Appendix (DOCX)

14. Mardis ER, et al. (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361:1058–1066.
15. Pleasance ED, et al. (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463:191–196.
16. Futreal PA, et al. (2004) A census of human cancer genes. Nat Rev Cancer 4:177–183.
17. Higgins ME, Claremont M, Major JE, Sander C, Lash AE (2007) CancerGenes: A gene selection resource for cancer genome projects. Nucleic Acids Res 35:D721–D726.

Mann et al. www.pnas.org/cgi/content/short/1202490109 6 of 6

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1202490109/-/DCSupplemental/sd03.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1202490109/-/DCSupplemental/sd04.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1202490109/-/DCSupplemental/sd05.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1202490109/-/DCSupplemental/sd06.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1202490109/-/DCSupplemental/sapp.docx
www.pnas.org/cgi/content/short/1202490109

