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SI Materials and Methods
SpikingModel.The spiking model used in our study is based on the
model presented in the work by Machens et al. (1). The spiking
networks consisted of two populations, each with N ¼ 500 neu-
rons. Neurons were coupled with inhibitory synaptic connections
if they belonged to different populations, whereas there were no
connections between neurons that were members of the same
population.
The membrane potential of neuron i in population X ∈ fA;Bg,

ViX , obeyed (Eq. S1)
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�
VE −ViX

�þ gL
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VI −ViX
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þ σ

� ffiffiffi
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p
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p
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�
; [S1]

(Eq. S2)

g IX ðtÞ ¼
X
j

wSjY ðtÞ ðY ≠ XÞ; [S2]

and (Eq. S3)

τsyn _SjY ¼ − SjY : [S3]

When a neuron reached its threshold Vth, it emitted a spike
and was reset to Vre. When neuron j in population Y fired, sYj
was incremented by ðsmax − sYj ðtÞÞ=smax, with smax ¼ 7. The ex-
ternal fluctuating terms ξcX ðtÞ and ξiX ðtÞ were independent
Gaussian white noise processes with statistics hξðtÞit ¼ 0 and
hξðtÞξðt′Þit ¼ δðt− t′Þ, where h·it is an expectation over time.
Every neuron received a source of private fluctuations, ξiX ðtÞ,
independent from all other stochastic processes and a source of
common fluctuation, ξcX ðtÞ. In the local correlations model, the
common fluctuations given to population A were independent
from the common fluctuations given to population B (i.e.,
hξcAðtÞξcBðt′Þit ¼ 0). In the global correlations model, the com-
mon fluctuations given to populations A and B were identical
(i.e., ξcAðtÞ ¼ ξcBðtÞ). In both cases, c ¼ 0:05. For the uncorre-
lated model, c ¼ 0 (Fig. 1).
Values of parameters used in the simulation are reported

below.

Simulations were performed using Euler–Maruyama in-
tegration with a time step of 0.1 ms with custom-made Matlab
(Mex) codes.
To control the response of the network during different periods

of the trial, the conductances gEA; g
E
B were modulated according

to the value of the stimuli s. For the loading phase (s = s1), the
conductances were (Eq. S4)

g EX ¼ 2:22þ 0:035 s1 nS [S4]

and (Eq. S5)

g EY ¼ 2:24− 0:035 s1 nS: [S5]

For the maintenance phase (Eq. S6),

g EX ¼ 2 nS [S6]

and (Eq. S7)

g EY ¼ 2 nS: [S7]

For the decision phase (s ¼ s2) (Eq. S8),

g XE ¼ 2:16− :035 s2 nS [S8]

and (Eq. S9)

gYE ¼ 2:14þ :035 s2 nS: [S9]

Population Spike Train Statistics. Let yiX ðtÞ ¼
P

kδðt− t kiX Þ be the
spike train of neuron i in population X, with tkiX ; k ¼ 1;  2;  3 . . .
as the sequence of spikes produced by the neuron. Population
firing rates were computed over a time windows of duration
ðt−T; tÞ (Eq. S10):

riX ðtÞ ¼ 1
NT

Z t

t−T

XN
i¼1

yXi ðt′Þdt′: [S10]

Variance and covariance of the population firing rates were
computed as (Eq. S11)

VarX ¼
D
rX ðtÞ2

E
m
− hrX ðtÞi2m [S11]

and (Eq. S12)

CovAB ¼ hrAðtÞrBðtÞim − hrAðtÞimhrBðtÞim: [S12]

Here, h·im denotes an expectation across different trials indexed
by m; 10,000 trials were used to compute statistics for Figs. 1
and 2, whereas 5,000 trials were used for Fig. 4F. Throughout
the paper, the population measures used a window length of
T ¼ 10 ms.
The pairwise statistics (Fig. 2E) were computed by first com-

puting the spike count niX (Eq. S13):

niX ðtÞ ¼ 1
T

Z t

t−T
yXi ðt′Þdt′: [S13]

The spike count correlation between neuron i of population X
and j or population Y and CorrðiX jY Þ is computed as (Eq. S14)

VarðiXÞ ¼
�
n2iX

�
m;t − hniX i2m;t; [S14]

and (Eq. S15)

CovðiX jY Þ ¼
�
niXnjY

�
m;t − hniX im;t

�
njY

�
m;t; [S15]

and (Eq. S16)

Parameter Value

C 0.2 nF
Vth −55 mV
Vre −61 mV
VE −5 mV
VI −75 mV
τsyn 80 ms
w 0.00116
σ 0:12mVffiffiffiffiffi
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p

Polk et al. www.pnas.org/cgi/content/short/1121274109 1 of 6

www.pnas.org/cgi/content/short/1121274109


CorrðiX jY Þ ¼
CovðiX jY Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðiXÞVarðjY Þ

p : [S16]

Here, h·im;t denotes an expectation across trials (m) and time (t).
For the pairwise statistics, T ¼ 100 ms.

Random Walk Firing Rate Model.Our phenomenological model for
the firing rate activity of a pair of mutually coupled neural
populations (Fig. S2A) is (Eq. S17)

τ_rA ¼ − rA þ f ðgαrB þ μÞ þ σ
� ffiffiffi

c
p

ξcðtÞ þ
ffiffiffiffiffiffiffiffiffiffi
1− c

p
ξAðtÞ

�
[S17]

and (Eq. S18)

τ_rB ¼ − rA þ f ðgαrB þ μÞ þ σ
� ffiffiffi

c
p

ξcðtÞ þ
ffiffiffiffiffiffiffiffiffiffi
1− c

p
ξBðtÞ

�
; [S18]

where rAðtÞ and rBðtÞ are the firing rates for populations A and B,
respectively. The static input μ is the bias (symmetric across
populations) that drives each population during the persistent
state period. The constant gα < 0 is the inhibitory coupling be-
tween populations, and τ is the effective timescale of population
activity. Finally, ξAðtÞ and ξBðtÞ are independent Gaussian white
noise processes, whereas ξcðtÞ is another Gaussian white noise
process that is shared between the two populations [in all cases,
hξðtÞit ¼ 0 and hξðtÞξðt′Þit ¼ δðt− t′Þ].
The neural transfer f ðxÞ (Fig. S2B) is monotonically rising in

x and has a nonlinear shape previously proposed (2), because
it accurately mimics the dependence of the mean firing rate re-
sponse of a spiking neuron on a static input x (Eq. S19):

f ðxÞ ¼ x

τ̂rxþ τð1− e−β̂xÞ; [S19]

(Eq. S20)

τ̂r ¼ τr
α
; [S20]

(Eq. S21)

β̂ ¼ αβ; [S21]

and (Eq. S22)

μ ¼ μmax

ð1− μmaxτ̂rÞ
: [S22]

The saturation of f at high x is defined by the absolute refractory
period τ̂r, whereas τ and β̂ control the shape of f for moderate x.
The nonlinearity of f is parameterized by α. The deterministic
nullcline structure rB ¼ nAðrAÞ and rB ¼ nBðrAÞ of the firing rate
model in Eqs. S17 and S18 is given by solutions to rA ¼ f ðgαrB þ μÞ
and rB ¼ f ðgαrA þ μÞ (here, nA and nB are the nullclines of the rA
and rB dynamics, respectively). For every α, there is a value of gα that
produces the optimal line attractor for our nonlinear model (Eqs.
S17 and S18), which is defined by minimizing the integrated square
difference

R rA;max

0 ðnBðrAÞ− nAðrAÞÞ2drA, where rA;max ¼ f ðμmaxÞ. For
α ¼ 1, we find g1 ¼ − 2:190813 (Fig. S2D, dot), producing a rea-
sonable line attractor where nullclines nA and nB overlap significantly
over a large range of ðrA; rBÞ (Fig. S2C). The stochastic model pro-
duces random drift along the line attractor similar to the firing rate
models (three realizations are shown in Fig. S2C).
As α → ∞, the transfer function approaches f ðxÞ ¼ x, lineariz-

ing the rate model. As α grows, the optimal coupling constant gα
monotonically grows, saturating at g∞ ¼ − 1 (Fig. S2D). This
saturation is such that mutual and self-coupling are equal, pro-
ducing a degeneracy in the firing rate model. The linear firing rate
model has a perfect line attractor; nevertheless, its activity mimics
the activity of the nonlinear model (Fig. S2 C and E). The evo-

lution of the variance and covariance of rate activity is quantita-
tively matched between the linear and nonlinear models (Fig.
S2F), further justifying the reduction.

Random Walk Linear Firing Rate Model: Analytic Solution. Our firing
rate model (α → ∞ and g∞ ¼ − 1 in Eqs. S17 and S18) is a two-
variable Ornstein–Uhlenbeck process (3) obeying the stochastic
differential system (Eq. S23):

τ_r ¼ FðrÞ þ ΓξðtÞ [S23]

with (Eq. S24)

r ¼
	
rA
rB



; [S24]

(Eq. S25)

FðrÞ ¼
	
− rA − rB þ I
− rB − rA þ I



; [S25]

(Eq. S26)

Γ ¼
	 ffiffiffiffiffiffiffiffiffiffi

1− c
p

0
ffiffiffi
c

p
0

ffiffiffiffiffiffiffiffiffiffi
1− c

p ffiffiffi
c

p


; [S26]

and (Eq. S27)

ξðtÞ ¼ σ

0
@ ξAðtÞ

ξBðtÞ
ξcðtÞ

1
A: [S27]

We first solve for the eigenvalues λ and eigenvectors u of the
deterministic (σ ¼ 0) system (Eq. S28):

λð1Þ ¼ 0; [S28]

(Eq. S29)

uð1Þ ¼ 1ffiffiffi
2

p
	

1
− 1



; [S29]

(Eq. S30)

λð2Þ ¼ − 2
τ
; [S30]

and (Eq. S31)

uð2Þ ¼ 1ffiffiffi
2

p
	
1
1



: [S31]

We remark that the symmetric neighbor and self-coupling with
g∞ ¼ − 1 produces a zero eigenvalue λð1Þ, with eigenvector
uð1Þ being the line attractor for the persistent state (Fig. 3B,
green line).
The probability density PðrA; rB; tjr0A; r0B; 0Þ obeys the associated

Fokker–Planck (Eq. S32) for Eq. S23:

∂P
∂t

¼
�
∂
∂rA

�rA
τ
þ rB

τ

�
þ ∂
∂rB

�rA
τ
þ rB

τ

��
P

þ σ2

2τ2

�
∂2

∂r2A
þ 2c∂2

∂rA∂rB
þ ∂2

∂r2B

�
P

[S32]

with initial condition (Eq. S33)

PðrA; rB; 0Þ ¼ δ
�
rA − r0A

�
δ
�
rB − r0B

�
: [S33]

We note that the diffusion terms in the Fokker–Planck equation
satisfy the diffusion matrix D (Eq. S34):
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D ¼ σ2

2τ
ΓΓ′ ¼ σ2

2τ

	
1 c
c 1



: [S34]

A Gaussian form for PðrA; rB; t j r0A; r0B; 0Þ satisfies Eq. S32
(Eq. S35):

Pðr; tÞ ¼ 1
2π

ffiffiffiffiffiffiffiffiffiffiffijΣðtÞjp exp
	
−
1
2
ðr−μÞ′ΣðtÞ−1ðr−μÞ



: [S35]

To calculate the covariance matrix ΣðtÞ, we first derive the
Green’s function G using the eigenvalues and eigenvectors from
Eqs. S28–S31. This derivation allows a calculation for the evo-
lution of the density given an initial condition. The entries of G
are given by (Eq. S36)

Gij ¼
X
α¼1;2

�
eλ

ðαÞ tuðαÞi uðαÞj

�
⇒ G ¼

0
BB@

1
2
þ e

− 2t
τ

2
−
1
2
þ e

− 2t
τ

2

−
1
2
þ e

− 2t
τ

2
1
2
þ e

− 2t
τ

2

1
CCA:

[S36]

Using G, we find the time-dependent covariance matrix ΣðtÞ
entries (Eq. S37):

ΣijðtÞ ¼
X
s

Z t

0

Gik Gjs d τ̂ 2Dks; [S37]

and (Eq. S38)

Σ11ðtÞ ¼ Σ22ðtÞ

¼
Z t

0

G11G11 d τ̂ 2D11 þ 2
Z t

0

G11G12 d τ̂ 2D12

þ
Z t

0

G12G12 d τ̂ 2D22

¼ σ2tð1− cÞ
2τ2

þ
σ2ð1þ cÞ

�
τ− τe− 4t

τ

�
8τ2

; [S38]

and (Eq. S39)

Σ12ðtÞ ¼ Σ21ðtÞ

¼ 2
Z t

0

G11G21 d τ̂ 2D11 þ
Z t

0

G11G22 d τ̂ 2D12

þ
Z t

0

G12G21 d τ̂ 2D21

¼ σ2tðc− 1Þ
2τ2

þ
σ2ðcþ 1Þ

�
τ− τe− 4t

τ

�
8τ2

: [S39]

We see that, for large t, the first term dominates, and the variance
and covariance behave as (Eq. S40)

VarðrX Þ ¼ σ2tð1− cÞ
2τ2

[S40]

and (Eq. S41)

CovðrA; rBÞ ¼ σ2tðc− 1Þ
2τ2

: [S41]

To quantitatively compare the reduced model to the spiking
simulations, we fit the two reduced model parameters ðσ; cÞ using
Eqs. S40 and S41. For the spiking model with local fluctuations,
we set c ¼ 0, and σ was determined by a linear fit (in time) of
VarðrX ÞðtÞ from Eq. S40 to the variance results obtained from
spiking simulations (Fig. 3D). The time constant τ was taken to
be 80 ms, corresponding to the synaptic time constant used in
the simulations. Then, for the spiking model with global cor-
relations, c was determined by fitting CovðrA; rBÞðtÞ from Eq. S41
to the CovðrA; rBÞðtÞ obtained from spiking simulations (Fig.
3E). We set σ to be equal to the value obtained from the local
simulations.

Probability of Correct Decision. To compute the probability of
a decision, we numerically integrated Pðr; tÞ from Eq. S35 over
the region determined by the decision boundary (quadrature
algorithm). The decision boundary line is given by rB ¼ rA þ Δ,
where the offset Δ is determined such that the line intersects the
unstable saddle point that appears during the decision phase
(full model in Eqs. S17 and S18).
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Fig. S1. Stimulus-specific persistent activity for the spiking networks with correlated fluctuations. (A) Network with uncorrelated external fluctuations; the
time series for three stimulus conditions (Left) shows stable persistent activity that is a reflection of the stimulus conditions. The rate activity in ðrA; rBÞ space
shows a clear separation for all three stimulus conditions. (B) Same as A but for the network with local correlations. (C) Same as A but for the network with
global correlations. The colors in all panels are as described in Fig. 1.
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Fig. S2. Nonlinear and linear phenomenological firing rate models. (A) Schematic of firing rate model with transfer fðxÞ, fluctuation variance σ2, and cor-
relation c. (B) Transfer function fðxÞ with μmax ¼ 60, τ ¼ 1, τr ¼ 0:01, β ¼ 1, and α ¼ 1. (C) Nullclines nA and nB (red curves) when α = 1 and gðαÞ ¼ −2:190813
chosen to minimize the integral of the square difference between nA and nB. Three realizations are shown (colors) with distinct initial conditions. (D) The
population coupling gðαÞ that yields the optimal line attractor. As α → ∞, the coupling g tends to −1. (E) Linear nullclines nA and nB for α → ∞ and g ¼ − 1.
Three realizations are shown (colors) with distinct initial conditions. (F) Comparison between trial variance (Upper) and covariance (Lower) computed from the
nonlinear (α ¼ 1) and linear models (α → 1).

Movie S1. Video showing the evolution of the probability density of population rates PðrA; rB; tÞ for 0< t < 10 s estimated from repeated trials of the spiking
network model. The local (Left) and global (Right) correlation schemes are shown. The ðrA; rBÞ grid was sampled at 1 Hz, and PðrA; rB; tÞ was smoothed for
presentation.

Movie S1
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Movie S2. Video showing the evolution of the probability density of population rates PðrA; rB; tÞ for 0< t < 10 s computed from the linear, random walk firing
rate model. The local (Left) and global (Right) correlation schemes are shown.

Movie S2
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