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ABSTRACT
We have constructed a perceptron type neural network
for E.coli promoter prediction and improved its ability
to generalize with a new technique for selecting the
sequence features shown during training. We have also
reconstructed five previous prediction methods and
compared the effectiveness of those methods and our
neural network. Surprisingly, the simple statistical
method of Mulligan et al. performed the best amongst
the previous methods. Our neural network was
comparable to Mulligan's method when false positives
were kept low and better than Mulligan's method when
false negatives were kept low. We also showed the
correlation between the prediction rates of neural
networks achieved by previous researchers and the
information content of their data sets.

INTRODUCTION

With the expanding sequence data available and the abundance
of possible techniques for sequence analysis, it is important to
evaluate and compare the effectiveness of diverse methods for
predicting functional sites in nucleic acid sequences. The oldest
and simplest technique is to construct a consensus sequence from
known sites and compare it against candidate sites. This is
effective for well defined sites such as restriction enzyme
recognition sites but does not allow for hierarchical base
preferences. For less well defined sites, base frequency matrices
containing the frequency of each base at each position in a

compilation of known sites are commonly used. This preserves
much more information than a consensus sequence alone and has
been used frequently in the analysis of promoters (1-3).
Numerous attempts have been made to use pattern recognition
techniques to go beyond a simple frequency table or to interpret
a frequency table in a sophisticated way (4-7). One particular
pattern recognition technique that has been reported to give good
results is the use of neural networks (8-11).
We have trained a neural network to predict promoter sites

and introduce a technique for selecting input to the network, in
which the network itself determines the input units to be used
during training. The networks used have no hidden units but are

shown some higher order information, in the form of the base

content of certain regions of input sequences, thus allowing for
limited higher order learning. Our network is then compared with
five previous methods, as well as previous neural networks, for
prediction accuracy using common data sets.
We demonstrate the importance of using consistent

methodology when evaluating the efficacy of alternative
prediction schemes. It is quite common to quote one percentage
and claim to have improved on previous results when in actuality
one percentage does not indicate much at all. To do a fair job
of evaluation the percentage of both false positives and false
negatives must be calculated at several representative thresholds
and the generality or relative difficulty of the test set used must
be considered. In fact, it is often the case that the test set contains
sequences that are quite similar to training sequences. We found
that the differences in reported prediction accuracies using the
same method could be explained in terms of the information
content of the data sets used for estimation.

METHODS
Database
The promoter sequences used were obtained from Harley and
Reynolds' compilation (12). Sequences less than full length (14
bases before the -35 hexamer and 11 bases after the -10
hexamer) were discarded. This also served to remove all of the
heat shock promoter elements from the database. To avoid
introducing biases by counting variations of the same basic
sequence more that once, sequences that contained nearly identical
sections were grouped together (Table 1). Nearly identical was

defined here as having a stretch of 15 continuous bases with one

or no mismatches. The corresponding stretches were required
to occur within 3 bases of the same position in the sequence.
The resulting 147 groups were equally weighted during both
testing and training regardless of the number of members within
each group. All of the groups consisted of 1,2,3 or 6 sequences
allowing the groups to be given equal weight by including single
sequences in the data set 6 times, pairs of sequences 3 times,
triples twice and sextuples once. Thus 100 groups would
correspond to a data set size of 600 (non-independent) sequences.
Sequences from coding regions in GenBank release 65.0 were
chosen randomly as negative data.
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Training and Test Sets
In order to provide an objective test of methods that were based
on the earlier promoter compilation of Hawley and McClure (13),
the groups were divided into 98 groups that were included in
Hawley's compilation and 49 newer groups. The 98 older groups
(training set B) were divided into a 49 group training set (training
set A) and a 49 group test set (test set A) to be used for
experimenting with network architectures and parameters. The
49 newer groups then provided a test set (test set B) for final
evaluation of predictive algorithms. Hawley and McClure's
alignment was used for the earlier groups, while Harley and
Reynolds' alignment was used for the later ones. Coding region
data was grouped into three sets, none of which shared any
identical sequences with any other. The coding training set
contained 5146 sequences which were trained for 21 continuous
window positions allowing for approximately 110,000 rounds of
training without repeating negative examples. As with the
promoter data, two negative test sets were made, negative test
set A for experimenting with parameters (5807 sequences) and
negative test set B for final evaluation (11614 sequences). The
negative test sets were evaluated at only one window position
per sequence.

Information Content

calculated by

Information Content =

set of aligned sequences was

T

Ealb fb=1A92(fb)
all bp b=A

where bp stands for the base positions of the sequence and fb
is the frequency of each base at the given base position. This
is equivalent to Schneider et al's (14) formula using 0.25 for
all a priori base frequencies.

Neural Networks
We developed several programs in C with a UNIX workstation
to create and analyze neural networks. All of the networks
discussed here were without hidden units (perceptron
architecture).

Initial Input. As shown in Figure 1, two regions of the sequences
were selected to be used as possible input, an upstream region
of 25 bases with the start of the -35 hexamer being in the 15th
position and a downstream region of 27 bases with the start of
the -10 hexamer being in the 11th position. Spacing data from
15-21 bases was input with binary coding to seven input units.
During training of promoter examples the spacing from the
respective compilation's alignment was shown to the network
directly, while at all other stages the spacing that gave the highest
network output was used. The network output should ideally be
one for promoters and zero for non-promoters, therefore training
negative examples with the alignment giving the highest output
is equivalent to training the network with the negative alignment
on which it performed the worst.

Data Representation. Input was shown to the network in the form
of individual bases and also in the form of the combination of
two bases joined by an OR function, giving a total of seven
possible input units for each base position. For example, if the
given base was a purine the input unit for (A or G) was turned

Table 1. Training and Test Data.

Training Dataa
434PR; 434PRM; alaS; ampC; araBAD; araC; argCBH; aroH; bioA; bioB;
bioP98; cat; CloDFrnaI,pBRRNAI; ColEl-PI; ColE1-P2; deo-PI,deo-P2; fdVIlI;
fd x; fol; gap-PI,gal-P2; g-s-tnpA; g-s-tnpR; g1nS; his; hisA; hisJ(St); ilvGEDA;
lacl; lacPl; lacP1 15; lacP2; 117; 1cin; lL57; IPI; IPL,1PR; IPo; 1PR'; IPRE; IPRM;
leultRNA,rrnABPl,rmD-Pl,rrnE-Pl,rrnG-PI; rrnXl; lex; lpp; Mlma; malEFG;
malK; malT; P22ant; P22mnt; P22PR; P22PRM; pBR322bla; pBR322P4;
pBR322primer; pBR322tet; pBRPI; fXA; fXB; fXD; pori-l; pori-r; RlOOma3;
R1OORNAI; RlOORNAII,RIRNAII; recA; rplJ; rpoA; rpoB; rmABP2,rrnG-P2;
rrnDEXP2; RSFprimer; RSFmaI; S10; spc; spot42r; str; supB-E; T7-Al;
T7-A3,T7-A2; T7-C; T7-D; thr; TnlOPin; TnlOPout; TnlOtetA; TnlOtetR;
TnSIR; Tn5neo; tnaA; trp; trpP2; trpR; trpS; tufB; tyrT; uvrB-Pl; uvrB-P2;
uvrB-P3.

Test Datab
argE-PI; argE-P2,argE/LL13; argF; aroF; aroG; carAB-PI; carAB-P2;
CloDFcloacin; colEl-C; crp; cya; dapD; deo-P3; divE; dnaA-lp; dnaA-2p; dnaK-
P1; FplstraM; fumA; glnL; glyA/geneX; gnd; hisS; htpR-P1; htpR-P3; ilvIHP4;
ISlins PL; livJ; malPQ,malPQ/Ppl6,malPQ/Ppl8; manA; metA P1; metA P2;
micF; MuPe; NRlrnaC; NRlrnaC/m; ppc; pyrBI-Pi; pyrE-PI; rpmHlp;
rpmHlp; rpmH2p; rpmH3p; sdh-P2; ssb; sucAB; Tn266abla-Pa; trxA; tyrT/109;
uncI; uvrD.

a) The training data is from Hawley and McClure's compilation using their
alignment but Harley and Reynold's nomenclature was used when possible. b)
The test data is from Harley and Reynold's compilation using their alignment.
The sequences separated by commas were very similar to each other and therefore
grouped together within their data set (see text). New sequences from Harley
and Reynold's compilation that were very similar to sequences within the training
data were not included in the test data.

-35 region -10 region
taactaaataattcTTGACAtttta. taaattatgtTATAATtaaaccaatta

25 bases spacer 27 bases

A O
C O
G 0 base and spacer units
T 1 7x25 + 7x27 + 7 = 371
A+C 0
A+G 0
A+T 1

taactaaataattcTTGACAtttta

A 7

taaattatgtTATAATtaaaccaatta

C 1 base content units (n=12)
G 0 7x14 + 7x16 = 210
T 4

A+C 8
A+G 7
A+T 1 1

total units
371 + 210 = 581

Figure 1. The type and number of input units are shown for a full network with
12 base length content units in addition to individual base units. Note that in the
actual networks the input was normalized (see text).



Nucleic Acids Research, Vol. 20, No. 16 4333

on, thus allowing the information, that a purine base is important,
to be learned by the network in a concise way. The content data
for length n regions of the sequences were also input. This should
facilitate the learning of patterns such as a low G+C content
or the presence of poly-A subsequences. In the fial network only
single position units and length n= 12 content units were used
(Fig. 1).

Trimming the input units. The network input units were 'trimmed'
by removing the input that was used the least (i.e. whose weight
had the smallest absolute value) after a fixed number of rounds
of training, and then retraining the network as shown in Figure 2.
This process was repeated until an appropriate amount of input
units remained. In order to compare weights representing
individual bases to those representing the base content of a
window of length n it was necessary to normalize the inputs.
For normalization we used the following function which gives
a range of (0,1) and an expected value of 0.5 for any length n:

k-I

Input = S (n)pmqn-m+ /2(n)pkqn-k
m=O

Here k is the number of times the given base or pair of bases
occurs in the input window of length n; p is the a priori
probability of occurrence, equal to 1/4 for bases and 1/2 for pairs;
and q is 1-p. As can be seen, the summation term is equal to
the cumulative probability of the given base being found less than
k times in a binomial distribution.

Training. The networks were trained with the back propagation
algorithm (15) with a learning rate of 15 divided by the number
of inputs, corresponding to 0.185 for 81 input units and a
momentum of 0.5. As in Rumelhart et al. (15) the momentum
was implemented as follows:

AWi(n+ 1)= (71)(6)(i) + (a)AWj(n)
where AWi(n+ 1) is the change to the weight of the ilh input on
the n+IP" round of training, q is the learning rate, 6 is the error
signal, i is the value of the ilh input and a is the momentum.

Figure 2. The process of trimming one input unit is shown. The input unit that
corresponds to the smallest (absolute value) weight after training is trimmed, then
all the weights are set to zero and the network is retrained without the trimmed
input unit.

The error signal is the difference between the output of the
network and the target output for the given input. During some
of our preliminary work the target output was set to one for
promoters and zero for non-promoter sequences. It was found,
however, that setting the target values to 0.9 and 0.1 as in (11)
improved generalization ability somewhat and those target values
were used for all final results. A complete description of the back
propagation algorithm has been described elsewhere (11,15-17)
and therefore will not be described here.

Determining Parameters. The optimal learning parameters were
determined using the accuracy of the network on test set A. Here
the network's accuracy was calculated as the percent of negative
examples classified correctly when the network threshhold was
adjusted for 80% correct classification of the test set A promoters.
If for example, 80% of the test set A promoters obtained a score
of 0.6 or more with a particular set of network weights then that
network's accuracy was considered to be the percent of negative
test set A sequences that scored below 0.6. In particular, the
optimal number of rounds oftaining was determined by sampling
the accuracy of the network with test set A while using training
set A to train the network. Thus the optimal number of rounds
of training does not directly reflect the difficulty of the training
examples (e.g. training the network until the total error falls below
a certain level), but is empirically derived using test set A in
order to reduce overlearning. This is necessary because
sometimes (as in the trimmed input curve of Fig. 3) a neural
network's performance against unseen data actually goes down
when the network is trained past a certain optimal number of
rounds of training. The final network was trained with all of the
older data (training set B) with the learning parameters and
number of rounds of training established using only the older
data (training and test set A).

Previous Methods
Mulligan et al. 's Method. Mulligan et al.'s weight matrix was
used directly (2). Their method is essentially equivalent to
summing the entry of the base frequency matrix/sqrt(4) over the
length of the candidate sequence, and then adding the frequency
of the spacing class/sqrt(7) to obtain a score. This score is then
compared to a threshold to make the desired prediction. Here
4 and 7 correspond to the number of possible bases and the
number of possible spacing classes.

Staden's Method. Staden's published matrix was used directly
for comparison (3). His method is similar to Mulligan et al.'s
except that the log of the frequencies is summed without dividing
by the square root. Summing the log of the frequencies is
equivalent to multiplying the frequencies, which can be thought
of as probabilities.

Alexandrov and Mironov's Method. Aexandrov's published
matrix and another matrix obtained from Alexandrov personally
were used (7). Their method is a modified 'general portrait'
method which finds the distinguishing vector giving the largest
separation between two sets of points in a feature space. They
also strove to find the minimum set of variables needed for
successful prediction and their method does, in fact, have fewer
parameters than any other listed here. It should be noted that
they used some of the promoters in Harley and Reynolds'
compilation thus excluding a true test set for evaluation.



4334 Nucleic Acids Research, Vol. 20, No. 16

O'Neill's Methodfrom the Journal ofBiological Chemistry. This
method was reproduced from O'Neill's paper (5). To reproduce
his data base an additional promoter sequence was taken from
Gentz and Bujard (18). This prediction scheme consists of a series
of tests in which a candidate sequence is compared to a template
and passes that test if it has more han a certin number of matches
to the template. Separate sets of tests are provided for bacterial
spacing classes 16,17,18 and the phage 17 base spacing class.
If a candidate sequence passes any of those sets of tests it is
predicted to be a promoter.

O'Neill's Methodfrom the Journal ofMolecular Biology. Also
reproduced from the published paper (6), this method is similar
to the one published in JBC but uses a modified information
content function compared to a series of templates' frequency
tables rather than just the number of mismatches for the criterion
of the tests performed.

RESULTS AND DISCUSSION
Neural Network
Using test set A, it was found that trimming the weights to a
total of 81 input units out of a possible 581 gave the best results
for the 49 group training set. This significantly increased the
ability of the network to generalize (Fig. 3). With the content
units, trimming the input units improved the results with both
test sets. However, when content units were not included,
trimming actually worsened the results with test set B. This
indicates that trimming input units is not always effective and
that there is a difference between test set A and test set B (see
below). Although it was not obvious if or by what amount the
number of input units should be increased for the 98 group
training set, we used 97 input units and one bias giving a total
of 98 variable weights. In keeping with this we used 146 input
units for the combined (training set B plus test set B) 147 groups
of promoters. The final network's weights after 3528 rounds of
training are shown in Table 2. As expected, most of the inputs
units cluster around the conserved hexamers. It can also been
seen that the requirement for high A+T content is much stronger
in the -10 region than in the -35 region.
The final network was one ofmany that we experimented with

using the older promoters. In particular, we found that hidden
units did not improve accuracy. We also tried selecting the input
units whose inputs were statistically the most significantly
different from what would be expected at random instead of
trimming the input units as described in Methods. This is similar
to the approach taken by Abremski et al. (10), except that we
considered individual bases and content units while Abremski
et al. considered individual bases and base pairs. Trimming gave
the best results however, possibly indicating that some non-linear
information was learned. Many window lengths for the content
input were also tried, most of whose accuracy with test set A
could be improved by trimming. A window length of 12 gave
the best results and was therefore used in the final network.

Comparison with Other Methods
Table 3 shows the results of comparing the predictive power of
the different methods. Where possible, hresholds were adjusted
for the minimum number of false positives with the number of
false negatives below 20%. In this test, Mulligan et al.'s and
Staden's methods performed better than the more sophisticated

I
I
a

Full Input
Trimmed Input

Rounds of Training

Figure 3. The prediction accuracies of two networks against test set A versus
the number of rounds of trining with taining set A are shown. The curve marked
full input is with the full 581 input units, while the curve marked trimmed input
is with 81 input units.

100
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Fgure 4. The accuracies of our neural net, Mulligan et al.'s method, and Staden's
method at different levels of false negatives are shown. Training set B was used
for training and test set B for evaluation of prediction accuracy.

models. Staden's method appes slightly better here but Mulligan
et al.'s method performed better than Staden's when thresholds
were set to lower levels of false negatives, despite the fact that
Hawley and Reynolds (12) used Staden's log frequency criterion
for their alignment (the alignment of Hawley and Reynolds was
used for the test set). Attempts were made to further enhance
these two methods by adjusting the training set, using small
sample approximation in calculating base frequencies and
adjusting the position and number of base frequencies used. This
did not improve the prediction rate even when test set B was
used to adjust those parameters (results not shown). The results
of our network were found to be quite similar to Mulligan et
al.'s method for all levels of false negatives (Fig. 4). Here our
network fared slightly better than a neural net did in the analysis
of ATP-binding motif prediction, where Hirst and Stenberg (19)
found a statistical method to perform marginally better than a
perceptron type network.
Of the more sophisticated methods, O'Neill's rule based

methods appeared to be too specific to the training data. His



Nucleic Acids Research, Vol. 20, No. 16 4335

Table 2. Network Weights.

Bias Weight -048
a c g t a+c a+g a+t a c g t a+c a+g a+t

t - -

a

a
c - _

t -240 -
a

a
a

t - -

a -

a - -
t - -
t - _
c -

T -356 -
T - -

G -252 -
A 538 -
C -
A 340 -
t - -

t 220 -
t - -

t - -

a -

-332

-380

394
385
-219

445
*341

-230 -
224 -

-328 -
- -249

-150 -

728

-209

Spacing Class
Spacing Weight

- - -239

-10n

a

a

a
t
t
a

t
g

t
T
A
T
A
A
T
t
a
a
a
c
c
a
a
t
t
g

-454

-452

1071

521

-587

-304

-242

-323

-371

211
384
-322
-348

-399

-234

743
483

-296
-283
-311

Twelve Base Length Windows
278 -
292 -

- -358

162

162
-551
-472
-504
555
448

_ 185
199 -285

(21) (20) (19)
-548 -440 -450

- 339

269 -268
-318 -

- -354

666 -416
-514 791
277 -161

- 303
-397 227
1048 -887

-251 -

- -229

- -239

191 -

-223 -

-404
595
335 229

-524
218 -

-308
273 361

(18) (17)
515 891
-783

-503

-750
747

-146
522
338

-797
277

(16) (15
419 -43

-263

-237
-476

581

485

- -429

- -328
- -508

-300

-371

-189

-127

-123
-186 - -

- - -479

5)
4

Twelve Base Length Windows
-221
-149

-090
-172
-196

-158
-203
-217
-132
-163
-255

445
395

-104 -

313 -

- -108

- -259
- -378
- -256
- -228
_ -163
382 -

- -295

Network weights are shown multiplied by 1000.

method does not allow for adjustment with a simple parameter,
but when the threshold of our network was adjusted to the high
false negative level of 71.4% (28.6% of promoters correctly

predicted) it produced only 0.02% false positives compared to
O'Neill's 0.04% and 0.05%. It should be noted, however, that
those rules are only for 16,17 and 18 base spacing class promoters
and that using our general promoter database for evaluation
probably lowered their prediction accuracy. Alexandrov's weight
matrices also did not perform well on our test set.

Comparison with Other Neural Nets

O'Neill (9) and Demeler and Zhou (11) have previously reported
excellent results with neural networks. When our network was

trained and tested with their data sets however, it was found to
give comparable results (Table 4). The difference in prediction
rates with these different data sets seems to be explainable to
a large extent by the differences in information content of the
combined training and test sets (Fig. 5). It should be noted that

-287

284
179

155
234

269

394
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Table 3. Comparison of the Prediction Accuracy of Different Methods.

Training Test Test
Method Threshold Promoter Promoter Non-Promoter

%Correct %Correct %False Positives

Mulligan 42.0 85.2 80.6 0.85
Staden -76.8a 84.7 80.3 0.83

_59.6b 89.8 81.6 0.84
O'Neill JBC 6 tests 57.7c 24.5 0.04
O'Neill JMB 6 tests 65.3c 27.6 0.05
Alexandrovd 12.9 85.2 82.7 3.40
Alexandrove 37.7 89.3 81.6 2.56
Our Neural Net 0.604 100 80.6 0.86

a) sum of three regions plus gap penalty, b) + 1 region excluded, c) includes some sequences outside the training set used, d) published
matrix, e) matrix obtained through personal communication.

Table 4. Prediction Results with Different Data Sets.a

Data Set Our Neural Net Mulligan Reported Results
+ -+ _+_

O'Neill 81 0.03 81 0.06 - 80 <0.1
100 0.23 100 0.77

Demeler 83 0.93 83 0.28
100 1.58 100 5.52 100 1.6

Harley 80.6 0.86 80.6 0.85
100 15.85 100 16.63

a) The + column contains the percent of promoters correctly predicted while the - column contains the percent of non-promoters
mistakenly predicted to be promoters.

both of their data sets are essentially subsets of our data set built
from all of Harley and Reynolds' (12) compilation and we

therefore consider them to be less general. In particular Demeler
and Zhou's data set contains only promoters that were identified
during or before 1983 and O'Neill's data set contains only
promoters of the 17 base spacing class.

Extended Data Sets
As can be seen in Table 3, while showing a comparable
performance to Mulligan et al.'s method on the testing set, our
neural network did much better than Mulligan et al.'s method
on the taining set. When the threshhold was set for 80% correct
prediction of test promoters our neural network correctly
predicted all of the training promoters. This result suggested that
a neural network might do better if either the training data was
expanded or if the restrictions limiting homology between the
data sets were relaxed. We tried both, separately and together.

First we tried enlarging the data set by training the network
on all of training set B plus 25 of the 49 test set B groups and
testing with the 24 remaining test set B groups. As before the
number of input units was trimmed to equal 1 less than the
number of homology groups in the training data. The number
of rounds of training was kept as close as possible to that
determined before with test set A, with the restriction that the
number of rounds of training was always set to be a multiple
of the size of the training set (see Methods section Database).
The 25 group and 24 group halves were then interchanged and
the results were averaged. The results were again comparable
to Mulligan et al.'s method when the respective training data
was used to recalculate Mulligan et al.'s weights (results not
shown). Since this did not increase the neural network's relative
performance we tried loosening the restriction on homology (see
Methods section Database) to merely forbidding identical

sequences from being in both training and testing sets. With this
looser restriction 100 sequences, corresponding to 83 homology
groups, were found in Harley and Reynolds' compilation that
were not present in Hawley and McClure's compilation. Using
these 83 groups as an extended test set B, our network, with its
original training set B, and Mulligan et al.'s method, with its
original weights, again showed comparable performance (results
not shown). When the new, less restricted extended test set B
was used to enlarge the training data however, the results were
different. Here we divided the 100 sequences making up the
extended test set B randomly into two halves of 50 sequences
each. Upon grouping, these two halves gave 46 and 49 homology
groups respectively. The training data was enlarged by including
one half of the extended test set B with the training data and using
the other half for testing. Added to the 98 groups from Hawley
and McClure's compilation (training set B) this gave training sets
of 144 and 147 groups respectively. Mulligan's weights were
also recalculated using the base frequencies of the new training
sets. Fig. 6(a) shows the results from predicting half of the
extended test set B with our network trained with training set
B plus the other half of the extended test set B. Fig. 6(b) shows
the results obtained when the roles of the 'halves' above were
interchanged, i.e. when the extended test set B groups used for
evaluation in Fig 6(a) were added to training set B and the
extended test set B groups added to the training set in Fig. 6(a)
were used for evaluation. As can be seen in Fig. 6, the resultant
neural networks clearly performed better than Mulligan et al.'s
method when false negatives were kept to within 5% or less.

New Promoters
Interestingly, while a large database is clearly favorable to
prediction schemes, especially neural networks, the question of
whether simply identifying more promoters will easily allow for
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Information Content

Figure 5. The correlation between the information content of three data sets (our
test and training set B, O'Neill's data set and Demeler's data set) and the prediction
accuracies obtained with the respective data sets is shown. The information content
(in bits) is the sum of 52 base positions. The prediction accuracies are those atained
by our network with the respective data sets when the network's threshold was
adjusted to as close as possible to, without exceeding, a 5% level of false negatives.

better prediction of unknown promoters or not is a difficult one.
This is because there is no guarantee that the characteristics of
new promoters will be exactly the same as those of known
promoters. As a comparison of the percent of false positives in
Fig. 3 and Table 3 indicates, test set B, which consists mainly
of promoters identified between 1983 and 1987, was consistently
harder to predict than test set A, which consists of promoters
identified in or before 1983. The reason for this is not obvious
from the average number of matches to the hexamers or the
average A+T content of the earlier and later promoters (8.2
matches vs. 8.0 matches and 62% vs. 57% A+T content). The
information content between the two groups does differ somewhat
however, with the older promoters having 11.20 bits of
information in their most conserved 30 positions and the newer
promoters having only 9.94 bits of information in their 30 most
conserved positions. This is despite the smaller size of the newer
group, which would tend to give it a higher amount of information
due to random noise. It may be that later experimental techniques
allowed for the identification of weaker promoters, but we have
not compared published strengths of promoters to confirm this.

It should also be mentioned that recent findings involving
synthetic promoters have challenged the basic framework upon
which the prediction methods compared here are based (20-24).
In particular the positioning of the hexamers relative to the
transcription start site and the spacing between the two hexamers
appears not to be as constrained as previously thought. Although
it has not been shown that such 'unusual' promoter structures
are common in natural promoters their existence should be
considered in future prediction schemes.

CONCLUDING REMARKS

Roughly speaking, if the number of known sequences is less than
the number of features needed to describe their common
functional motif, a neural network seems unlikely to produce good
results. In this case, a weight matrix produced by the extremely
simple operation of summing the base frequencies after alignment
may, as it did here, produce quite reasonable results. When, as
is the case of E. coli promoters, there is a sizable but limited
database the form and number of inputs shown to a neural net
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Figure 6. The accuracies of our neural net and Mulligan et al.'s method at different
levels of false negatives are shown. The results with (a) the 144 group extended
training set and (b) the 147 group extended training set.

has been shown to be important. Selecting the correct input has,
in fact, been a focal point not only of this work, but also of
previous researchers (8,10).

In principle, the use of hidden units in neural nets makes it
possible to learn high order correlations between sequences and
function. In this work however, we were not able to obtain better
results by using hidden units. This finding is similar to the
reported results of using neural networks for predicting protein
secondary structure (16,17,25,26). Moreover, Demeler and Zhou
(11) reported that the number of hidden layer units does not have
a significant effect on prediction accuracy. O'Neill (9) reported
good results predicting promoters using hidden units but did not
compare his results with a perceptron architecture network.

In this discussion we should mention some potential problems
with our choice of using coding regions at random for our
negative data. One potential problem is that, as promoters are
sometimes located in the coding regions of other genes, it is
possible that our negative data contained some (albeit a very small
percentage) actual promoters. Neural networks are known for
being robust against low levels of noise and we felt that a possible
very low level of contamination of the negative data with
promoter sequences could be tolerated. Perhaps a more serious
possibility was that our network might memorize the
characteristics of coding regions and therefore have a poor ability
to reconize non-promoter sequences from non-coding regions.
It seemed unlikely to us that the network could learn the
characteristics of coding regions as the coding regions were
presented randomly with respect to frame and strand, and the
perceptron archeticture would not allow for learning three base
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periodicities. Moreover, the base composition of the coding
regions chosen did not show any strong biases with a 27%
thymine composition being the largest deviation. Interestingly
however, when the methods listed in Table 3. were tested with
50% A+T content random data for negative test data, all of the
methods prediction accuracies dropped slightly. Mulligan's
method for example fell from 0.85% false positives to 1.42%
false positives. Our neural network's accuracy fell slightly more
from 0.86% false positives to 1.89% false positives. These
differences are small however, and shouldn't change the validity
or usefulness of the results reported in this paper. In fact, when
comparing our network with the results of O'Neill's and Demeler
et al.'s networks we trained our network with 50% and 60%
A+T content random data respectively. The results in (Table
4) indicate that our network's success did not rely upon using
coding regions for negative data and also show that it was not
necessary to use promoter down mutations as O'Neill did to
achieve his reported accuracy.

In conclusion, we have improved the generalization ability of
a neural network for predicting promoters by trimming input units
with a new technique that is applicable to any neural network
used in sequence analysis. The resulting trimmed network was
found to be superior to the best alternative method on training
data and roughly equal to or better than it on testing data. In
particular, the neural network achieved good results when the
data set was large and the level of false negatives was kept low.
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