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I. DERIVATION OF THE CORRELATION FUNCTION OF THE mRNA NUM-

BER

A. Definitions

The discrete time variable is denoted by t, where the unit time step is τ0. The discrete

Fourier transform of a function g is defined by: ĝ(ω) =
∑+∞

t=−∞ e
−iωtg(t) with ω ∈ [−π, π]. In

the limit of τ0 → 0 we will make use of the continuous time notation ĝ(ω) =
∫ +∞
−∞ e−iωtg(t)dt.

The mean of a given stationary process ξ = (ξ(t))t is denoted by µξ. The autocorrelation

function (or auto-covariance) of ξ is defined in the stationary state by: Rξ(t) = 〈ξ(0)ξ(t)〉 −

µ2
ξ .

For the sake of simplicity, we first consider a single TF in a nucleus (or cell) of volume

V . The case of n TF s will be treated later. Let us then denote by f(T ) = f(r0, T |r0, 0) the

distribution of the first-return time T to the target site r0, with the convention f(0) = 0. In

turn, p(t) = p(r0, t|r0, 0) denotes the propagator, i.e. the probability that the TF , starting

from the target site r0 at t = 0, is located again at the target at time t. Both quantities are

related by the renewal equation:

p(t) =
t∑

t′=0

f(t′) p(t− t′) + δt,0, (1)

which reads after Fourier transform:

p̂(ω) =
1

1− f̂(ω)
. (2)

The mRNA input process is governed by two stochastic processes: (i) first, the successive

visits of the TF to the gene locus, which can be characterized by the waiting time distribution

f(T ) between each visit to the target; (ii) second, the production of mRNA, which follows

a Poisson law: at each visit of the TF at the gene locus (and only in that case), the gene

produces m new mRNA molecules with probability e−〈m〉〈m〉m/m, where 〈m〉 = kτ , with k

the synthesis rate and τ the binding time of the TF to its target. For the sake of simplicity,

τ is taken here as the elementary time step τ0. We denote by E = (E(t))t the resulting

production process of mRNA molecules, namely the number of mRNA molecules produced

at time step t. In the framework of queuing theory, that we use below, this is called the

input or emission process.
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Last, we denote by θ the random life time of mRNA molecules and h(θ) its distribution,

which characterizes the degradation process of the mRNA molecules. In practice we will

consider a geometric decay h(θ) = λd (1 − λd)
θ, and assume λd � 1, so that the usual

exponential form h(θ) ' λd e
−λdθ holds. In Fourier space this yields

ĥ(ω) =
λd

1− (1− λd)eiω
. (3)

B. Input process

From Kac’s formula, the stationary probability for the TF to be located at the gene locus

is given by p∞ = 1/〈T 〉, where 〈T 〉 denotes the mean first return time. Hence, the mean of

the input process is readily obtained as

µE = 〈m〉/〈T 〉. (4)

When t > 0, the correlation function of the emission process reads:

RE(t) =
〈m〉2

〈T 〉
(p(t)− p∞) . (5)

When t = 0, RE(0) is the variance of the emission process, which reads:

σ2
E =

〈m〉
〈T 〉

(
1 + 〈m〉 − 〈m〉

〈T 〉

)
. (6)

Finally, one gets for t ≥ 0:

RE(t) =
〈m〉2

〈T 〉
(p(t)− 1/〈T 〉) +

〈m〉
〈T 〉

δt,0, (7)

and the range t < 0 is obtained by parity. This yields in Fourier space

R̂E(ω) =
〈m〉2

〈T 〉

(
2Re [p̂(ω)]− 1− 2π

〈T 〉
δ(ω)

)
+ 〈m〉/〈T 〉, (8)

where Re denotes the real part.

C. Correlation function of the mRNA copy number

The results of this Section are derived from the expressions given by I. Eliazar in [1]

in the framework of queuing theory. Queuing theory relates the number of customers in a
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queue, called queue process (analogous to the number nM of mRNA molecules in our case)

as a function of the input process, i–e the arrival statistics of customers (in our case the

synthesis of mRNA molecules E) and the output process or service time statistics (in our

case the life time θ of an mRNA molecule). First, it is needed to derive the mean number

of mRNA molecules, which is readily obtained as:

µM =
µE
λd
. (9)

On general grounds, the correlation function of the queue process (mRNA number in our

case) is then given in terms of the input and output processes by [1] :

R̂M(ω) =
1− Re[ĥ(ω)]

1− cos(ω)
µE +

∣∣∣∣∣ 1− ĥ(ω)

1− exp(iω)

∣∣∣∣∣
2 (
R̂E(ω)− µE

)
. (10)

This equation, together with Eqs.(4,8) explicitly determines the Fourier transformed corre-

lation function of the mRNA copy number, for any distribution h(θ) of the mRNA life time.

In what follows we will consider the continuous time limit where τ0 → 0, and assume an

exponential decay of the mRNA life time as given in Eq.(3). In this regime the correlation

function takes the following simple form

R̂M(ω) =
〈m〉
〈T 〉

(
1 +
〈m〉

2

)
2

λ2
d + ω2

+
〈m〉2

〈T 〉

(
Re

(
f̂(ω)

1− f̂(ω)

)
− π

〈T 〉
δ(ω)

)
2

λ2
d + ω2

(11)

which is exactly Eq.(1) of the main text.

II. 2-EXPONENTIAL WAITING TIME DISTRIBUTION

In this section we consider the example where f is a sum of 2 exponentials of the form :

f(T ) = (1− q)γ1 e
−γ1T + qγ2 e

−γ2T , (12)

with γ1 > γ2 so that the mean return time reads 〈T 〉 = (1 − q)/γ1 + q/γ2. This functional

form will be useful later on. The Fourier transformed distribution reads

f̂(ω) =
1− q

1 + iω/γ1

+
q

1 + iω/γ2

. (13)

It is useful to introduce an extra time scale 1/γ̃ defined by:

γ̃ = qγ1 + (1− q)γ2. (14)
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Then one has:

f̂(ω)

1− f̂(ω)
=

(1 + iω
γ1

)(1 + iω
γ2

)

(1 + iω
γ1

)(1 + iω
γ2

)− (1− q)(1 + iω
γ2

)− q(1 + iω
γ1

)
− 1

=
1− ω2

γ1γ2
+ iω

(
1
γ1

+ 1
γ2

)
iω〈T 〉 − ω2

γ1γ2

− 1

= − i

ω〈T 〉
1

1 + ω2/γ̃2

[
1 +

ω2

γ̃

(
1

γ1

+
1

γ2

− 〈T 〉
)

+ iω

(
1

γ1

+
1

γ2

− 1

γ̃
+
ω2〈T 〉
γ̃2

)]
− 1. (15)

As before, this function is singular for ω → 0 and needs regularization. The only term

that is not well defined for ω → 0 is the very first one within the square bracket. This term

can be regularized as follows:

Re

[
lim
ε→0+

−i
〈T 〉

1

ω − iε
1

1 + (ω−iε)2
γ̃2

]
= π

δ(ω)

〈T 〉
. (16)

Taking the real part of Eq. (15) then leads to the following expression for the Fourier

transformed correlation function:

R̂M(ω) =
2 〈m〉/〈T 〉
λ2
d + ω2

[
1 +
〈m〉

2
− 〈m〉γ̃

2

ω2 + γ̃2

(
1− 1

γ1〈T 〉

)(
1− 1

γ2〈T 〉

)]
. (17)

After Fourier inversion, one finally obtains :

RM(t) =
〈m〉
λd〈T 〉

(
1 +
〈m〉

2

)
e−λdt +

〈m〉2

λd〈T 〉
q(1− q)(γ1 − γ2)2

γ̃(λ2
d − γ̃2)

(
λde

−γ̃t − γ̃e−λdt
)
. (18)

III. EFFECT OF THE NUMBER n OF TFs

Now assume that n copies of TF s can activate the gene, and that n is not too large so

that the probability that more than one TF occupies the gene locus is negligible. We denote

by fn(T ) the waiting time distribution between successive activation events, and pn(t) the

corresponding propagator, i-e the probability that the gene is activated at time t, knowing

that it was activated at t = 0.

The derivation of the autocorrelation function closely follows the case of a single TF

presented above with the substitutions p→ pn, p∞n = np∞1 , and 〈T 〉n = 〈T 〉/n. One finds:

R̂
(n)
M (ω) =

n〈m〉
〈T 〉

(
1 +
〈m〉

2

)
2

λ2
d + ω2

+
n〈m〉2

〈T 〉

(
Re

(
f̂n(ω)

1− f̂n(ω)

)
− nπ

〈T 〉
δ(ω)

)
2

λ2
d + ω2

.

(19)
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To determine fn, we introduce the survival probability defined by S(t) =
∫∞
t
f(t) dt =

1−
∫ t

0
f(t) dt. Then one has :

Sn = S
n−1

S1, (20)

where S(t) is the survival probability averaged over all possible starting positions, derived

in [2]. The waiting time distribution for n TF s then reads fn(t) = −dSn(t)
dt

.

We consider below the case where f(T ) is characterized by well separated regimes for

short and long time scales. This is the case of both non compact and compact transport

detailed in the next section. In that case R̂
(n)
M (t) can be straightforwardly deduced from

R̂
(1)
M (ω). This can be shown explicitly on the simple example where we take:

f(T ) = (1− q)γ1 e
−γ1T + qγ2 e

−γ2T , (21)

with γ1 � γ2. As shown in [2], the first-passage distribution to a target averaged over

the initial position f(T ) can be deduced from f(T ), and is characterized only by long time

scales. We therefore assume

f(t) = γ2e
−γ2t. (22)

Eq. (20) then yields :

fn(t) = (1− q) (γ1 + (n− 1)γ2) e−(γ1+(n−1)γ2)t + nqγ2e
−nγ2t. (23)

One then makes use of Eq. (18) and finds :

R
(n)
M (t) =

〈m〉
λd〈T 〉n

(
1 +
〈m〉

2

)
e−λdt +

〈m〉2

λd〈T 〉n
q(1− q)(γ2 − γ1)2

γ̃n (λ2
d − γ̃2

n)

(
λde

−eγnt − γ̃ne−λdt) , (24)

with

〈T 〉n =
1− q

γ1 + (n− 1)γ2

+
q

nγ2

, (25)

γ̃n = qγ1 + (n− q)γ2. (26)

We then consider the biologically relevant regime (see figures 2 and 3 of the main text) :

(1− q)/γ1 � q/γ2, (27)

that gives 〈T 〉 ' q/γ2. We also assume that n is not too large, so that γ1 � nγ2 and

(1− q)/γ1 � q/nγ2. Then one has :

〈T 〉n ' 〈T 〉/n, (28)

γ̃n ' γ̃, (29)
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so that

R
(n)
M (t) ' nR

(1)
M (t). (30)

These relations are checked numerically in the main text (see figures 2 and 3).

IV. WAITING TIME DISTRIBUTIONS fn(T ) OF GENERIC SCALE INVARIANT

TRANSPORT PROCESSES

The first-passage time distribution of a random walker to a target site has been obtained in

[3] for generic scale invariant transport processes. It was shown that asymptotic distributions

in the large volume limit have universal features controlled essentially by the walk dimension

dw of the process, defined for example through the scaling of the mean square displacement

〈∆r2〉 ∝ t2/dw , and the fractal dimension df of the environment, defined by the scaling of

the accessible volume V ∝ rdf within a ball of radius r.

A. Non compact exploration (dw < df )

In the case of non compact exploration, it was found that the distribution of return time

to a target for a single random walker reads in the large volume limit:

f(T ) = (1− Π) δ(T ) +
Π

〈T 〉
exp

(
−T/〈T 〉

)
, (31)

with

Π =
〈T 〉
〈T 〉

(32)

and 〈T 〉 ∝ V denotes the mean first-passage time to the target averaged over all possible

starting positions. Note that 〈T 〉 ∝ V so that Π is of order 1. In the non compact case the

survival probability averaged over the starting positions reads [2] :

S̄(T ) = exp
(
−T/〈T 〉

)
. (33)

Making use of Eq.(20) then yields for n TF s:

fn(T ) = (1− Π)δ(T ) + Π
n

〈T 〉
e−nT/〈T 〉, (34)
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where δ(T ) accounts for trajectories returning to the gene locus within time scales much

shorter than 〈T 〉, as stated in the main text. Rewriting δ(T ) = limγ→∞ γe
−γT , the formalism

of the previous paragraph for 2-exponential waiting time distributions applies and one gets:

RM(t) ' n〈m〉
〈T 〉λd

(
1 +
〈m〉

2
+
〈m〉(1− Π)

Π

)
e−λdt (35)

as given in the main text.

B. Compact exploration (dw ≥ df )

In the case of compact exploration, the waiting time distribution for one TF reads in the

large volume limit: :

f(T ) = (1− Π) δ(T ) + Π
∞∑
k=0

bk ake
−akT , (36)

with

Π =
2 ν2

1 + ν

〈T 〉
〈T 〉

, (37)

ak =
z2
k ν

2(1− ν2) 〈T 〉
, (38)

bk =
Γ(ν)

Γ(2− ν)

(zk
2

)1−2ν Jν(zk)

J1−ν(zk)
, (39)

where z0 < z1 < ... are the real zeros of the Bessel function J−ν and ν = df/dw. Note that

here 〈T 〉 ∼ V and 〈T 〉 ∼ V dw/df , so that Π ∼ V 1−dw/df ' 0. This is a crucial difference with

the non compact case. This large weight of fast trajectories makes the description of short

time scales in f(T ) important. In the compact case the survival probability averaged over

the starting position reads [2] :

S̄(T ) =
∞∑
k=0

ck e
−akT (40)

with

ck =
2 ν2

1 + ν
bk. (41)

Making use of Eq.(20) then yields for n TF s:

fn(T ) = (1− Π) δ(T ) + Π
∞∑
k=0

qkγk e
−γkT (42)
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which is the expression of the main text (with αk = qkγk and βk = γk〈T 〉/n). In practice

exact expressions for qk, γk are cumbersome, and for practical purposes one uses truncated

sums in Eqs. (36, 40) .

Below we go beyond the result of Eq.(42), which only gives the long time regime, and

derive an expression that describes in more details also the short time regime. Using the

identity f̂n/(1− f̂n) = p̂n − 1 that holds in Fourier (or Laplace) space, we will focus below

on the propagator pn.

a. Long time regime of the propagator The long time regime of the propagator is con-

trolled only by the long time regime of the waiting time distribution f(T ) (we omit below

the index n referring to the number of TF s for the sake of readability). Instead of the exact

asymptotics of Eq.(42), we introduce for practical purposes a finite truncation:

flong(T ) = Π
ne∑
k=0

qk γke
−γkT . (43)

In order to preserve the normalisation, we define :

f
(ne)
long (T ) =

(
1− Π

ne∑
k=0

qk

)
δ(T ) + Π

ne∑
k=0

qk γke
−γkT . (44)

We then write q̃k = qk/
∑ne−1

k=0 qk and deduce in Laplace space :

p̂
(ne)
long(s) =

1

1− f̂long(s)
=

1

Π
(∑N−1

k=0 qk

) 1

1−
∑ne−1

k=0
eqk

1+s/γk

. (45)

The Laplace inverse can then be obtained by analysing the pole structure of Eq. (45).

Eventually the propagator reads in the long time regime:

Π

(
ne−1∑
k=0

qk

)
plong(t) =

∑ne−1
k=0 qk
〈T 〉

+
ne−1∑
p=1

Ap Λp e
−Λpt, (46)

where Λp and Ap depend on γk and q̃k. More explicitly, one obtains for ne = 2 (the derivation

can be carried out similarly for larger ne ) :

p
(2)
long(t) =

1

Π

γ0γ1

γ̃
+

1

Π

q0q1 (γ0 − γ1)2

γ̃(q0 + q1)
× exp

(
− γ̃

q0 + q1

t

)
. (47)

b. Short time regime of the propagator. In the regime of short times, the propagator

can be approximated by the infinite space propagator of a single diffusing particle. This

quantity has been analyzed in [4] and reads:

pshort(t) =
p∞

Γ(ν + 1)

(
(1− ν2) 〈T 〉

2 ν t

)ν

exp

(
−(1− ν2) 〈T 〉

2 ν t
Π

1
1−ν

)
. (48)
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c. Interpolation at all times of the propagator. We use the following ansatz to obtain

an interpolation of the propagator that holds at all times :

p(t) = e−t/τ
∗
pshort(t) +

(
1− e−t/τ∗

)
plong(t). (49)

The crossover time τ ∗ is defined as the smallest root of the equation

pshort(t) = plong(t). (50)

In practice this solution exists and provides a very good approximation of the propagator

which is valid on all time scales.
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