Supporting Information:

Effect of Activated Carbon Amendment on Bacterial Community Structure and Functions in a PAH Impacted Urban Soil

PAOLA MEYNET¹, SARAH E. HALE², RUSSELL J. DAVENPORT¹, GERARD CORNELISSEN², GIJS D. BREEDVELD² AND DAVID WERNER^{1,§}

¹School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, England, United Kingdom

² Department of Environmental Engineering, Norwegian Geotechnical Institute NGI, P.O. Box 3930 Ullevål Stadion, N-0806, Oslo, Norway

§corresponding author: Phone 0044 191 222 5099, Fax 0044 191 222 6502, e-mail: david.werner@ncl.ac.uk

Supporting information is provided as a compilation of closest relatives and their similarities with the sequence of dominant bands excised from the DGGE gels and the PAH compound specific uptake by PE in soil slurries without compared to with sodium azide addition.

Material		Page
Table S1	Summary of the similarities for the dominant excised bands.	S2
Table S2	PAH uptake by PE in soil slurries without compared to with	S 3
	sodium azide addition	

Table S1 Summary of the similarities for the dominant excised bands.

Isolate	Closest relative (accession no.)	Similarity %	Source	Affiliation	Class
N1	Uncultured bacterium (HQ204336)	89%	Fungal and actinobacterial communities	Micrococcineae	Actinobacteria
N2	Uncultured bacterium (DQ460791)	86 %	DGGE gel band from environmental sample	Bacteroidetes	Bacteroidetes
N3	Chryseobacterium sp. (FN555401)	93%	Soil	Flavobacteriaceae	Bacteroidetes
N4	Knoellia sp. (EF216369)	86%	Shallow water sediment	Actinobacteria	Actinobacteria
N5	Stenotrophomonas sp. (EU374962)	85%	Zloty Stok gold mine rock biofilms	Gammaproteobacteria	Proteobacteria
N6	Curtobacterium sp (GQ915093)	99%	Diverticula (unpublished)	Microbacteriaceae	Actinobacteria
N/A	Mycobacterium sp. (FJ544446) ¹	96%	Raw surface water	A atim annua atalaa	Actinobacteria
N7	Mycobacterium vanbaalenii (JN590245)	92%	Oil-containing sewage soil	- Actinomycetales	
N8	Rhodococcus jostii RHA1(JF915360.1)	95%	Genomic DNA	Actinobacteria	Actinobacteria
N10	Arthrobacter nitroguajacolicus	88%	Lespedeza root nodules	Micrococcineae	Actinobacteria
N11	Uncultured bacterium (HQ015227)	92%	Landfill leachate-contaminated soil	Proteobacteria	Proteobacteria
N12	Uncultured bacterium (GQ289453.1)	81%	Soil for onsite wastewater treatment system	Proteobacteria	Proteobacteria
N13	Uncultured <i>actinobacterium</i> clone (HM106303)	87%	Haloalkaline lake shore sediment	Actinobacteria	Actinobacteria
N14	Uncultured Actinobacteria bacterium (CU918885)	95%	Mesophilic anaerobic digester for municipal wastewater sludge	Actinobacteria	Actinobacteria
N15	Uncultured soil bacterium clone	89%	Uncultured soil bacterium	Proteobacteria	Proteobacteria
N16	Uncultured <i>Sphingomonas</i> sp (HQ711916)	95%	Drinking water	Alphaproteobacteria	Proteobacteria
N17	Uncultured <i>Microbacterium</i> sp (GQ365756)	94%	Aeration tank for waste water treatment	Micrococcineae	Actinobacteria
N19	Uncultured soil bacterium (JF399957)	90%	Uncultured soil bacterium	Proteobacteria	Proteobacteria
N20	Uncultured bacterium clone (JF295464)	91%	Soil	Nitrospiraceae	Nitrospiraceae
N21	Uncultured bacterium(FN567236)	85%	Environmental sample	Proteobacteria	Proteobacteria
N22	Uncultured bacterium clone (GQ397072)	94%	Soil	Bacteria	Bacteria
N23	Rhodococcus erythropolis (FN386745)	99%	Volcanic ash	Lentzea*	Actinobacteria
N24	Uncultured bacterium isolate DGGE band (AY894960)	97%	Environmental sample	Proteobacteria	Proteobacteria
N26	Streptosporangium yunnanense(AF191733)	87%	Soil	Actinobacteria	Actinobacteria

^{*}Ribosomal Database Project (RDP10) shows equal similarity to *Rhodococcus* family.

Table S2 Compound specific percent reduction in PAH uptake by PE samplers embedded in soil slurries without compared to with sodium azide addition, average ± standard deviation.^a

	Unamended	GAC	PAC
	(% Reduction)	(% Reduction)	(% Reduction)
Acenaphthylene	96±7	n.d.	n.d.
Acenaphthene	100	100	n.d.
Fluorene	100	100	51±121
Phenanthrene	97±2	91±8	70±30
Anthracene	100	95±10	49±124
Fluoranthene	65±8	58±10	80±24
Pyrene	47±14	37±13	67±35
Benz(a)anthracene	61±31	50±39	68±34
Chrysene	41±16	28±16	68±32
Indeno(123c,d)pyrene	25±30	-2±24	21±56
Benzo(ghi)perylene	33±27	14±18	22±56

^an.d. means compound not detectable in both measurements, 100 means compound not detected for soil slurries without sodium azide.