
1

Text S1

Supporting text to

Using Whole Genome Sequence Data to Predict Quantitative Trait Phenotypes in

Drosophila melanogaster

Ulrike Ober1,∗, Julien F. Ayroles2,3, Eric A. Stone2, Stephen Richards4, Dianhui Zhu4, Richard A.

Gibbs4, Christian Stricker5, Daniel Gianola6, Martin Schlather7, Trudy F. C. Mackay2 and Henner

Simianer1

1 Animal Breeding and Genetics Group, Georg-August-University Göttingen, 37075 Göttingen, Germany

2 Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, United States of America

3 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United

States of America

4 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77006, United States of America

5 agn Genetics GmbH, Davos 7260, Switzerland

6 Department of Animal Sciences, University of Wisconsin-Madison, WI 53706, United States of America

7 Institute for Mathematics, University of Mannheim, 68131 Mannheim, Germany

∗ E-mail: uober@math.uni-goettingen.de



2

Text S1

When working with D. melanogaster, we have to pay attention to a specific characteristic: Male individ-

uals do not recombine, i.e. the overall recombination rate c equals 1
2cf , where cf is the recombination

rate in female individuals. Moreover, the genome length in Morgans is L = 0.5Lf , where Lf is the length

of the female genome in Morgans.

The formula of [1] for the expected linkage disequilibrium:

The following formula for the expected LD in a population based on the effective population size Ne

was proposed by [1]:

E(r2) ≈ 1

1 + 4Nec
⇔ Ne =

1
E(r2) − 1

4c
(1)

Here, Ne corresponds to an effective population size t = 1
2c generations ago [2]. Using c = 1

2cf we obtain

E(r2) =
1

1 + 2Necf
⇔ Ne =

1
E(r2) − 1

2cf
,

t = 1
cf

generations ago.

If this formula is used to estimate Ne based on a finite sample of individuals, one should adjust for the

chromosome sample size [3], which equals the number of individuals n in the case of inbred lines. Then,

E(r2) =
1

1 + 2Necf
+

1

n
⇔ Ne =

1
E(r2)− 1

n

− 1

2cf
.

Note that when applying this formula to the DGRP population, the estimated Ne is not the effective

population size of the local wild population the actual lines were sampled from, but the effective popu-

lation size of an idealized population having the same structure of LD as the DGRP inbred lines. This

means that we consider the 157 independent gametes of the DGRP inbred lines as a random sample of

this idealized population.

Several derivations of the above formula have been suggested in the last forty years [1,4–7] and simula-

tion studies have shown that the simulated values of r2 agree reasonably well with the expectations based

on this formula. However, we found that all derivations mentioned above have serious shortcomings from

a mathematical point of view. Similar concerns over the exact validity of the formula and their derivations
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were recently raised by [6], p. 185, cf. also the manuscript published on John Sved’s personal homepage

(http://www.handsongenetics.com/PIFFLE/LinkageDisequilibrium.pdf). We clearly think that fur-

ther research is needed to find a substantiated proof and that results based on this formula should therefore

be taken with caution.

Derivation of the number of independently segregating chromosome segments Me and

the expected accuracy of prediction E(ρ): The formula [8] for the expected accuracy of genomic

prediction E(ρ) with GBLUP depends on the number of independently segregating genome segments

Me [9]:

E(ρ) =

√
Nph2

Nph2 +Me

We will derive how Me can be calculated in the case of D. melanogaster. The general derivation of Me

for a diploid population is given in [9] and based on the Sved-formula [1]. Central in the derivation is the

calculation of the double integral over the formula for E(r2). In general, one can verify that

1

a21

∫ a1

0

∫ a1

0

1

a3 + a2|x1 − x2|
dx1dx2 =

2(a3 + a1a2) ln(a3 + a1a2)

a21a
2
2

− 2a3 ln(a3)

a21a
2
2

− 2 ln(a3)

a1a2
− 2

a1a2
,

for arbitrary constants a1, a2, a3 with a1, a2 > 0. If a3 ∈ {1, 2} and if a2 is large enough, the double

integral is approximately

1

a21

∫ a1

0

∫ a1

0

1

a3 + a2|x1 − x2|
dx1dx2 ≈

2(a1a2) ln(a1a2)

a21a
2
2

=
2 ln(a1a2)

a1a2
.

Following the derivation of [9], we need to calculate the double integral over eq. (1) and displace c by the

distance |x1 − x2| which leads to

1

L2

∫ L

0

∫ L

0

1

1 + 4Ne|x1 − x2|
dx1dx2 =

1

L2
f

∫ Lf

0

∫ Lf

0

1

1 + 2Ne|x1 − x2|
dx1dx2 ≈

2 ln(Lf2Ne)

Lf2Ne
=

ln(Lf2Ne)

LfNe
.

Here, the first equality holds because of the transformation formula and the identity L = 1
2Lf in the case

of D. melanogaster. Using this result, Me can be derived as in [9], leading to

Me =
NeLf

ln(2NeLf )
.
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Hence, the formula of [8] for the expected accuracy of prediction in the case of D. melanogaster equals

E(ρ) =

√
Nph2

Nph2 +Me
=

√√√√ Nph2

Nph2 +
NeLf

ln(2NeLf )

,

where Np is the size of the training set and h2 is the narrow-sense heritability of the trait estimated from

the GBLUP model.

The expected value of the genomic relationship matrix of [10]: In this section we will show

that the expected value of the genomic relationship matrix G of [10] is given by the additive relationship

matrix A, i.e.

E(G) = A.

Following [10], G is defined as

G =
(M−P)(M−P)T

2
∑s

k=1 pk(1− pk)
,

where M is the (n × s)-matrix of SNP genotype vectors for the n lines with the s SNPs coded as −1, 1

and the kth column of P is (2(pk − 0.5), . . . , 2(pk − 0.5))T , where pk is the frequency of the second allele

at locus k for k = 1, . . . , s.

Let mi be the vector of SNP genotypes of individual i, i.e. mi = (mi1, . . . ,mis). Then, M =

(m1, . . . ,mn)T . We consider the case of fully homozygous individuals due to full sib mating. Then, the

genotype mik of individual i = 1, . . . , n at locus k = 1, . . . , s can be considered as a discrete random

variable with values −1, 1 and probabilities (1− pk), pk, and it is

E(mik) = −(1− pk) + pk = 2pk − 1

for all i = 1, . . . , n. Moreover, we have

s∑
k=1

Cov(mik,mjk) = aij

s∑
k=1

σ2
m•k

,

where aij is the coefficient of relationship between individuals i and j, and σ2
m•k

is the variance of the
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genotype variable m•k at locus k of the original base-population, see [11] for a derivation of the covariance

between relatives under full sib mating.

The variance of m•k in the base population is equal to the variance of a random variable with values

−1, 0, 1 and probabilities (1− pk)2, 2pk(1− pk), p2k, which equals

σ2
m•k

= E(m2
•k)− E(m•k)2

= (−1)2 · (1− pk)2 + 02 · 2pk(1− pk) + 12 · p2k −
(
−1 · (1− pk)2 + 0 · 2pk(1− pk) + 1 · p2k

)2
= 2pk(1− pk).

This leads to

s∑
k=1

Cov(mik,mjk) = aij

s∑
k=1

2pk(1− pk). (2)

Define D := 2
∑s

k=1 pk(1− pk). The expected value of G can now be calculated as

[E(G)]ij =

[
E
(

(M−P)(M−P)T

D

)]
ij

=
1

D
E
[
(mi − (2(p1 − 0.5), . . . , 2(ps − 0.5))) · (mj − (2(p1 − 0.5), . . . , 2(ps − 0.5)))

T
]

=
1

D
E
[
((mi1, . . . ,mis)− E(mi1, . . . ,mis)) · ((mj1, . . . ,mjs)− E(mj1, . . . ,mjs))

T
]

=
1

D

s∑
k=1

E [(mik − E(mik)) · (mjk − E(mjk))]

=
1

D

s∑
k=1

Cov(mik,mjk)

=
1

2
∑s

k=1 pk(1− pk)

(
aij

s∑
k=1

2pk(1− pk)

)
,using eq. (2)

= aij

for i, j = 1, . . . , n, i.e. E(G) = A.

The derivation presented above was for the case of fully homozygous individuals due to full sib mating.

The identity E(G) = A can analogously be derived for a non-homozygous population. Then, the genotype

mik of individual i at locus k can be considered as a discrete random variable with values −1, 0, 1 and
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probabilities (1− p)2, 2pk(1− pk), p2k.
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