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Simulation Details

Simulations were carried out for the peptides of sequence Ace − (Gln)n − NH2 (denoted as Qn) and

Ace− (Gln)n − (Pro)
6
−NH2 (denoted as QnP6). These peptides include Q40, Q40P6, Q30, Q18, Q18P6,

Q12, Q12P6, Q9, Q9P6, Q6, and Q6P6. In each case, we refer to the ith glutamine and jth proline residues

as Qi and Pj , respectively.

Initial configurations consisted of the unfolded peptides, which were generated using the LEAP pro-

gram of the AMBER v.9 simulation package. The simulations used the ff99SB version of the Cornell

et al force field [1]. The leap-frog algorithm with a 1 fs timestep was used along with the Langevin

dynamics. All the simulations were carried using an implicit water model based on the Generalized Born

approximation (GB) [2, 3] including the surface area contributions computed using the LCPO model [4]

(GB/SA). For this model, a cutoff of 18 Å was used for the nonbonded interactions. For GB, it has been

shown [5] that such a large cutoff generates results compatible to those obtained with no cutoff. Our

use of an implicit solvent model is due not only because of the very large computational costs associated

with simulating an explicit solvent environment, but also because our simulations are based on a replica

exchange sampling scheme. Our particular replica exchange scheme uses temperatures as high as 1200K,

which is clearly not compatible with any explicit solvent model. Since the use of such a replica exchange

scheme turns out to be crucial in terms of being able to adequate sample equilibrium configurations

(especially those involving rare structures), we opted for an implicit solvent model.

For polyQ peptides we used the T-REMD scheme using 20 replicas for n = 6, 9, 12, 18 and 24 replicas

for n = 30, 40. The temperatures were distributed as: 300, 322, 347, 373, 401, 432, 464, 499, 537, 578,

622, 669, 720, 774, 833, 896, 964, 1037, 1115, 1200 K for n = 6, 9, 12 and as: 300, 319, 340, 362, 386, 411,

438, 467, 498, 530, 565, 602, 641, 683, 728, 776, 826, 880, 938, 1000 K for n = 18 and as: 300, 316, 333,

351, 369, 389, 410, 432, 456, 480, 506, 533, 562, 592, 624, 657, 693, 730, 769, 811, 854, 900, 948, 1000 K
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for n = 30 and as: 300, 313, 326, 340, 355, 371, 387, 404, 421, 440, 459, 479, 500, 522, 545, 568, 593, 619,

646, 674, 703, 734, 766, 800 K for n = 40.

For polyQ-polyP peptides we used the HT-REMD scheme. Therefore we first ran ABMD simulations

to generate biasing potentials. The initial biasing potentials were transferred from our previous ABMD

simulations of short polyproline peptides [6]. We refined these biasing potentials for each QnP6 peptide

separately by running ABMD simulations with the same number of replicas and the same temperature dis-

tribution as for the T-REMD simulations of the corresponding Qn peptide. The refined one-dimensional

free energy maps formed the basis of the HT-REMD runs for enhanced equilibrium sampling. Four more

replicas were then added, all at T = 300 K: one with no biasing potential, and three with the ABMD

generated biasing potential scaled down by a factor of 0.49, 0.76 and 0.9, respectively. The choice of tem-

peratures, the scaling factors, and the ratio of temperature-varying versus Hamiltonian-varying replicas

was to ensure a similar rate of exchange between all neighboring replicas.

We ran 200, 400, and 1000 ns REMD simulations for the Qn and QnP6 peptides of n = 6, 9, 12,

n = 18, 30, and n = 40, respectively. Coordinates of the unbiased T = 300 K replica were sampled every

picosecond. In all the cases except for n = 18, only the second half of the sampled structures were used

for the analysis to ensure that the ensemble is not dependent on the initial structures. For n = 18, we

ran two completely independent 100 ns long simulations for each peptide (Q18 and Q18P6) and combined

the second halves of the two independent simulations for the analysis.

Finally, we discuss the convergence of the simulations. How can we be sure that the conformations

obtained in our simulations are sampled correctly? Computational limitations preclude us from running

longer, which can be important for the longer peptides with long folding times. First, we need to make

sure that the REMD scheme, used for both Qn and QnP6 peptides, resulted in a reasonable rate of

exchange between the neighboring replicas. This rate varied as 50-55, 41-55, 38-46, 33-41, 31-42, 31-41,

30-44, 28-43, 26-37, 25-37, and 26-35 % for Q6, Q6P6, Q9, Q9P6, Q12, Q12P6, Q18, Q18P6, Q30, Q40,

and Q40P6, respectively, confirming a reasonable performance. We can also check the convergence of the

statistical measurements based on the following idea. We split the data used for the analysis in two (still

large) parts. We ran the analysis on the two parts separately and compared the numbers/plots obtained

from them. The data thus obtained was consistent with the data presented here. In the case of n = 18

we even ran two completely independent simulations as further check.

Figure S1a,b shows the α-helical content (as a percentage) of individual glutamine residues plotted
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against their residue numbers for Q18[red] and Q18P6[blue] as obtained from the last 100 ns of two

200 ns long independent simulations. The two plots are qualitatively similar although there are some

insignificant differences between them. Note that since our main goal was to better understand the

molecular origin of aggregation and its suppression, we concentrated more on the case of n = 40. Our

data for n = 40 shows a good convergence. Fig. S1c,d shows the α-helical content (as a percentage)

of individual glutamine residues plotted against their residue numbers for Q40[red] and Q40P6[blue] as

obtained from (c) the third and (d) the fourth 250 ns of 1000 ns REMD simulations. Not only the overall

behaviour is similar, but also the variations with the residue number are consistent, and would indicate

a sensitive dependence on the position of the residues in the sequence.

Secondary Structure

We used the (φ, ψ) dihedral angles (see Fig.1 for their definition) to identify different regions [7] of the

Ramachandran map [8]. According to this scheme, the α region is divided into two parts: αR defined by

−120◦ < ψ < 90◦ and −160◦ < φ < −20◦ and αL defined by −50◦ < ψ < 110◦ and 20◦ < φ < 160◦. PPII

region includes −110◦ < φ < −20◦ and (90◦ < ψ < 180◦ or −180◦ < ψ < −120◦). The β region consists

of two parts: (−180◦ < φ < −110◦, 90◦ < ψ < 180◦ or −180◦ < ψ < −120◦) and (160◦ < φ < 180◦ and

120◦ < ψ < 180◦) regions.

Although this delineates clear regions for the dihedrals of most residues, it turns out that there is

considerable overlap between the populations of the PPII and β regions. In some cases the αR region may

overlap with both the PPII and β regions as well. In order to handle this situation, we used a clustering

technique to identify the region of the conformations, rather than strictly enforcing the sharp boundaries

of the defined regions. These two methods give identical answers for most dihedrals. However, at the

borders, the clustering technique is more accurate. We used a central clustering method, also known as

vector quantization [9] technique, with the stochastic implementation of the Expectation Maximization

(EM) [10] method in an algorithm that is reminiscent of the widely used K-means algorithm [11]. This

is a non-parametric data clustering technique that employs the iterative EM algorithm in a stochastic

manner. We initially used the regions, defined above, to identify the secondary structure of each sampled

conformation. We defined four clusters: PPII, β, αR, and αL. Next, we defined an association function, zic

as the probability that the conformation i belongs to the cluster c. Initially, these functions are either 0 or

1 based on which region the conformation occupies. In an iterative manner, we optimized the association
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functions for each conformation, using a Gibbs measure zic ∝ exp(−s(Di
c)

2), with s representing a softness

parameter and Di
c the distance of (φ,ψ) of the ith conformation to the reference point of the cluster c,

defined as the average of all the (φ, ψ) dihedrals of the conformations weighted by zic. Note that the

distance here is defined under the periodic boundary condition. The parameter s can be increased for

improved accuracy once the desired convergence has been reached using a smaller value of s. We used

s = 1, 2, 5, 10 rad−2, with each cycle iterated 50 steps. The final step used a pseudo-random number

based on the optimized probabilistic association functions in order to associate each conformation with

a single cluster.
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