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Penalised spline regression model

Unbiased estimation of caloric cost of activity. The penalised spline regression

model with multiplicative errors-in-variables is defined as

y = x α+ Z β + ε (1)

xmeas = x ◦ (1 + δ) (2)

with y = TEE(tTEE) the measured TEE time sequence, x the time sequence

with the intensity of PA, xmeas the measured intensity of PA, Z the n×k design

matrix containing the spline basis functions evaluated at the sample times zji =

Bi(tTEE[j]), α the cost of activity and β the k × 1 vector of spline coefficients.

The error term ε is assumed to be normal, zero mean and independent and

identically distributed ε ∼ N (0, σ2
εI).

Let SS be the the penalised residual sum of squares function that is min-

imised to estimate α and β

SS(α,β) = ||y − x α− Z β||2 + λ2βTDβ (3)

with λ the smoothing parameter and D the k×k penalisation matrix. Minimis-

ing (3) for β gives the estimate β̂ of the spline coefficients

β̂(α) =
(
ZTZ+ λ2D

)−1
ZT(y − x α) (4)

which is unbiased in the case x is corrupted with measurement error, meaning

that x in (4) may be replaced by xmeas. Inserting (4) into (3) gives the sum of

squares function for estimating α in the case of zero measurement error

SS′(α) = (y − x α)TA(y − x α) (5)
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with A = I−Z(ZTZ+λ2D)−1ZT. In the case measurement error is present, (5)

will give a biased estimate of α if x is replaced by xmeas because of regression

dilution [1]. We now propose a corrected sums of squares function SS∗(α) that

gives an unbiased estimate of α, following the approach of Nakamura and Zhong

et al. [2,3]. In order for SS∗(α) to be an unbiased estimator of α, it must satisfy

E∗
(
d SS∗(α)

d α

)
=

d SS′(α)

d α

= 2 xTAx− 2 xTAyα

where E∗ is the expectation with respect to xmeas, given y and β. Assuming

a distribution of the PA measurement error δ ∼ N (0, σ2
δI), it follows from (2)

that the measured activity time series has a distribution xmeas ∼ N (x, σ2
δD

2
x),

with Dx the diagonal matrix with the elements of x on the diagonal. Therefore,

it holds that

E∗ (xT
measAxmeas

)
= xTAx+ σ2

δ trace
(
A D2

x

)
= xT

(
A+ σ2

δ A′)x (6)

withA′ the matrix that contains the diagonal elements ofA and zeros otherwise.

Given (6), it is readily shown that the condition for unbiasedness is satisfied by

the following least squares criterion

SS∗(α) = (y − xmeas α)
TA(y − xmeas α)−

σ2
δ

1 + σ2
δ

xT
measA

′xmeasα
2 (7)

Minimising SS∗ for α then gives an unbiased estimate of the caloric cost of

activity for the multiplicative errors-in-variables model (1) and (2)

α̂∗ =

(
xT
meas

(
A− σ2

δ

1 + σ2
δ

A′
)
xmeas

)−1

xT
measAy (8)

Information criteria for determining λ and σ2
δ . The estimates α̂ and β̂ depend

on the smoothing parameter λ and on the measurement error variance σ2
δ . Since

generally these parameters are unknown, values need to be derived from the

data. For nonparametric regression models the optimal degree of smoothing λ

is typically found by maximising some appropriately chosen measure of goodness

of fit, such as Akaike’s Information Criterion [4,5], Generalised Cross Validation

[6,7] or maximum likelihood [8]. We found that in our case the Generalised Cross

Validation (GCV) criterion gives good results

GCV =
|y − xmeasα̂− Zβ̂|2(

1− 1
n′ df

)2 (9)
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with df the degrees of freedom, defined as df = trace
(
(ZTZ+ λ2D)−1ZTZ

)
[8].

Instead of the ordinary definition of the GCV where the degrees of freedom are

divided by the number of datapoints n = tduration

TTEE
(tduration the time duration of

the experiment), we used a definition that was independent of the sample time:

n′ = tduration
T ′
TEE

, with T ′
TEE set to a fixed value of 10 min. This adjustment served

to make the degree of smoothing λ that results from minimising (9) insensitive

to the sample rate, which ensured that no overfitting occurred for high sample

rates. The value of T ′
TEE = 10 min was chosen since the traditional GCV was

found to give good results for that sample time. Note that since the prediction

error |y−xmeasα̂−Zβ̂|2 does not change much when the biased estimate α̂ is used

instead of the unbiased estimate α̂∗, the GCV is practically independent of σ2
δ ;

hence, we chose to select the smoothing parameter λ assuming zero measurement

error σ2
δ = 0, which reduced computational demands.

Estimating the variance of the measurement error σ2
δ from the data is more

complicated. To our knowledge, no unbiased estimator of σ2
δ currently exists

that applies to our setting. Nevertheless, an approximation of σ2
δ can be ob-

tained by quantifying the degree of heteroscedasticity with which the residuals

of the P-spline model vary, since this variation contains information about the

size of σ2
δ . We have for the residuals

e = y − xmeasα̂
∗ − Zβ̂

= x(α− α̂∗) + Z(β − β̂) + ε+ α̂∗x ◦ δ (10)

Neglecting the variance in the estimates α̂∗ and β̂, the residuals follow a dis-

tribution e ∼ N (0, σ2
εI + σ2

δ α̂
∗2D2

x); that is, the variance is heteroscedastic,

depending on x, α̂∗ and σ2
δ . This allowed us to construct a likelihood function

for estimating σ2
δ and σ2

ε

ℓ = −1

2

[
log det Σe + eTΣ−1

e e
]

= −1

2

[
log det Σe + (y − xmeasα̂

∗)
T
AΣ−1

e A (y − xmeasα̂
∗)
]

(11)

with Σe the covariance matrix of the residuals, which can be approximated by

Σ′
e = σ2

εI+ α̂∗2 σ2
δ

1+σ2
δ
D′2

x, where D′
x is the diagonal matrix with the elements of

xmeas on the diagonal. Note that since Σ′
e has a diagonal covariance structure,

calculation of the likelihood (11) is fast.

In order to ascertain that λ selection and the estimation of σ2
δ by the afore-

mentioned functions worked properly and that both calculations are necessary

elements of the P-spline model, two separate tests were performed during the

validation study. First a P-spline model was fitted on the 500 simulated datasets
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that assumed that there was no measurement error in PA (i.e. σ2
δ = 0). When

compared with the results of the P-spline model where σ2
δ had been estimated,

the former model showed to have a larger error and bias in the estimation of

average RMR (Fig. S1-1A,B). The fact that nevertheless a small bias remained

using the second approach demonstrates that (11) is not an unbiased estimator

of σ2
δ . Second, an ordinary spline model was fitted on the 500 synthetic datasets

that did not include a penalisation term (λ = 0). When compared with the per-

formance of the penalised spline model, the model without penalisation had

considerably larger estimation error in the time-dependent RMR (Fig. S1-1C).

This shows that λ selection prevents overfitting and is therefore important for

estimating the time variations in the RMR.
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Figure S1-1. Design choices for the penalised spline regression model.

Measurement error in physical activity, due to sensor noise and variability in the

caloric cost of activity, caused the estimate of the average RMR to be biased because

of regression dilution (A – B; red line). When the variance σ2
δ in the measurement

error was estimated and taken into account by the corrected expression for

estimation of the cost of activity, the bias was reduced from 0.032 kcal/day to 0.007

kcal/day (B). Estimating the time-dependent RMR by means of penalised splines

(C; black line) as opposed to ordinary splines without penalisation (C; red line) was

found necessary to prevent overfitting. The first order derivative of the splines

function was penalised, and the smoothing parameter λ was selected by means of

Generalised Cross Validation.
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