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Characterisation of the PA–AEE relation

For the optimal estimation of the RMR and AEE, the relationship between

the time-dependent activity measurements and the related energy expenditure

must be linear. Therefore, before application of the P-spline regression model

this relation needs to be characterised for the given activity sensor and in-

direct calorimetry system, such that a suitable preprocessing function can be

constructed for the activity data.

As discussed in the main article, preprocessing of the activity data consists

at least of the following two steps, which permit to align the energy expenditure

and activity data: 1.) application of a low pass filter to mimic the gas diffusion

effects, and 2.) downsampling of the convolved activity data to the sample

time of the TEE. In addition, a mathematical function must be chosen that

can rectify all existing nonlinearities between the measured activity and the

related energy expenditure. In our experience, the choice of this function cannot

be done automatically but must instead be based on careful inspection of the

scatterplot of the TEE and the preprocessed activity data. In contrast, selection

of the parameters of the preprocessing function can be performed automatically,

namely by minimising the residual sum of squares of the P-spline model. In the

case that indirect calorimetry and activity datasets of multiple subjects are

analysed, then parameter selection must be based on minimisation of the total

residual sum of squares of all subjects.

In the remainder of this supplementary text we discuss how we determined

the preprocessing function for our data.
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Estimation of the washout time of the metabolic chamber system

The time variation in the respiratory exchange as it is measured at the level

of the gas sensors does not reflect the instantaneous energy expenditure (i.e. at

the level of the cell) but is distorted by the gas diffusion through the body and

the chamber. We propose to model the gas diffusion effects by means of two

linear compartments that have washout times τ1 and τ2, which represent the

body and chamber respectively. In addition, we account for the delay τ3 that is

introduced by the tubing and gas dryers that are located between the chamber

and gas sensors. See the Methods section in the main article for details.

We based the choice of τ1 on the work of Even et al. [1], who proposed a

value of τ1 = 15 s for rats, which was assumed to be independent of their body

weight. Since mice are an order of a magnitude smaller than rats, we took a

value of τ1 = 1.5 s for mice.

To assess the correctness of the linear diffusion model for our metabolic

chamber system, we performed a separate experiment in which we saturated

a single metabolic chamber with a gas mixture that had a CO2 concentration

of 0.5%. Subsequently the reference (ambient) air was switched back to the

input airflow of the chamber and the CO2 concentration in the outgoing air

was measured for a period of 25 min with a sample time of 10 s. The result

is shown in Fig. S2-1. Fitting a negative exponential function to the registered

data yielded an estimate of τ2 = 290 s, which was close to the theoretical

value of τ2 = V/f = 293 s that was based on the volume of the chamber

(V = 104mm × 126mm × 201mm = 2.63 l) and the air flow (f = 8.97 ml/s).

Hence, in the remainder of our study we calculated τ2 as the volume of the cage

divided by the air flow.

For the time delay we assumed a value of τ3 = 5 s, which was an estimate

based on the flow rate and the length and diameter of the air tubes.

Linearisation of the PA-AEE relation In order to characterise the PA-

AEE relation for our system we used the high time resolution metabolic chamber

dataset (single mouse). From inspection of the scatterplot of the TEE versus

the PA adjusted for gas diffusion effects, it followed that this relationship was

strongly nonlinear for our metabolic chamber system (Fig. S2-2A,D). First, we

investigated whether a power function xp captured the nonlinearity in the PA-

AEE relation well enough, where the value of p was selected by minimising the

residual sum of squares of the P-spline model.

From the resulting scatterplot (Fig. S2-2B,E) it followed that the prepro-

cessed PA indeed correlated better with the TEE (r2 = 0.82) than did the
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linear model (r2 = 0.58). However, close inspection of the scatterplot showed

that results were not optimal since there was still a nonlinear trend perceivable

in the residuals. In addition it was observed that for low TEE the preprocessed

PA was relatively high, which could be explained by the fact that the initial

steepness of the power function had amplified the noise on the PA signal that

occurred during periods of rest of the animal (i.e. when TEE is low). This type

of noise can be attributed to unconscious movements such as those associated

with respiration and was not counted as PA. Therefore, we extended the prepro-

cessing function with a threshold to eliminate this noise from the activity data.

Moreover, we applied a Gaussian kernel to smooth the raw activity data, which

served to attenuate the noise that arises when infrared beam interruptions are

collected in relatively short time bins (i.e. TPA is low). The total preprocessing

function that we used was

PA(t) = R ( PAraw(t) ∗Kσ(t)− θ )
p

(1)

with PAraw(t) the raw activity data expressed in counts/min, PA(t) the pre-

processed activity data, ∗ the convolution operator, Kσ(t) the Gaussian kernel

function Kσ(t) =
1

σ
√
2π

exp
(
− t2

2σ2

)
, p the power, and R the ramp function with

threshold θ, defined as R(x − θ) = x − θ if x ≥ θ and R(x − θ) = 0 otherwise.

Subsequently, the preprocessed activity data was convolved with the impulse

response hdelay(t) of the system/gas diffusion delay and was downsampled to

the sample time of the TEE 2

PA′(tTEE) = PA(tPA) ∗ hdelay(tPA)|tPA→tTEE
(2)

where PA′(tTEE) is a measure of the time-dependent AEE as it is measured at

the sensor level AEE(tTEE) = α PA′(tTEE), with α the caloric cost of activity

(see also Eq. (4) of the main article).

We estimated the parameter set (σ, θ, p) of the preprocessing function (1) by

minimising the residual sum of squares of the P-spline regression model. The

optimal parameter values that we found were σ = 26 s, θ = 10.6 counts/min and

p = 0.13. Inspection of the resulting scatterplot shows that the preprocessing

function had been successful in eliminating nonlinear trends and in adjusting

the threshold (Fig. S2-2C,F). In addition, the strength of the correlation had im-

proved (r = 0.85) with respect to using only the power function as preprocessing

function.
2It is important to note that convolution with hdelay(t) must only be performed in the case

that the measured TEE has not already been compensated for the gas diffusion effect. Such

corrections are standardly performed for human indirect calorimetry data, where the filtering

effect of gas diffusion is much larger because of the larger metabolic chambers.
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A practical adjustment that was made to improve the time efficiency of the

optimisation function was to set the penalisation coefficient and the PA error

of the P-spline model that was used for optimisation to zero λ = 0, σδ = 0. In

order to prevent overfitting, the number of knots in the spline function that was

used for estimating the preprocessing parameters was chosen slightly lower (10

knots/day). The preprocessing function and the optimisation routine are part

of the TEE decomposition toolbox for MATLAB that can be obtained upon

request.

Influence of the sample time of the preprocessing parameters We

investigated whether the sample time TPA was influencing the way in which

PA should be preprocessed, by estimating the optimal value of p for different

sample times. Lower resolution datasets of TEE were created by taking every

N -th sample of the high resolution dataset, corresponding thus to a sample

time TTEE of 10N seconds. Lower resolution datasets for PA were created by

adding the previous N−1 samples to each N -th sample, since beam breaks were

reported in a cumulative fashion by our metabolic chamber system. It was found

that the optimal order popt of the power function increased monotonically for

longer TPA (Fig. S2-3). An empirical function popt(TPA) =
1.51

2.0+exp(TPA/6.1)−0.38

of the optimal order was found to fit the data best, with TPA the sample time

in minutes.

Selection of the preprocessing parameters for the case study data

For the low resolution dataset of the case study (TPA = 60 s, TTEE = 7.5 min)

the optimal root order and threshold level were fitted by minimising the total

residual sum of squares of all 15 mice. The optimal parameter values that were

found were p = 0.20 and θ = 8.5 counts/min; the kernel width σ was kept fixed

at 26 s.
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Figure S2-1. Determination of the chamber washout time τ2. The effect of

gas diffusion through the metabolic chamber on the measured respiratory exchange

was evaluated by measuring the response in the CO2 concentration on a step change

in the composition of the inflowing air. A negative exponential function was fit to

the step response and showed to describe the measured data very well. The washout

time of the fitted function was τ2 = 290 s, which was close to the theoretical value of

293 s based on the volume of the chamber and the flow rate.
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Figure S2-2. Nonlinearity in the PA–AEE relation. A scatterplot of the

TEE versus the raw PA measurements shows that their relation is strongly nonlinear

for the CLAMS metabolic chamber system (A). This also follows from the residuals

of a linear regression model (D). Preprocessing PA with a power function notably

improved the fit of the linear model (B), but still left a faint S-shape in the residuals

(E). Additional smoothing and thresholding corrected for the amplification of noise

during rest and further improved the fit of the linear model (C), also leaving no

trends perceivable in the residuals (F).
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Figure S2-3. Dependency of the optimal power for preprocessing PA on

TPA. The optimal value for the power p for preprocessing the PA in the high

resolution dataset increased monotonically for longer sample times TPA (crosses).

The black line gives the fitted empirical function that indicates the dependency of

popt on the sample time: popt(TPA) =
1.51

2.0+exp(TPA/6.1)
− 0.38, with TPA in minutes.


