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Simulation of indirect calorimetry data

We here give a detailed account of how the simulated metabolic chamber data

was generated. Spontaneous PA was modelled as a sequence of periods of unin-

terrupted activity (activity bouts) of varying duration and intensity, depending

on the hour of the day. To ensure realistic results, simulation parameters were

based on the metabolic chamber dataset from the case study. Visual inspection

of the experimental data suggested that activity patterns were different between

both groups of mice: the obese male mice were active for short periods of time

and with short pauses, while the lean female mice had longer activity bouts that

occurred with a lower frequency (Fig. S4-1). Quantitative analysis showed that

there was a difference between groups in the amount of time mice were active,

the PA intensity, and the bout frequency (Fig. S4-2). Therefore, we modelled

activity patterns for both groups of mice separately, using the analysis results

shown in Fig. S4-2 as benchmark.

Activity bouts were simulated to occur every 47 min for male mice and

every 65 min for female mice; random variation in activity bout occurrence was

introduced by multiplying the time a bout occurred with a normally distributed

random variable εT bouts ∼ N (1, 0.09) (normal distributions are denoted as

N (µ, σ2), with µ the mean and σ2 the variance). The length of an activity bout

was modelled to vary between day and night according to a cosine function with

a maximum of 27 min at 00:00h and a minimum of 10 min at 12:00h for male

mice, and a maximum of 45 min at 00:00h and a minimum of 16 min at 12:00h

for female mice. Random variation was simulated by multiplying the bout

length with a normally distributed random variable εbout length ∼ N (1, 0.09).

Relative intensity of PA was simulated to vary between night and day with a
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cosine function with an amplitude of 0.09 and an offset of 1; random variation

was introduced by multiplying the amplitude of each bout with a normally

distributed random variable εPA intensity ∼ N (1, 0.005). Instantaneous AEE was

derived from the PA signal by scaling it such that the average AEE amounted

to 2.0 kcal/day for both groups (Tab. 1); consequently, the relation between

AEE and PA was linear for the simulated data. The intensity of activity as

it was measured by the infrared beam monitors was simulated by scaling the

activity function to a time-dependent probability density function that was used

to sample the beam break occurrences. It was assumed that 39000 beam breaks

occurred per day for male mice and 50000 for female mice, which were binned

into 10 second intervals, corresponding thus to a sample time of PA of 10 seconds.

Additional PA measurement error due to variations in the caloric cost of activity

was simulated by first multiplying the amplitude of each activity bout with a

normally distributed random variable εCCA ∼ N (1, 0.01).

To ascertain that the simulated activity patterns resembled experimental

data, 500 datasets with activity patterns of male and female mice were generated

separately from the main validation study, and the amount of time that mice

were active, the PA intensity, and the bout frequency were calculated in the same

way as was done for the data from the case study (Fig. S4-2). Comparison of the

results showed that these parameters were equal for experimental and simulated

data. Moreover, visual comparison of the activity patterns confirmed that the

simulated data were reasonably similar to the experimental data (Fig. S4-1).

In the main validation study, which served to evaluate the accuracy of TEE

decomposition, the parameters concerning activity patterns were varied linearly

between those from both groups of mice such that the simulated data reflected a

mixture of male and female mice. The simulated random variation in caloric cost

of activity εCCA had been chosen such that the estimated standard deviation

of PA measurement error σ̂δ on experimental data (0.061± 0.054) was close to

that of the simulated data (0.065± 0.032).

Simulation parameters of the RMR time series and the TEE measurement

noise were based on the high resolution experimental dataset. In order to simu-

late realistic time-dependent fluctuations in the RMR, we investigated the time

sequence consisting of the estimated RMR and the residuals resulting from

the P-spline regression model. Inspection of this signal showed that there was

considerable ultradian variation present that did not correlate with PA. Part

of these fluctuations reflected the fast changes that occur in RMR due to en-

dogenous (nervous or hormonal) changes [1], while the remainder was due to

measurement noise; i.e. noise in the gas sensors and fluctuations associated with
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non-homogeneous mixing of expired air in the metabolic chamber. Since most

of the high frequency fluctuations observed in the residuals could not have been

caused by fluctuations in the RMR as these would have been filtered out by the

gas diffusion effect, we assumed that these were due to measurement noise. The

instantaneous RMR and the measurement noise signal were modelled as white

Gaussian processes filtered respectively by the linear filters

HRMR inst.(s) = 40 1+135s
(1+800s)(1+4s)(1+3s)

Hnoise(s) = 4 1
(1+4s)(1+0.3s)

with H the transfer function in the frequency domain and s the complex angular

frequency expressed in rad min−1. The zeros and poles of both transfer functions

were chosen such that the modelled power spectral density (PSD) of the RMR

plus the measurement noise

PSDRMR+noise = H2
delay(s) ·H2

RMR inst.(s) +H2
noise(s)

with

Hdelay(s) =
1

(1 + τ1s)(1 + τ2s)

corresponded to the PSD of the time sequence of the estimated RMR plus the

residuals (Fig. S4-3).

Given the sample time of T = 10 s, the continuous time filters were trans-

formed into discrete time filters by means of the impulse invariance approach [2],

which permitted to generate synthetic time sequences of the measurement noise

and instantaneous RMR. In addition, a constant value of 10.0 kcal/day was

added to the RMR time sequence plus a cosine function of a 24 hour period and

1.0 kcal/day peak-to-peak amplitude to mimic the day-night rhythm (Tab. 1).

The measured TEE time sequence was calculated by adding the instantaneous

RMR and AEE time sequence and convolving it with hdelay (the washout and

delay times were set to τ1 = 1.5 s, τ2 = 300 s and τ3 = 0 s) and by subsequently

adding the time sequence representing the TEE measurement noise.
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Figure S4-1. Simulation of activity patterns. A difference was found in

activity patterns between the obese male (A) and lean female mice (B) in the case

study: male mice were active for short periods of time and had short pauses, while

female mice had longer periods of activity and rest. Gray lines indicate the

preprocessed physical activity, black lines indicate the activity bouts. Activity bouts

were detected by requiring a minimal duration of activity of 2 minutes and a

minimal rest period of 3 minutes; moreover, the 5% of smallest activity bouts were

not considered. Simulated activity patterns were based on the case study data, and

showed to realistically mimic the behaviour of the male (C) and female mice (D).
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Figure S4-2. Characterisation of activity patterns. Activity patterns of both

groups of mice from the case study were analysed quantitatively to provide a

benchmark for fitting the parameters of the simulation data. Female mice were

active for more time than male mice during both night and day (A), and were also

more intensely active (B); error bars indicate standard deviation. In addition,

activity bouts in female mice occurred with a lower frequency than in male mice (C).

Simulation parameters were fit as to resemble the experimental data (D – F).
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Figure S4-3. Power spectral density of RMR and TEE measurement

noise. The time sequence of the estimated RMR plus the residuals, as calculated

from the high resolution metabolic chamber dataset with the P-spline regression

model, was used to determine the power spectral density of the RMR signal and the

noise in the TEE measurements. This spectrum served to fit the parameters of the

transfer functions that were used to generate synthetic time sequences of the RMR

and the measurement noise in the validation study.


