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Downsampling induced variability

We here propose downsampling induced variability (DIV) as a measure of the

robustness of a TEE decomposition method to low sample rates. We define DIV

as the variability between RMR estimates from a range of low time resolution

datasets that have been extracted from a single high resolution dataset by means

of downsampling. In the following paragraphs we describe how the DIV is

calculated for the average and time-dependent RMR and demonstrate that it is

always smaller than the total root mean square estimation error, thus providing

a bias-variance decomposition of the estimation error.

We first show the bias-variance decomposition for the estimation error in the

average RMR. Let a TEE time series of n datapoints be downsampled by a factor

N into N separate datasets in the following way. The j-th downsampled dataset

TEEN
j contains the samples TEEN

j [i] = TEE[Ni+ j], where the index i ranges

from 0 to ⌊n−j
N ⌋ and the dataset number j ranges from 1 to N , with ⌊·⌋ the floor

function and the square brackets [ ] indicating the position within a vector. As a

result, from a single TEE dataset sampled with a sample time TTEE, N separate

datasets are created with an effective sample time of N times TTEE. Now let µ̂j

be the estimate of the average RMR as based on the j-th downsampled dataset

TEEN
j , let µ̄ be the mean of all N average RMR estimates µ̄ = 1

N

∑N
j=1 µ̂j , and

let µ be the true average RMR which is unknown for experimental data. Then

the total mean square error (MSE) of the average RMR estimate is decomposed

as follows
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MSEav. =
1

N

N∑
j=1

(µ̂j − µ)2

=
1

N

N∑
j=1

((µ̂j − µ̄)− (µ− µ̄))2

=
1

N

N∑
j=1

(µ̂j − µ̄)2 + (µ− µ̄)2 − 2

N

N∑
j=1

(µ̂j − µ̄) (µ− µ̄) (1)

variance + bias + 0

Expression (1) corresponds to the classical decomposition of the total mean

square error into a bias and variance term. More specifically regarding to TEE

decomposition, the variance component is a measure of the error that is in-

troduced into average RMR estimation due to downsampling with a factor N ,

which can be interpreted as the error term due to sampling with sample time

N · TTEE instead of TTEE. Hence, we define the DIV for the average RMR at a

given downsampling factor N as

DIVav. =

√√√√ 1

N

N∑
j=1

(µ̂j − µ̄)
2

(2)

Importantly, since the variance term is only based on the set of estimates of the

average RMR, but not on the actual average RMR, it can be determined from

experimental data.

The same bias-variance decomposition generally does not exist for vectors.

However, since the accuracy of the time-dependent RMR estimate is determined

only for frequency components under 6 day−1, a bias-variance decomposition

can be defined that is based on the fact that RMR estimates from different

datasets TEEN
j should not change much between two succeeding time points.

Formally, let RMRN
j be the j-th estimated time sequence of RMR based on the

downsampled dataset TEEN
j , with j ranging from 1 to N . Since we are only

interested in estimating the low frequency components in RMR, all frequen-

cies above 6 day−1 are filtered out separately for each estimated time series

RMRN
j . The time instants for which the RMR is estimated are disparate be-

tween datasets RMRN
j , so we can define a single composite RMR time series

of size n that includes all datasets RMRN
j in the same way as has been done

for TEE. That is, let the composite time series RMRN
tot contain the samples

RMRN
tot[Ni+ j] = RMRN

j [i], where the index i ranges from 0 to ⌊n−j
N ⌋ and the

dataset number j ranges from 1 to N .
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We will now propose the bias-variance decomposition of the total mean

square estimation error of the time-dependent RMR. To simplify notation, let

u be the n × 1 vector that contains the composite RMR time series RMRN
tot

for downsampling factor N , and let v be the n× 1 vector representing the true

RMR time series for frequency components below 6 day−1. Now let F be the

n × n matrix that filters out all frequency components above 6 day−1 upon

multiplication. That is, F = WTSW with W the Discrete Fourier Transform

matrix with elements wij = 1√
n
exp

(
−2π

√
−1 (i−1)(j−1)

n

)
[1], and S the diag-

onal matrix with elements sii = 1 when cos(2π i−1
n ) ≥ cos(2πTTEE

6
24·60 ), with

TTEE expressed in minutes, and sii = 0 otherwise. Note that F is symmetric

(FT = F) and idempotent (F2 = F). Since the true RMR time series are fil-

tered, we have v = Fv. Now let w = Fu be the filtered composite RMR time

series; we then define the decomposition of the time-dependent RMR estimation

error as

MSEtime−dep. =
1

n
(u− v)T (u− v)

=
1

n
((u−w)− (v −w))T ((u−w)− (v −w))

=
1

n
(u−w)T (u−w) +

1

n
(v −w)T (v −w) − 2

n
(u−w)T (v −w)

variance + bias + 0 (3)

Expression (3) shows that the total mean square estimation error of the time-

dependent RMR can be decomposed into a variance term and a bias term. The

fact that the third term in (3) is equal to zero follows directly from the properties

of F and v, namely (u−w)
T
(v −w) = uT

(
F− FTF

)
(v − u) = 0.

The variance part in (3) is defined as the MSE of the difference between

the composite RMR time series u and the filtered time series w, and quantifies

the variation in RMR between succeeding time points (i.e. from succeeding

downsampled datasets). It equals the power in the frequency components in u

above 6 day−1. We define the DIV for the time-dependent RMR as

DIVtime−dep. =

√
1

n
(u−w)

T
(u−w) (4)

Importantly, since u and w depend only on the time-dependent RMR estimates,

the variance term can be calculated from experimental data, i.e. in the case when

the actual time-dependent RMR v is unknown. Note that DIVav. is a specific

case of DIVtime−dep.; namely, DIVav. is equal to DIVtime−dep. with F filtering

out all frequencies above zero.
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