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SI Text
SI Methods Parametrization was based on that used in previous stu-
dies (1): Carbon atoms were modeled as uncharged Lennard–
Jones particles with σcc ¼ 3.400 Å and ϵcc ¼ 0.086 kcalmol−1,
corresponding to sp2 carbons in the AMBER99 force field.
Carbon–carbon bond lengths of 1.4 Å and bond angles of 120°
were maintained by harmonic potentials with spring constants of
938 kcalmol−1 Å−2 and 126 kcalmol−1 rad−2, respectively. In
addition, a weak dihedral angle potential was applied to bonded
carbon atoms. The carbon-water Lennard–Jones parameters were
σco ¼ 3.2751 Å and ϵco ¼ 0.114333 kcalmol−1. The parameters
for the functional groups COO− and NH3

þ were obtained from
the corresponding residues in the Amber force field, Glu and Lys,
respectively. The partial charges were modified to C(0.01360)-C
(0.80540)-O(-0.9095) in the carboxylate group and C(-0.01430)-
N(-0.3867)-H(0.457) in the amine group.

We used the water (SPC/E)/ion combination parameters
published by Joung and Cheatham (2) implemented in AM-
BER10 to prevent crystallization previously reported at high
concentrations with other parameter sets (3). The GAFF force
field was used for dioleoyl phosphatidyl choline lipids, employed
also in previous studies (4) from which we obtained a preequili-
brated membrane for subsequent replication. The bilayer was
replicated three times in x and y directions [or only twice in
the case of the potential of mean force (PMF) calculations], and
after carbon nanotube (CNT) insertion, the complete system was
solvated. Water in the hydrophobic region of the tails and also
inside of the CNT was removed, so that in the first step of the
simulation the channel was completely dry. The resultant system
was ionized using different salt concentrations (NaCl 1 M, KCl
1 M, and CaCl2 0.5 M). The initial size of the unit cell was equal
to 18.2 × 17.4 × 7.0 nm3 and contained 560 lipids and approxi-
mately 18,000 water molecules.

The equilibrium simulations were performed with the GRO-
MACS 4.0 (5) molecular dynamics program. All the systems were

partially optimized, thermalized, and equilibrated, followed by
unrestrained simulations for at least 30 ns (time step of 2 fs) for
each one of the systems studied. The constant pressure and tem-
perature canonical ensemble was employed with the pressure of
1 bar controlled using a semiisotropic Parrinello–Rahmanbaro-
stat (6), and the temperature of 300 K imposed by a Berendsen
(7) thermostat. The LINCS (8) algorithm was employed to re-
move the bond vibrations. The Particle Mesh Ewald method (9)
coupled to periodic boundary conditions was used to treat the
long-range electrostatics using a direct-space cutoff of 1.0 nm
and a grid spacing of 0.12 nm. Van der Waals interactions were
computed using periodic boundary conditions coupled to a sphe-
rical cutoff of 1.0 nm.

Poisson–Boltzmann calculations were carried out using the
software package APBS (10). These calculations were performed
as described in ref. 11. The program HOLE (12) yielded the ra-
dius profile of the CNT system and also provided sample points
along the pore axis at which to place the ion. The test ions were
assigned a Born radius of 0.1680 nm (for Naþ), 0.2172 nm (for
Kþ), 0.1862 nm (for Ca2þ ), and 0.1937 nm (for Cl−) (13). The
electrostatic binding energy of the ion was calculated at subse-
quent positions z as

ΔGB ðzÞ ¼ GporeþionðzÞ −Gion −Gpore: [S1]

The temperature was 300 K and the dielectric constant ϵp of
the pore was set to four, the ionic strength 0.15 M, and the
dielectric constant for the solvent was 78.5. For each data point,
the ion was placed at a sample point on the pore center line as
identified by HOLE. The sample points were 0.25 Å apart along
the z axis. The channel was contained in a coarse grid of dimen-
sions 15.1 nm × 15.2 nm × 6.7 nm3 and 289 points along the z
axis were used.
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Fig. S1. Numbers of cations and chloride ions inside the nanopores during equilibrium molecular dynamics simulations.
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Fig. S2. Radial distributions of cations (black), Cl- ions (red), and water (green).
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Fig. S3. Distributions of cations (red) and Cl− ions (black) along the long axis (z) of the nanopores. The selectivity filters are positioned at z ca. 0 nm.
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Fig. S4. Poisson–Boltzmann profiles for several ions for the pristine CNT (A) and those derivatized with 2 COO- C-2 (B), 4 COO- C-4 (C) 2 COO- plus 2 NHþ
3 C0 (D),

and 2COO- plus NHþ
3 ∕CH3 C-1 groups at the central position of the pore.
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Fig. S5. PMFs for single ions as a function of position along the z axis of the pore of C-1. The bilayer extends from z ca. −1.5 to þ1.5 nm. The selectivity filters
are positioned at z ca. 0 nm.
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Fig. S6. Coordination of ions inside the CNT in the PMF calculations.
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Fig. S7. Radial distributions of Naþ ions (black), Cl− ions (red), and water (green) for ions and water inside the nanotube in the vicinity of the selectivity filter,
i.e., jzj < 0.5 nm.

Table S1 Average number of ion within the nanopore for each simulation

Pristine C-4/E-4 C-2/E-2 C-1/E-1 C0/E0 C-EEEE C-DEKA

Central filter

NaCl 1 M
Naþ 3.5 (1.2) 8.6 (1.1) 6.2 (1.1) 5.3 (1.4) 5.2 (1.2) 7.0 (1.3) 4.8 (1.1)
Cl− 4.1 (1.2) 5.3 (1.1) 4.9 (1.2) 4.8 (1.4) 5.6 (1.2) 3.7 (1.3) 4.4 (1.0)

KCl 1 M
Kþ 4.8 (1.3) 9.8 (1.2) 7.4 (1.3) 6.4 (1.4) 5.6 (1.2) 7.0 (1.1) 5.2 (1.5)
Cl− 5.1 (1.3) 6.3 (1.2) 5.7 (1.2) 5.8 (1.4) 6.0 (1.2) 3.3 (1.1) 4.5 (1.5)

CaCl2 0.5 M
Ca2þ 1.1 (0.77) 4.0 (0.6) 3.03 (0.66) 2.9 (0.53) 1.8 (0.67) 3.2 (0.72) 2.3 (0.7)
Cl− 2.9 (1.4) 4.3 (0.98) 4.5 (1.2) 5.6 (1.1) 4.2 (1.1) 2.9 (1.2) 4.1 (1.1)

End filter

NaCl 1 M
Naþ

Same as above

8.4 (1.3) 6.2(1.3) 5.9 (1.1) 4.8 (1.5)
Cl− 5.3 (1.2) 4.6 (1.4) 5.0 (1.1) 4.7 (1.4)

KCl 1 M
Kþ 8.4 (1.5) 7.2 (1.3) 6.3 (1.3) 6.2 (1.4)
Cl− 5.2 (1.4) 5.7 (1.3) 5.5 (1.4) 6.2 (1.4)

CaCl2 0.5 M
Ca2þ 3.9 (0.52) 3.2 (0.62) 2.4 (0.66) 3.3 (0.75)
Cl− 3.7 (0.99) 4.4 (1.3) 3.3 (1.3) 5.6 (1.5)

Standard deviations are given in parentheses.

García-Fandiño and Sansom www.pnas.org/cgi/doi/10.1073/pnas.1119326109 10 of 11

http://www.pnas.org/cgi/doi/10.1073/pnas.1119326109


Table S2 Ion diffusion coefficients for selected simulations

Pristine C-2 C-4 C-0 C-1

Naþ 0.52 (±0.81) 0.40 (±0.65) 0.23 (±0.60) 0.47 (±0.77 0.24 (±0.51)
Cl− 0.56 (±0.86) 0.59 (±1.06 0.34 (±0.70) 0.76 (±1.02) 0.38 (±0.47)
Kþ 0.60 (±0.89) 0.39 (±0.74) 0.36 (±0.53) 0.29 (±0.50) 0.51 (±0.94)
Cl− 0.29 (±0.55) 0.58 (±0.96) 0.37 (±0.71) 0.44 (±0.85) 0.53 (±0.86)
Ca2þ 0.13 (±0.41) 0.014 (±0.053) 0.013 (±0.0.022) 0.0083 (±0.038) 0.011 (±0.0084)
Cl− 0.39 (±0.79) 0.73 (±0.95) 0.44 (±0.77) 0.56 (±0.97) 0.53 (±0.77)

The diffusion coefficients (D in units of 10−9 m2∕s) are given parallel to the nanopore axis (with standard
deviations in parentheses). For comparison, values for diffusion in bulk solution are Naþ 1.2, Cl− 1.8, Kþ 1.8,
and Ca2þ 0.53 × 10−9 m2∕s (1).
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