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Logistic regression models and tests

We aim to incorporate genotype scores, HWD parameters, LD measurements, and

dissimilarity-derived scores, and possibly their various combinations, as covariates

into logistic models, then characterize the Type I error and power properties. In

particular, we would like to assess whether such an expanded model and its associated

tests (e.g. SSU) can maintain high power by combining multiple types of information

in genotypic distributional differences between the case and control groups.

Suppose that X is an n × k genotype matrix with the dosage coding; that is,

Xil = 0, 1 or 2 represents the copy number of an allele in locus l for subject

i. We denote XX as the cross-product matrix with the ith row as (XX)i. =

(X2

i1, Xi1Xi2, ..., Xi1Xik, X
2

i2, Xi2Xi3, ..., X
2

ik). Suppose ZG, ZH1
and ZH2

are matri-

ces derived from similarity matrices SG, SH1 and SH2 respectively. We will consider

the following logistic regression models:

L1: Logit Pr(Y = 1) = β0 + Xβ1,

L2: Logit Pr(Y = 1) = β0 + Xβ1 + XXβ2,

L3: Logit Pr(Y = 1) = β0 + Xβ1 + XXβ2 + ZGβ3 + ZH1
β4 + ZH2

β5,

L4: Logit Pr(Y = 1) = β0 + Xβ1 + ZGβ3 + ZH1
β4 + ZH2

β5,

L5: Logit Pr(Y = 1) = β0 + Xβ1 + ZH2
β5,

corresponding to five null hypotheses:

H0,1: β1 = 0,

H0,2: β1 = 0 and β2 = 0,

H0,3: β1 = 0, β2 = 0, β3 = 0, β4 = 0, and β5 = 0,

H0,4: β1 = 0, β3 = 0, β4 = 0, and β5 = 0,

H0,5: β1 = 0 and β5 = 0.

Model L1, perhaps the most popular one in use, aims to detect the mean differ-

ence between the genotypes scores of the case and control groups. In addition to the

mean difference in genotype scores, model L2 incorporates the possible differences in
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HWD parameters (through the quadratic terms of the genotype scores) and in LD

patterns (through the pairwise cross-products or interactions of the SNPs) (Kim et al

2009). Model L3 aims to capture all four types of information: mean genotype scores,

HWD parameters, pairwise or two-way genotype score interactions, and high-order

interactions. Note that a dissimilarity matrix is regarded as representing some com-

plex high-order interactions among the SNPs. To reduce the number of parameters,

we also consider a more parsimoneous model L4 by eliminating the high-dimensional

XX from model L3. Since there may be some overlapping information in the use of

the three dissimilarity matrices while H2 performed best as shown by Lin and Schaid

(2009), a further simplified model is L5.

There are two ways to test each composite null hypothesis. The first is joint

testing: we test all the parameters simultaneously by applying a joint test, such

as the score, SSU or UminP test. The second is combining p-values of a test being

applied to multiple components of the entire parameter vector. For example, for H0,2,

the joint testing is to test its two components β1 = 0 and β2 = 0 at the same time

by applying a score test, a SSU test or a UminP test to model L2. As a comparison,

the second way is a two-step procedure: we first obtain a p-value for each of the two

components, β1 and β2, using any of the above tests, then combine the two p-values.

An advantage of the joint testing is the availability of asymptotic null distributions to

facilitate p-value calculations, in contrast to the use of permutations or simulations to

obtain p-values in combining p-values. A weakness of joint testing is possible loss of

power due to large DF, which may (or may not) be overcome by combining p-values.

Since the SSU will be shown to perform best, we only consider combining p-

values from the SSU tests. Given L p-values, p1,...,pL, obtained from L SSU tests

on individual components of a null hypothesis, we consider three popular methods of

combining the p-values:

• The MinP method: TMinP = min(p1, ..., pL).
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• Fisher’s (1932) method: TFisher =
∏L

j=1
pj.

• The truncated product method (TPM): TTPM =
∏L

j=1
pjI(pj < τ), where τ is

some cut-off; as in Zaykin et al (2002), we used τ = α = 0.05 throughout.

To obtain a p-value for each combining function, say C(p1, ..., pL), we can use

permutations by shuffling Y , which however is computationally demanding for its

requirement of fitting models many times. Here we propose using a simulation based

approach. First, we note that each individual test is based on a component of or

the whole score vector U . Second, because of the asymptotic null distribution of U

is known as U ∼ N(0, V ), we can simulate B iid copies of U b’s from N(0, V ) with

b = 1, 2..., B. Based on each U b, we can calculate individual p-values as pb
1
, ..., pb

L, and

thus C(pb
1
, ..., pb

L). Third, the p-value for C(p1, ..., pL) is simply
∑B

b=1
I[C(p1, ..., pL) <

C(pb
1
, ..., pb

L)]/B. We used B = 1000 for simulated data and B = 1E6 for the ALS

data.

Simulation results

Figure 1 shows the Type I error rates of various methods.

The left panel of Fig 2 shows that the permutation-based F-test in GDBR with

any similarity matrix (G or H1 or H2) had almost the same overall power as the

SSU test in the corresponding logistic regression model (i.e. with the corresponding

decomposed G or H1 or H2 matrix as predictors).

The middle panel of Fig 2 shows the overall power of the joint testing with the

SSU, score and UminP tests applied to models L1-L5. It can be seen that the SSU

test in model L4 had the highest power, though the SSU tests in models L1 and L5

has almost equally high power, closely followed by the UminP test applied to model

L1. Overall, for any given model, the SSU test yielded the highest power, followed

by UminP, and the score test performed badly. Again, as shown in Table 1, for a

candidate region, it is possible that the UminP test was more powerful than the SSU

test.
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The right panel of Fig 3 shows the performance of the three methods of combining

the p-values of the SSU test in models L2-L4. For the overall power, it is clear that

Fisher’s method performed best, followed by TPM and SSU. The minP method did

not work well, possibly due to the fact that each type of information (contained in each

component of a logistic regression model) contributed to disease-marker association,

which also explains why the SSU outperformed the UminP in the middle panel. For

Fisher’s method, model L3 gave the highest power with all types of information being

combined; in contrast, for the other two combining methods, the simpler model L5

yielded highest power.

In summary, in terms of the overall power, Fisher’s method in model L3 was most

powerful among all the tests, showing the power gain by combining multiple types of

information.

We also conducted stratified power analysis, and similar conclusions can be drawn

(Figs 3-5).

Results for ALS data

The results for all the nine SNPs are shown in Table 1.
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Table 1: P-values of the single-marker and multi-marker tests for the ALS data.

Logistic

Single-marker LD blk GDBR G H1 H2

SNP 1-DF 2-DF #SNPs G H1 H2 Score SSU UminP Score SSU UminP Score SSU UminP

rs4363506 3.64E-6 1.52E-6 3 < .001 < .001 < .001 1.64E-5 3.21E-6 2.44E-5 7.50E-5 3.82E-6 3.72E-5 0.0196 1.30E-5 0.0001

rs16984239 1.04E-5 1.36E-6 16 0.01 0.006 < .001 0.0003 0.0140 0.0015 7.16E-5 0.0110 5.20E-5 2.14E-5 1.00E-5 0.0002

rs12680546 0.0054 1.15E-5 11 < .001 < .001 < .001 0.0022 0.0039 0.0375 0.0019 0.0032 0.0356 0.0034 0.0025 0.0172

rs6013382 0.0096 6.31E-6 5 0.007 0.009 0.015 0.0151 0.0121 0.0430 0.0181 0.0106 0.0369 0.0195 0.0124 0.0270

rs2782931 0.3100 6.04E-6 19 0.513 0.534 0.708 0.0390 0.5464 0.0387 0.0479 0.5373 0.0116 0.6271 0.7420 0.2464

rs7976059 0.0008 6.56E-5 4 0.018 0.022 0.007 0.0037 0.0161 0.0061 0.0051 0.0192 0.0079 0.0057 0.0060 0.0531

rs10773543 0.0003 3.55E-5 2 < .001 < .001 < .001 0.0004 2.46E-5 7.62E-5 0.0002 1.53E-5 5.14E-5 0.0001 3.13E-5 0.0001

rs332389 0.8101 5.46E-6 4 < .001 < .001 < .001 4.92E-5 2.12E-6 8.25E-6 5.46E-5 2.56E-6 9.46E-6 0.0002 0.0002 0.0019

rs2767584 0.2083 0.0001 7 0.406 0.371 0.715 0.0233 0.3917 0.0049 0.4479 0.5967 0.3587 0.8152 0.8644 0.6478

Logistic: Joint testing

L1 L2 L3 L4 L5

SNP Score SSU UminP Score SSU UminP Score SSU UminP Score SSU UminP Score SSU UminP

rs4363506 3.90E-5 8.95E-6 1.57E-5 0.0034 6.12E-6 2.46E-6 0.0217 2.38E-6 1.09E-5 0.0217 1.99E-6 1.45E-5 0.0217 3.34E-6 1.02E-5

rs16984239 0.0124 0.0256 1.27E-5 0.0250 0.0106 1.45E-5 0.0279 0.0098 0.0002 0.0312 0.0128 7.09E-6 0.0208 0.0133 8.93E-6

rs12680546 0.0026 3.90E-5 2.17E-5 0.0841 0.0001 0.0024 0.0796 0.0001 0.0003 0.0187 4.43E-5 3.62E-5 0.0038 4.17E-5 7.33E-5

rs6013382 0.0031 0.0003 0.0002 0.0563 0.0003 0.0028 0.0442 0.0003 0.0017 0.0402 0.0003 0.0007 0.0115 0.0002 0.0004

rs2782931 0.1039 0.2543 0.0005 0.3178 0.2679 0.2854 0.3178 0.2706 0.0062 0.1510 0.2762 0.0014 0.1768 0.2719 0.0014

rs7976059 0.0012 0.0303 0.0190 0.0250 0.0772 0.0019 0.0142 0.0441 0.0390 0.0098 0.0150 0.0218 0.0012 0.0175 0.0437

rs10773543 5.98E-5 2.98E-6 2.23E-5 0.0006 2.49E-6 9.14E-6 0.0003 6.06E-7 0.0002 0.0003 8.63E-7 0.0002 0.0001 1.32E-6 4.71E-5

rs332389 0.0011 1.74E-6 1.01E-5 0.0281 2.67E-6 3.86E-5 0.0184 2.61E-6 3.15E-5 0.0056 1.68E-6 2.37E-5 0.0095 1.78E-6 2.38E-5

rs2767584 0.0025 0.0004 0.0005 0.0564 0.0005 0.0091 0.0458 0.0006 0.0008 0.0166 0.0008 0.0008 0.0056 0.0006 0.0008

Logistic: Combining SSU p-values

L2 L3 L4 L5

SNP minP Fisher TPM minP Fisher TPM minP Fisher TPM minP Fisher TPM

rs4363506 3.30E-5 <1E-6 <1E-6 3.00E-5 <1E-6 <1E-6 2.20E-5 <1E-6 <1E-6 2.60E-5 <1E-6 <1E-6

rs16984239 0.0204 0.0027 0.0015 1.00E-4 <1E-6 <1E-6 7.00E-5 <1E-6 <1E-6 4.30E-5 1.30E-5 7.00E-6

rs12680546 0.0001 2.00E-6 2.00E-6 0.0003 <1E-6 <1E-6 0.0002 <1E-6 <1E-6 0.0001 5.00E-6 5.00E-6

rs6013382 0.0007 2.00E-6 1.00E-6 0.0017 <1E-6 <1E-6 0.0013 3.00E-6 2.00E-6 0.0006 5.90E-5 4.00E-5

rs2782931 0.4423 0.2502 0.0930 0.7686 0.5915 0.2188 0.6914 0.6752 0.1794 0.4454 0.5113 0.0933

rs7976059 0.0581 0.0416 0.0584 0.0300 8.80E-5 3.60E-5 0.0241 5.20E-5 1.50E-5 0.0120 0.0018 0.0010

rs10773543 7.00E-6 <1E-6 <1E-6 1.10E-5 <1E-6 <1E-6 8.00E-6 <1E-6 <1E-6 7.00E-6 <1E-6 <1E-6

rs332389 1.00E-5 <1E-6 <1E-6 1.90E-5 <1E-6 <1E-6 1.30E-5 <1E-6 <1E-6 9.00E-6 <1E-6 <1E-6

rs2767584 0.0011 1.10E-5 9.00E-6 0.0026 0.0003 0.0001 0.0020 0.0170 0.0086 0.0010 0.0036 0.0022
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Figure 1: Empirical Type I error rates of various tests at the nominal level of 0.05 for

simulated data. In the left panel, methods 2-4 (or 6-8 or 10-12) correspond to the SSU,

multivariate score, and UminP tests respectively; in the middle panel, methods 1-5

(or 6-10 or 11-15) correspond to the SSU (or score or UminP) test applied to models

L1-L5 respectively; in the right panel, methods 1-4 (or 5-8 or 9-12) correspond to the

minP (or Fisher or TMP) for combining SSU p-values for models L2-L5 respectively.
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Figure 2: Empirical power of various tests from simulated data. In the left panel,

methods 2-4 (or 6-8 or 10-12) correspond to the SSU, multivariate score, and UminP

tests respectively; in the middle panel, methods 1-5 (or 6-10 or 11-15) correspond to

the SSU (or score or UminP) test applied to models L1-L5 respectively; in the right

panel, methods 1-4 (or 5-8 or 9-12) correspond to the minP (or Fisher or TMP) for

combining SSU p-values for models L2-L5 respectively.
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Figure 3: Empirical power of various tests from simulated data. Methods 2-4 (or 6-8

or 10-12) correspond to the SSU, multivariate score, and UminP tests respectively.
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Figure 4: Empirical power of various tests from simulated data. Methods 1-5 (or 6-10

or 11-15) correspond to the SSU (or score or UminP) test applied to models L1-L5

respectively.
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Figure 5: Empirical power of various tests from simulated data. Methods 1-4 (or 5-8

or 9-12) correspond to the minP (or Fisher or TMP) for combining SSU p-values for

models L2-L5 respectively.
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