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ABSTRACT

The complete nucleotide sequence (5845 nucleotides) of the genomic RNA
of the potexvirus white clover mosaic virus (WCIMV) has been determined from
a set of overlapping cDNA clones. Forty of the most 5'-terminal nucleotides
of WCIMV showed homology to the 5' sequences of other potexviruses. The
genome contained five open reading frames which coded for proteins of Mr
147,417, Mr 26,356, Mr 12,989, Mr 7,219 and Mr 20,684 (the coat protein).
The Mr 147,417 protein had domains of amino acid sequence homology with
putative polymerases of other RNA viruses. The Mr 26,356 and Mr 12,989
proteins had homology with proteins of the hordeivirus barley stripe mosaic
virus RNAB and the furovirus beet necrotic yellow vein virus (BNYVV) RNA-2.
A portion of the Mr 26,356 protein was also conserved in the cylindrical
inclusion proteins of two potyviruses. The Mr 7,219 protein had homology
with the 25K putative fungal transmission factor of BNYVV RNA-3.

INTRODUCTION

White clover mosaic virus (WCIMV) is a member of the potexvirus group,
an agronomically very important group of viruses with flexuous filamentous
particles. Potexviruses have one positive-sense genomic RNA that is 6-7 kb
long, capped, and polyadenylated (1-4). The genomic RNA directs synthesis in
vitro of a non-structural protein of Mr 150,000 (150K) to 180K (5-10). The
coat protein is translated from a polyadenylated subgenomic RNA of 0.8-1 kb
that 1is co-linear with the 3' terminus of the genomic RNA (8-11). This
subgenomic RNA is efficiently encapsidated by some, but not all, potexviruses
(5-12). Other putative subgenomic RNAs, less abundant than the coat protein
subgenomic RNA, have been reported 1in tissues infected with potexviruses
(8,10,12).

The nucleotide sequences of the 3' regions of the genomic RNAs of the
potexviruses potato virus X (PVX), potato aucuba mosaic virus (PAMV) and
WCIMV have been reported recently (13-15). Each virus has an open reading
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frame (ORF) coding for a protein of Mr 7,219 to Mr 7,667 located 5' to a coat
protein gene (13-15). To further elucidate the genetic organisation of
potexviruses, we have determined the complete nucleotide sequence of the
genomic RNA of WCIMV.

MATERIALS AND METHODS

cDNA cloning
Double-stranded cDNA corresponding to the 5'-terminal region of the

WCIMV genomic RNA was synthesized using oligo (dT);,-)g as a primer for first
strand synthesis, and a synthetic l16-mer corresponding to the 5'-terminal 16
nucleotides for second strand synthesis (16). cDNA clones to other regions
of the genome were synthesized using oligo (dT);,-;g or oligo (dG)j,-;g as
primers for first strand synthesis (16) and DNA polymerase I and ribonuclease
H (BRL) for second strand synthesis (17). The double-stranded cDNA was
dC-tailed, annealed to dG-tailed, PstI-cut pBR322, and transformed to E. coli
strain RR1 (9). cDNA inserts were excised from recombinant plasmids using
PstI, ligated to PstI-cut pUCl9, and transformed to E. coli strain MC1022.
RNA sequencing

The 5'-terminal sequence was obtained by enzymatic digestion (18) of
WCIMV RNA that had been terminally labelled (19) with guanylyltransferase
(BRL) following treatment with aniline to remove a putative cap structure
(20).
DNA sequencing

cDNA clones p8A, pI90, pl43, pIl06, pl4B and pMl were sequenced in pUC19
(21) using an overlapping set of deletions produced by sequential digestions
with exonuclease III and S1 nuclease (22). Sequence was obtained from one
direction for all clones, leading to at least two independent cDNAs being
sequenced for every region except for the 5' most 600 bp. This area, and
approximately 90% of the remainder of the virus, was sequenced in both
directions.

Nucleic acid and amino acid sequences were analysed using the University
of Wisconsin Genetics Computing Group programs mounted on a VAX 11/750
computer. Nucleic acid secondary structures were analysed using the program
FOLD. Amino acid homologies were determined with the programs COMPARE and
DOTPLOT (using a 30 amino acid window and a stringency of 8). Sequences were
aligned manually or with the program BESTFIT (gap weight 1-5, length weight
0.3).
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RESULTS
Sequence analysis of WC1MV RNA

Eight clones containing cDNA inserts which collectively spanned the
genomic RNA of WCIMV were selected for sequence analysis (Fig. 1). The
nucleotide sequence of clones p5-12 and pl4D which correspond to the
3'-terminal region has been presented elsewhere (15). In addition, 38
nucleotides from the 5' terminus of the viral genome were determined by
direct RNA sequencing using terminally-labelled RNA. The same 38 nucleotides
were found at one end of pA8, the 5'-most cDNA clone.

The nucleotide sequence of the genomic RNA, including the 3'-terminal
region, 1is presented in Fig. 2. The sequence contained 5845 nucleotides in
addition to a 3' tract of poly (A) of up to 300 nucleotides (9). This value
was close to the length of 6.2 kb estimated previously using RNA denatured
with glyoxal and dimethylsulphoxide (9). The base composition estimated from
the nucleotide sequence was 55.92% A+U and 44.087 G+C. These were close to
the values of 57.5% and 42.5% determined chromatographically (23).
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Fig. 1. The genome of white clover mosaic virus (WCIMV). (a) The location
of the cDNA clones used for sequencing the genome. The 3'-terminal clomes in
parentheses have been described elsewhere (15). (b) The location of five
major open reading frames on the WCIMV genomic RNA.
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Fig. 2. Nucleotide sequence of WCIMV. The complete DNA sequence of 5845
nucleotides derived from the clones shown in Fig. 1 1is presented. The
predicted amino acid sequences of the five open reading frames are shown
above the DNA sequence in single 1letter code. In additional clones, G
residues were found at positions 1640 and 3546. The alteration at position
1640 1is silent; the alteration at position 3546 would change the
corresponding amino acid from Thr to Ala.

Coding capacity of WCIMV genomic RNA

Computer analysis of the WCIMV sequence revealed five ORFs (Fig. 1b),
coding for proteins of Mr 147,417, Mr 26,356 and Mr 12,989, in addition to
the 7K and coat protein ORFs reported previously for WCIMV (15). The amino

acid sequences of all five proteins are shown in Fig. 2.

The 147K ORF began 108 nucleotides from the 5' terminus and terminated
with two in-frame UAG amber codons at nucleotides 3990 and 4080 and a UGA
codon at nucleotide 4104. The two possible read-through proteins terminating
at the second and third termination codons respectively had estimated Mr
values of 150,528 and 151,266. No evidence for readthrough in vivo or in
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Fig. 3. Conserved RNA sequences 5' of potexvirus open reading frames. The
nucleotide sequence is shown for the regions of the genomic RNA preceding the
initiation codons (underlined) of the WCIMV 26K protein, the WCIMV coat
protein (CP), and the potato virus X (PVX) coat protein. Boxes indicate
identical aligned nucleotides. Gaps (-) have been introduced for maximum
alignment of identical nucleotides.

WC1MV q“lIQ'l"‘""’ L AlILPTTDLRNDWTTKVPNLEQANPKTFEKALCQP 621
RN i (RN EEREREE]

TMV GVPGCGKTKEILSRVNFDEDLILVPGKQMEHIRRRANSSGK IVATKDNVKTVDSFHHNFG 893

* wx TS

*

WC1MV CGKIIVFDDYSKLPQGYIEAPLAXNQNVILAILTGDSKQSF HHESNEDAYTAT 682
Iz sle o f1: sl

TMV KSTRCQFKRLF!DEGLHLHTGC\’NFLVAHSLCEIAYVYGDTQQIPY!NRVSGFPY?AHF}\K 954

* xw * %

WCIMV LE. PSlNTYQPFCRY‘{LNITHRNKPDLANKLGVYSCSSGTTSFTHSSQALKGMPILSPSIH 742

I | I I
TMV LEVDEVETRRTTLRCPADVTHYLNRRYEGFVHSTSSVKKSVSQEHVGGAAV!NPISKPLHG 1015

WCIMV K........ KTALGEMG. QKSHTYAGCQGLTTKAVQILLDTNTP LCSSNVIYTALSR 790

| | |11 | : LIl
™MV KILTFTQSDKEALLSRGYSDVHTVHEVQGE'I‘YSDVSLVRLTPTPVSI IAGDSPHVLVALSR 1076
+  x

WCLMV PADFNSFILDEWNFNRTCFSN DFTAFDQSQDGSILQFEVIKAKFHNIPED!IEGYIQIK 1114
[NESEINEN. l:: 2] |1 il | |
TV PAQIEDFFGDLDSHVPHDVLELDISKYDKSQNEFHCAVEYEIWRRLGFEDI‘LGEVWKQGH 1423

+ A ++ + +

WClmv THAKIFLGTLSI...... HRLSGEGPTE’DANTEANIAYTHTKFNIPCDMQVYAGDDMSI 1168
I: | ol e sl sl
THV RKTTLKDYTAGI KTCIWYQRKSGDVTTFIGNTVIIAACLASNLPMERI KGAFCGDDSLL 1483
++

+ + A4 Rads s

© [ WCIMV 147K

I l . I TMY 183K

NH- 126K COOH-

Fig. 4. Amino acid homology between the WCIMV 147K protein and the tobacco
mosaic virus (TMV) 183K protein. Identical aligned amino acids are indicated
by vertical lines. Aligned residues with similar biochemical properties (32)
are indicated by double dots. 1In Fig. 4(a), asterisks below the sequences
indicate positions of residues conserved between the TMV protein and
non-structural proteins of three other RNA viruses (24). In Fig. 4(b),
asterisks denote positions of strictly conserved residues 1in the putative
RNA-dependent RNA polymerases of a larger sample of RNA viruses (26,27).
Plus signs denote positions of biochemically similar amino acids in these
putative polymerase enzymes (26,27). (c) Location of the homologous amino

acids. Shaded regions of homology in the proteins correspond to parts of the
figure above.
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vitro exists however. The 26K ORF began at nucleotide 3995 and extended into
the first 26 nucleotides of the 13K ORF. The 13K ORF began at nucleotide
4683 and extended into the first 77 nucleotides of the 7K ORF.

Computer analysis of the nucleotide sequence revealed two other ORFs
coding for proteins greater than 10K. One ORF encoded a protein of Mr
10,081, beginning at nucleotide 1360. It was entirely contained within the
147K ORF but was in a different reading frame. The other ORF encoded a
protein of Mr 20,625 on the negative strand.

The alignment of nucleotide sequences 5' to the initiation codons of the
26K and coat protein ORFs revealed a region of significant nucleotide
homology (Fig. 3). Twenty-six nucleotides were able to be aligned correctly
if four single gaps were introduced into a region of 38 positions. Similar
stretches of nucleotides were found upstream of the coat protein ORFs of PVX
(Fig. 3) and PAMV (13). This nucleotide sequence was not found preceeding
the WCIMV 13K and 7K ORFs.

Homology between WCIMV proteins and proteins of other viruses

The 147K protein. Computer analysis of the 147K protein revealed two domains

of homology with the 126K and 183K proteins of tobacco mosaic virus (TMV)
(Fig. 4) and the corresponding proteins of other RNA viruses. The domain
shown in Fig. 4(a), located between amino acids 571 and 790 of the WCIMV 147K
protein, contained 17 of the 27 amino acids that were conserved between the
corresponding domain of the TMV 126K/183K proteins and those of three other
RNA viruses (24). This domain of the TMV 126K/183K proteins, and the
corresponding protein domain of other RNA viruses, contained a putative
RNA-binding motif (25). A similar motif was found in a similar position in
the WCIMV 147K protein. A second domain on the WCIMV 147K protein was
homologous to the read-through region of the TMV 183K protein (Fig. 4(b)).
This domain contained all seven of the identical amino acids and 13 out of
the 19 biochemically similar amino acids, that were conserved between the
putative RNA-dependent RNA polymerases of RNA viruses (26,27). Included in
the homology was the invariant amino acid motif, GDD, found in all these RNA
polymerases.
The 26K protein. The 26K protein shared homology with a portion of the 58K
protein of barley stripe mosaic virus (BSMV; 28) RNAB, as shown in Fig.
5(a). Homology has previously been noted between the same region of the BSMV
58K protein and the 42K protein of beet necrotic yellow vein virus (BNYVV)
RNA-2 (29).

Fig. 5(b) shows a region conserved in the N-terminal portion of the
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Fig. 5. Homology between the 26K, 13K and 7K proteins of WCIMV and proteins
of other RNA viruses. (a) BESTFIT alignment of the WCIMV 26K protein and the
corresponding region of the 58K protein of barley stripe mosaic virus (BSMV)
RNAB. Symbols for amino acid homology are as in Fig. 4. (b) Homology
between the N-terminal portion of the WCIMV 26K protein, the corresponding
regions of the BSMV 58K protein and beet necrotic yellow vein virus (BNYVV)
42K protein, and portions of the cylindrical inclusion proteins (30,31) of
tobacco vein mottling virus (TVMV) and tobacco etch virus (TEV). (c)
Homology between a portion of the WCIMV 13K protein, the PVX 12K protein, the
14K protein of BSMV RNAB, and the 13K protein of BNYVV RNA-2. (d) Homology
between portions of the WCIMV 7K protein, PVX and potato aucuba mosalc virus
(PAMV) 8K proteins and the 25K protein of BNYVV RNA-3. 1In (b), (c) and (d),
boxes indicate identical aligned amino acids. Double asterisks denote
strictly conserved residues. Single asterisks denote aligned biochemically
similar residues (32) in all proteins. Plus signs in (b) denote identical
residues in four of the five proteins.

WCIMV 26K protein, the corresponding regions of the BSMV 58K protein and
BNYVV 42K protein, and in a portion of the polyproteins (probably the
cylindrical inclusion proteins) (30,31), of two potyviruses, tobacco vein
mottling virus (TVMV, 30) and tobacco etch virus (TEV; 32). A possible
mononucleotide-binding motif (33) was located in a similar position in the

conserved region of each protein. The conserved stretch of amino acids in
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Fig. 6. Analysis of the 5' terminal region of WCIMV RNA. (a) Possible
secondary structure formed by intrastrand base pairing of the terminal 132
nucleotides. (b) Alignment of the 40 terminal nucleotides of WCIMV with
those of the potexviruses, papaya mosaic virus (PMV) and PVX. The position
of a possible 7-methylguanosine cap structure at the 5' terminus of WCIMV RNA
is shown in parentheses.

the potyvirus polyproteins has recently been shown to be part of a large
region that was also conserved between two picornaviruses and a comovirus
(31). However, the homology between the picornavirus and comovirus proteins
and those of WCIMV, BSMV and BNYVV, was much more limited and did not
correspond to the conserved amino acids noted here between the latter three.

The 13K protein. A comserved region in the 13K protein of WCIMV, the 12K
protein of PVX (14), the 13K protein of BNYVV RNA-2 (34), and the 14K protein
of BSMV RNAS (28), is shown in Fig. 5(c). These small proteins of BSMV,
BNYVV and PVX had properties of membrane-bound proteins (14). Each protein
had two stretches of helical hydrophobic amino acids, separated by a stretch
of neutral or hydrophilic residues. The WCIMV 13K protein also contained two
hydrophobic areas of similar length and relative position to those in the
other three proteins. The region of homology between these proteins included
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the N-terminal hydrophobic area and part of the stretch of uncharged or
hydrophilic amino acids.
The 7K protein. Homology has previously been noted between the WCIMV 7K
protein and the 8K proteins of PVX and PAMV (15). 1In addition, these three
potexvirus proteins were all similar to a portion of the 25K protein of BNYVV
RNA-3 (35), as shown in Fig. 5(d).
The 5' and 3' termini

Similarity between the 5'-terminal regions of PMV and WCIMV was evident

in the possible secondary structures which can be formed. Using the UWGCG
FOLD program the terminal 132 nucleotides of WCIMV were aligned to give a
stable structure (-41.3 Kcal, see Fig. 6(a)) with two hairpin-like structures
similar to those reported for PMV (36). The 5'-terminal region has been
implicated as the origin of assembly of the potexvirus papaya mosaic virus
(PMV;36). The sequence of the 40 nucleotides at the 5' terminus of these two
viruses, and of PVX (37), were very similar, as shown in Fig. 6(b). However,
the WCIMV and PVX 5' terminal sequences lacked the consecutive repeating
pentamers present in this region of PMV RNA (36).

The 60 nucleotides adjacent to the 3'-terminal poly (A) tract of WCIMV
RNA and the predicted 60 nucleotides at the 3' terminus of the negative
strand contained respectively 4327 and 487 of U residues. Both strands
contained the sequence UUCUGUUUA, separated by 12 nucleotides from the
3'-terminal poly (A) tract of the genomic strand and by 21 nucleotides from
the 3' terminus of the negative strand. A small amount of additional
homology also occurred 5' to this motif. This homology may be important for
viral RNA replication.

DISCUSSION

This paper describes the complete nucleotide sequence of a potexvirus
for the first time. The genomic RNA of WCIMV contained 5845 nucleotides and
a tract of poly (A) residues. ORFs coding for proteins of 147K, 26K, 13K, 7K
and the coat protein extended from nucleotide 108 to 109 nucleotides from the
3' poly (A) tract.

The 147K ORF probably corresponds to an in vitro tramnslation product of
160K which is synthesized from the genomic RNA (9). 1In addition, hybrid-
arrested translation experiments (results not presented) supported this
conclusion. The homology between the 147K amino acid sequence and the TMV
126K and 183K proteins and other putative RNA-dependent RNA polymerases
suggested a similar function for the WCIMV 147K protein.
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There was no direct experimental evidence for the existence of protein
products from the 26K, 13K and 7K ORFs. However, the homology observed
between the predicted amino acid sequences of these proteins and other viral
proteins suggested that these ORFs do code for functional proteins.
Available evidence suggested that the smaller proteins of WCIMV were
translated from subgenomic RNAs. The sequence of highly conserved
nucleotides upstream of the ORFs for the coat protein and 26K ORFs of WCIMV,
and the coat protein ORFs of other potexviruses, may be part of a subgenomic
promoter.

The function of the 26K protein 1is unknown. However, the potyvirus
cylindrical inclusion proteins, which had homology with the 26K protein, were
suggested to have had a role in cell-to-cell movement on the basis of their
association with plasmodesmata early in the infection process (38).

No functions have yet been ascribed to the 12K to 14K putative membrane-
bound proteins of PVX, BSMV and BNYVV. Therefore, we cannot infer a function
for the 13K ORF of WCIMV. However, the 25K protein of BNYVV RNA-3, which had
homology with the 7K and 8K proteins of potexviruses, was thought to be
directly involved in the natural infection of BNYVV by the fungal vector
Polymyxa betae (39). On the basis of the homology between the 7K protein of
WCIMV and both the 25K protein of BNYVV and the 8K protein of PVX, another
virus for which a fungal vector has been reported (40), we predict that WCIMV

may also have a fungal vector. However, the role of Synchytrium endobioticum

as a PVX vector 1is no longer certain (41). Although WCIMV spreads naturally
in the field (P.R. Fry, pers. comm.), no vector has yet been identified.

As might be expected, all of the protein sequences available from four
potexviruses showed a degree of similarity. Homology has been noted between
the coat proteins (14,15), 7K and 8K proteins (14,15) and the 12K and 13K
proteins. In addition to the protein homology, the 5' termini of the three
potexviruses reported to date also shared homology and were able to form
similar secondary structures.

The inter-viral comparisons between the smaller potexvirus proteins
described in this paper and elsewhere (14,15) suggested that the potexvirus
group may be similar to the potyviruses, the hordeiviruses and the
furoviruses. For example, the 26K protein of WCIMV showed homology between
all these groups and the 12K and 13K proteins of potexviruses had homology to
the hordeiviruses and furoviruses. The coat proteins of the potexviruses
also had homology to the coat proteins of the potyvirus group (14,15) but not
to the coat proteins of the other two groups, while the 7K and 8K proteins of
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the potexviruses may be related to the 25K protein of the furovirus BNYVV.
However, taken together, the genome size, the number and nature of the ORFs,
and the RNA terminal structures clearly distinguish potexviruses from all

other RNA viruses.
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