Heterologous expression of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes from a novel pyrene-degrading Betaproteobacterium

David R. Singleton¹, Jing Hu¹, Michael D. Aitken¹

¹Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA

Figure S1. Contig size versus G+C% for the metagenomic library. Contigs putatively assigned to PG1 (>10kbp) are light grey circles. All other contigs are black circles.

Figure S2. Neighbor-joining 16S rRNA gene tree showing Betaproteobacterial sequences with similarity to the PG1 sequence recovered from the metagenomic library (bold). The PG1 representative sequence from the prior SIP experiment with $[U^{-13}C]$ pyrene is underlined. Open and closed circles at nodes indicate $\geq 95\%$ and $\geq 50\%$ bootstrap support, respectively. GenBank accession numbers are indicated in parentheses. *Ralstonia solanacearum* was used as an outgroup.

Table S1. PCR primers used during this study

Name	Sequence (5' to 3') ^a	Source	R.E. ^b	Target
341FGC	[GC clamp] CCT ACG GGA GGC AGC AG	Muyzer et	-	Bacterial 16S rRNA
517R	ATT ACC GCG GCT GCT GG	al., 1993 [°]	-	gene for DGGE
Ferre_F	GAG A <u>GG ATC C</u> TA GAG AAG GAA ATT GAT GTA TGA ATA CTC GTG TAA AAG	This study	BamHI	ORF_129290
Ferre_R	TCT C <u>AG ATC T</u> TT ACG CTT CCA CTT CCG CCT C	This study	BglIII	Ferredoxin
Reduc_F	GAG A <u>AG ATC T</u> AG AAG GAT CCT GAT TTA TGG AAA CTG GTT TTT CGA TC	This study	BglIII	ORF_129230
Reduc_R	TCT C <u>CT GCA G</u> TT AAT AAA AAC GGT CGA AAT GC	This study	PstI	Reductase
RHD-1_F	GAG A <u>CT GCA G</u> AG AAG GAA GCC CTA TCA TGT TAA ATA TTG AAA GTC TG	This study	PstI	ORF_129020, ORF_128980
RHD-1_R	CTC T <u>CC ATG G</u> TT ACA ACA TGA AGT TGA GAT TTT TAC C	This study	NcoI	RHD α/β subunits
RHD-2_F	GAG A <u>CT GCA G</u> AG AAG AAG GAG TTG ATA TGA CAA ACG TGA GTT CGT TA	This study	PstI	ORF_11620, ORF_11630
RHD-2_R	CTC T <u>CC ATG G</u> TT AAA ATA AAG TGT TCA TGT TGC TAT C	This study	NcoI	RHD α/β subunits
RHD-3_F	GAG A <u>CT GCA G</u> AG AAG AAG AGA GTG AAA TGG TCG ATG TAA ATA GTC TG	This study	PstI	ORF_11730, ORF_11740
RHD-3_R	CTC T <u>CC ATG G</u> CT ACA TCG GGA AGT TAT GGT TCT TGC C	This study	NcoI	RHD α/β subunits
RHD-4_F	GAG A <u>CT GCA G</u> AG AAG AAG GAG TTG GCA TGA ATA AGC TTG AAG GCT TG	This study	PstI	ORF_92190, ORF_92180
RHD-4_R	CTC T <u>CC ATG G</u> TT AAA AAA ATG TGT TCA TGT TGC TGT C	This study	NcoI	RHD α/β subunits
RHD-5_F	GAG A <u>CT GCA G</u> AG AAG AAA GGT GAA TAA TGA CAA GCT TTA ACT ATC AG	This study	PstI	ORF_117570, ORF_117560
RHD-5_R	CTC T <u>CC ATG G</u> TC AGA AAA ACA TGT TCA GAT TTT TAT C	This study	NcoI	RHD α/β subunits
RHD-6_F	GAG A <u>CT GCA G</u> AG AAG AAG ATA CTG CAA TGA AAA TTG AAA AAT TCA AG	This study	PstI	ORF_124010, ORF_124000
RHD-6_R	CTC T <u>CC ATG G</u> CT ACA AAT ATA TGT TGA GGT TTT TGC T	This study	NcoI	RHD α/β subunits
RHD-7_F	GAG A <u>CT GCA G</u> AG AAG AAA TTA CAC ATA TGA CTT CGC TGA AGC CAA CC	This study	PstI	ORF_129790, ORF_129800
RHD-7_R	CTC T <u>CC ATG G</u> TT AGA GAA TGC TGG CCA TAT TGG GCA T	This study	NcoI	RHD α/β subunits
RHD-8_F	GAG A <u>CT GCA G</u> AG AAG AAA GGC GGT GCA TGG GTG ATT TCG ACG CGT TA	This study	PstI	ORF_129740, ORF_129750
RHD-8_R	CTC T <u>CC ATG G</u> TT ACA GGA TAA ACA ACA AAT TTT TTC C	This study	NcoI	RHD α/β subunits

^a Underlined regions indicate restriction sites

^b Restriction enzyme targeting the indicated site

^c Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.

For comprehensive targeting of dioxygenase clades (Iwal et al., 2011, Appl. Environ, Microbiol, 77:5551-7)							
DP1, Rieske_f	ARHD2R						
T G Y M G N C A Y M G N G G mismatches	AANTKYTCNGCNGSNRMYTTCCA mismatches						
PG1_pahAc1GC 2	PG1_pahAc1 1						
PG1_pahAc2C 1	$PG1_pahAc2 - C A A 3$						
PG1_pahAc3C 1	PG1_pahAc3 A T 2						
PG1_pahAc4C 1	PG1_pahAc4 -CAG 3						
PG1_pahAc5C 1	PG1_pahAc5 GC A 3						
PG1_pahAc6C 1	PG1_pahAc6 A C 2						
PG1_pahAc7C 1	PG1_pahAc7 – T – – – – – – – – – G – – – – – 2						
$PG1_pahAc8TC2$	PG1_pahAc8 C T 2						
PpG7_nahAc 0	PpG7_nahAc 0						
Mv_nidA 0	Mv_nidA 2						

Table S2. Mismatches of PG1 RHD α -subunit nucleotide sequences to recommended PCR primer pairs For comprehensive targeting of dioxygenese clodes (Jwei et al. 2011, Appl. Environ, Microbiol, 77:3551, 7

For determination of a Rieske Center (Iwai et al., 2011. Appl. Environ. Microbiol. 77:3551-7)

	DP1, Rieske_f	Nah-for				
	TGYMGNCAYMGNGG mismatches		TGCMVNTAYCAYGGYTGG mismatches			
PG1_pahAc1		PG1_pahAc1	T 1			
PG1_pahAc2	1	PG1_pahAc2	0			
PG1_pahAc3	1	PG1_pahAc3	T 1			
PG1_pahAc4	C 1	PG1_pahAc4	T 1			
PG1_pahAc5	C 1	PG1_pahAc5	T 1			
PG1_pahAc6	1	PG1_pahAc6	0			
PG1_pahAc7	C 1	PG1_pahAc7	0			
PG1_pahAc8	TC 2	PG1_pahAc8	0			
PpG7_nahAc	0	PpG7_nahAc	0			
Mv nidA	0	Mv nidA	0			

For PAH-Gram Negative-type dioxygenases (Iwai et al., 2011. Appl. Environ. Microbiol. 77:3551-7)

	Ac596R	NAPH-2R			
	CRGGTGYCTTCCAGTTG mismatches		ATSTCTTTTCBAC mismatches		
PG1_pahAc1	-C 2	PG1_pahAc1	TC		
PG1_pahAc2	ACAA 4	PG1_pahAc2	G-CAG-4		
PG1_pahAc3	-CGT 3	PG1_pahAc3	TCA3		
PG1_pahAc4	-CCAGT 5	PG1_pahAc4	G 1		
PG1_pahAc5	CAAT 4	PG1_pahAc5	ACGCACA 7		
PG1_pahAc6	CCGAAA 6	PG1_pahAc6	A-TCG-T5		
PG1_pahAc7	-C-CAAG 5	PG1_pahAc7	-AT G 3		
PG1_pahAc8	-CCT 3	PG1_pahAc8	A 1		
PpG7_nahAc	0	PpG7_nahAc	0		
Mv_nidA	C 2	Mv_nidA	GCAGCG 6		

For PAH-Grain Positive-type dioxygenases (Iwar et al., 2011, Appl. Environ. Microbiol. 77:5551-7)							
	nidA-forward pdo1-r						
	ATGACCACCGAAACAACCGGAACAGC		CTGACCCATGTA	ATTCCAGCC			
PG1_pahAc1		PG1_pahAc1	TCTG	GC-AT			
PG1_pahAc2		PG1_pahAc2	GCAT C	GCTT			
PG1_pahAc3		PG1_pahAc3	TCAG AA-	-CGC - AT			
PG1_pahAc4		PG1_pahAc4	GCAT C	G T T			
PG1_pahAc5		PG1_pahAc5	-CAT CC	GCA-FCC			
PG1_pahAc6	-TGAA - TT - A	PG1_pahAc6	TCCG- A-T	ΓCAT CAAG			
PG1_pahAc7	А	PG1_pahAc7	-CTG- A-C	G-AT TCGG			
PG1_pahAc8		PG1_pahAc8	- C A G - A - T	$\Gamma - C - T - GT$			
PpG7_nahAc		PpG7_nahAc	(G-G-T-GT			
Mv_nidA		Mv_nidA					
Blanks indicate no equivalent nucleotide position in those genes Blanks indicate no equivalent nucleotide position in those genes							
For PAH-G	ram negative-type dioxygenases (Cébron et al.,	2008. J. Mic	robiol. Methods 73:	:148-59)			
	PAH-RHDa GN F		PAH-I	RHDa GN R			
	GAGATGCATACCACGTKGGTTGGA mism.		AGCTGTTGTTCC	GGGAAGAYWGTGCMGTT <i>mism</i> .			
PG1_pahAc1	-C 4	PG1_pahAc1	GAAA	T-GCG-A9			
PG1_pahAc2	-CC-GCT 6	PG1_pahAc2	CTGCA A-C-G-	A C CA 12			
PG1_pahAc3	-T - C - C - C T C 5	PG1_pahAc3	GA	-A - A - C - ACG - A - 10			
PG1_pahAc4	-C GC TT - A C T 8	PG1_pahAc4	CTGCA G-C-G-	C A 10			
PG1_pahAc5	-GC - GC C - CC G 8	PG1_pahAc5	TTGCA GG-	CGCCAATA-G 16			
PG1_pahAc6	-T 5	PG1_pahAc6	-CGA-ACA	AC-ACGGA 13			
PG1_pahAc7	CT A - T T T TT - GCTG 12	PG1_pahAc7	-AGAA AA	CCCCC 11			
PG1_pahAc8	-CATGTC 6	PG1_pahAc8	- T G A A G -	GCA-C 9			
PnG7 nahAc	-G 1	PpG7_nahAc	Τ	A G 3			
1 po/_name	6	. —					
Mv_nidA	-CCT - C ACCCTC - TTG 13	Mv_nidA	T - TGCC - G	-CG - G - CAC - TT - A - 15			

DATE

PpG7_nahAc: Pseudomonas putida G7, nahAc geneMv_nidA: Mycobacterium vanbaalenii PYR-1, nidA gene

		Figure		GenBank	% a.a.	% a.a.	
Contig	ORF	Label ^a	Strongest BLASTP Match	Accession	Identity	Similarity	Gene ^b
00018	11620	А	Novosphingobium sp. PP1Y; RHD α-subunit	CCA92463	72	84	pahAc2
	11630	В	Sphingobium yanoikuyae; RHD β -subunit	ABM79808	56	71	pahAd2
	11640	С	Burkholderia sp. Ch1-1; Rieske (2Fe-2S) iron-sulfur domain protein	EFG65990	67	81	-
	11650	D	Pseudoxanthomonas spadix BD-a59; small subunit aromatic oxygenase	EHB93918	54	73	
	11660	Е	Pseudoxanthomonas spadix BD-a59; small subunit aromatic oxygenase	EHB93991	53	72	
	11670	F	Sphingomonas sp. CHY-1; salicylate 1-hydroxylase α -subunit	CAG17582	63	77	
	11680	G	Rhizobiales bacterium HF4000_48A13; phenylpropionate dioxygenase α-subunit	ADI19681	55	71	
	11700	Н	<i>Novosphingobium</i> sp. PP1Y; aromatic-ring-hydroxylating dioxygenase β-subunit	CCA92441	57	73	
	11710	Ι	Alteromonas sp. SN2; hypothetical protein ambt_17905	AEF05080	37	58	
	11720	J	Alteromonas sp. SN2; protocatechuate 4,5-dioxygenase β-subunit	AEF05079	52	73	
	11730	Κ	Burkholderia sp. DBT1; DbtAc	AAK62353	65	82	pahAc3
	11740	L	Burkholderia sp. DBT1; DbtAd	AAK62354	50	68	pahAd3
05319	92200	А	Thauera sp. MZ1T; short-chain dehydrogenase/reductase SDR	ACR01697	49	61	
	92190	В	Novosphingobium sp. PP1Y; RHD α-subunit	CCA92463	74	85	pahAc4
	92180	С	<i>Sphingobium yanoikuyae</i> ; RHD β-subunit	ABM79808	58	73	pahAd4
	92170	D	Burkholderia sp. Ch1-1; Rieske (2Fe-2S) iron-sulfur domain protein	EFG65990	70	82	
	92160	E	Pseudoxanthomonas spadix BD-a59; small subunit aromatic oxygenase	EHB93918	52	71	
	92150	F	Pseudoxanthomonas spadix BD-a59; small subunit aromatic oxygenase	EHB93991	55	75	
	92140	G	Sphingomonas sp. CHY-1; salicylate 1-hydroxylase α-subunit	CAG17582	64	80	
	92130	Н	Acinetobacter baumannii AB0057; RHD Rieske	ACJ41568	41	57	
	92120	Ι	Sphingomonas wittichii RW1; aromatic RHD, β-subunit	ABQ68235	39	53	
	92110	J	Lutiella nitroferrum 2002; carboxymuconolactone decarboxylase	EEG08881	36	57	
	92100	K	Halanaerobium hydrogeniformans; hypothetical protein Halsa_0924	ADQ14370	27	43	
05407	118500	А	Ralstonia pickettii 12D; sigma54 specific transcriptional regulator Fis family	ACS64822	48	65	
	117610	В	Burkholderia sp. Ch1-1; Rieske (2Fe-2S) iron-sulfur domain protein	EFG68719	32	48	
	117600	С	Frankia sp. EuI1c; hypothetical protein FraEuI1c_5528	ADP83514	38	63	
	117590	D	Caulobacter sp. K31; short-chain dehydrogenase/reductase SDR	ABZ71049	52	66	
	117580	Е	Methylobacterium nodulans ORS 2060; glutathione S-transferase domain protein	ACL56876	40	56	
	117570	F	Novosphingobium sp. PP1Y; RHD α-subunit	CCA92463	52	69	pahAc5
	117560	G	<i>Sphingopyxis macrogoltabida</i> ; RHD β-subunit	AAN26444	37	59	pahAd5
	117550	Η	Bordetella petrii; similar to glucose 1-dehydrogenase	CAP41850	50	66	
	117540	Ι	Rhodococcus jostii RHA1; flavin-binding monooxygenase	ABG95240	66	79	
05425	124030	А	Methylovorus sp. MP688; DNA helicase/exodeoxyribonuclease V, subunit B	ADQ84475	38	54	
	124020	В	Dechloromonas aromatica RCB; UvrD/REP helicase	AAZ45225	48	61	
	124010	С	Sphingobium sp. HV3; large subunit aromatic oxygenase	CAM32403	79	86	pahAc6
	124000	D	Novosphingobium sp. PP1Y; 3-phenylpropionate dioxygenase β-subunit	CCA93888	71	84	pahAd6
	123990	E	Novosphingobium sp. PP1Y; fatty acid desaturase	CCA93889	46	61	

Table S3. Proteins from GenBank with highest similarity to predicted RHD protein sequences and other ORFs

		Figure		GenBank	% a.a.	% a.a.	
Contig	ORF	Label ^a	Strongest BLASTP Match	Accession	Identity	Similarity	Gene ^b
05431	129310	А	Pigmentiphaga sp. NDS2; putative LysR-type transcriptional regulator	BAC53588	50	71	
	129290	В	Burkholderia sp. DBT1; initial dioxygenase ferrodoxin DbtAb	AAK96190	61	80	pahAb
	129280	С	Burkholderia sp. DBT1; putative monoxygenase α -subunit	AAK96191	85	93	
	129270	D	Burkholderia sp. DBT1; putative hydrolase	AAK96192	70	82	
	129230	E	Cycloclasticus sp. P1; PAH dioxygenase component ferredoxin reductase	ABF56512	52	69	pahAa
	129130	F	Burkholderia sp. Ch1-1; dihydrodipicolinate synthetase	EFG65992	80	91	-
	129090	G	Acidovorax sp. NA3; putative 2-hydroxychromene-2-carboxylate isomerase	ACG70975	52	68	
	129020	Н	Burkholderia sp. DBT1; DbtAc	AAK62353	67	82	pahAc1
	128980	Ι	Burkholderia sp. DBT1; DbtAd	AAK62354	50	70	pahAd1
	129200	J	Methyloversatilis universalis FAM5; putative cox2 cytochrome oxidase subunit 2	EGK69739	49	62	
	129300	Κ	Methyloversatilis universalis FAM5; hypothetical protein METUNv1_03703	EGK69740	50	65	
05432	129870	А	Methylibium petroleiphilum PM1; conserved hypothetical protein	ABM95224	44	64	
	129840	В	Sphingopyxis macrogoltabida; cis-dihydrodiol dehydrogenase	AAN26445	66	80	
	129770	С	Azoarcus sp. BH72; conserved hypothetical flavin reductase	CAL94579	59	74	
	129780	D	Burkholderia sartisoli; catechol 2,3-dioxygenase	AAF02426	75	85	
	129790	E	Sphingomonas sp. P2; RHD α-subunit	BAC65448	42	57	pahAc7
	129800	F	Azotobacter vinelandii DJ; Aromatic-RHD, β-subunit	ACO80345	35	51	pahAd7
	129810	G	Mycobacterium vanbaalenii PYR-1; succinate dehydrogenase/fumarate reductase	AAT51748	67	81	
	129820	Н	Mycobacterium sp. KMS; 4Fe-4S ferredoxin, iron-sulfur binding domain protein	ABL90868	63	72	
	129830	Ι	Mycobacterium rhodesiae NBB3; hypothetical protein MycrhNDRAFT_2578	EHB48945	51	68	
	129850	J	Mycobacterium rhodesiae NBB3; Rieske (2Fe-2S) iron-sulfur domain protein	EHB48946	66	80	
	129860	K	Sphingomonas wittichii RW1; aromatic RHD, β-subunit	ABQ67262	47	62	
	129720	L	Mycobacterium rhodesiae NBB3; L-threonine 3-dehydrogenase	EHB48944	54	68	
	129730	Μ	Burkholderia sartisoli; unknown	AAF02431	64	74	
	129740	Ν	Delftia sp. Cs1-4; naphthalene 1,2-dioxygenase	AEF88772	52	71	pahAc8
	129750	0	Burkholderia sartisoli; dioxygenase β-subunit PhnAd	AAD09873	44	62	pahAd8
	129760	Р	Pseudoxanthomonas spadix BD-a59; xylene monooxygenase	EHB93984	36	52	

^a As designated in Figure 3. ^b Name of gene from this study.