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S3. Young’s modulus calculation using Hertz model 28 
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S1. Justification of the loading force magnitude in the AFM force measurement 37 

A maximum loading force of 4 nN was chose to push the tip against the cell surface 38 

to measure the surface hardness.  We intend to measure the indentation for the 39 

tip-membrane interactions instead of measuring the interaction forces on the outside layer 40 

of the cell (e.g., surface appendages–pili or surface brushes).  This is partly because the 41 

physical disruption from hematite exposure likely altered the mechanical properties of the 42 

cell membrane (2, 6, 7, 9, 11), which is beneath the tightly packed lipopolysaccharide 43 

(LPS) molecules and mainly determines the mechanical response.  More importantly, 44 

through changing the adhesiveness or mechanical properties, the sorption of hematite NPs 45 

could disrupt the integrity of the cytoplasm membrane structure (4).  Thus, quantifying 46 

the membrane property is more relevant in this study.  Since Velegol and Logan indicated 47 

that in the nonlinear regime the tip contacted the outer membrane but had yet to encounter 48 

the stiff peptidoglycan layer (12), we applied a relatively high loading force (~nN) in an 49 

effort to engage the tip with the membrane membrane regions, which was also suggested 50 

previously (13).  As seen from the compliance curve in Fig. 3, the 4-nN loading force led 51 

to a linear regime that indicates the tip contact with the inner membrane.   52 

53 
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S2. SEM analysis 54 

 55 

 56 
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 64 

 65 

Fig. S1 SEM images of E. coli cells with adsorbed hematite NPs.  The enlarge area of 66 
the red box is also shown in Fig. 1c. 67 

 68 

69 

Hematite merged with 

EPS. 
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S3. Young’s modulus calculation using Hertz model 70 

The hardness of the cells can be evaluated by the Hertz model as expressed below:  71 
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                 (S1) 72 

where F is the loading force exerted by the tip on the surface (nN), Rc is the radius of tip 73 

curvature (approximately 20 nm as provided by the manufacture), E is the reduced 74 

Young’s module of E. coli cells (Pa), v is the Poisson’s ratio (usually set to 0.5) (3, 10), 75 

and δ is the indentation (nm).  The calculated Young’s module of E. coli cells was in the 76 

range of 52.7 kPa to 0.38 MPa, which is lower than the reported values of ~25 MPa (1, 77 

14).  The discrepancy could be ascribed to the uncertainties in the radius of the tip 78 

(usually varies with different batches of manufacturing) and in the measurement 79 

indentation.   80 

81 
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S4. Electrophoretic mobility (EPM) measurement and PSD changes over different 82 

sorption time 83 

Because the von Smoluchowski equation is valid for particles with uniform surface 84 

charge density, which is not true for bacteria, and moreover, the exact location of the 85 

shear plane for E. coli cells is hard to determine.  Therefore, the EMP measurement is 86 

directly presented here in addition to zeta potentials and again, the EMP values of E. coli 87 

cells were not significantly different over different exposure time.  A detailed 88 

interpretation of the EPM changes is difficult and beyond the scope of this study.  89 

However, it is clear that the gradual increase in EPM is probably caused by the increase 90 

of the global electrostatic charge due to the progressive coverage of NPs (5).  91 

Table S1 EPM measurements 92 

 
Hematite NPs 
in PBS 

E. coli cells 
in PBS 

1 min 
exposure 

5 min 
exposure  

15 min 
exposure 

45 min 
exposure  

EPM, 
µm/s/(V/cm) 

-3.78±2.37 -0.32±0.00 -2.16±1.28 -1.73±1.23 -2.27±1.3 -1.97±1.23 

 93 
94 
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 100 
 101 
 102 
 103 
 104 
 105 
 106 
 107 
 108 
Fig. S2 Modality of PSD of the bacterial suspension at different exposure or adsorption 109 
times.  110 

 111 
 112 

113 
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S5. Histogram of surface potential distribution of hematite NPs. 114 
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 126 
 127 
Figure S3. Histogram of the surface potential distribution measured from 50 NPs 128 
randomly chosen from Figure 5b. 129 

130 

Mean: - (809±145) mV 
Peak: -800 mV 



9 
 

S6. More images of E. coli cells using KPFM 131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 

Figure S4. AFM images of E. coli cells. (a)-(c) are topography, (d)-(f) are phase, and 147 
(g)-(h) are surface potential images. The left column images were taken after drying for 148 
approximately 15 min; the middle column, 30 min; and the right column, 45 min. The 149 
scan area of each image is 5 µm × 5 µm. The red arrows point at a tail-like flagella. 150 

151 

15 min 30 min  45 min 
(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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(a) 

S7. Correlation between adsorbed mass of hematite NPs and surface potentials of E. 152 
coli cells 153 

As discussed previously, the surface potential decrease of E. coli cells should be 154 

caused by the adsorption of hematite NPs.  Detailed adsorption kinetics of hematite NPs 155 

on E. coli cells has been investigated previously (15).  Here we further used KPFM to 156 

determine the surface potentials of E. coli cells by randomly selecting 10 positions in the 157 

cell surface at different exposure time and then obtained the average surface potentials.  158 

Figure S5 plotted the average surface potentials at different exposure time versus the 159 

estimated corresponding mass of hematite NPs per E. coli surface area.  The surface 160 

area that was available for hematite adsorption was estimated as follows: a single E. coli 161 

cell has 2.5×10-13 g volatile suspended solid (VSS) and a volume of 6×10-12 m2 (8).  In 162 

each test tube, approximately 0.1 mg/ml E. coli cells were dispersed in a total volume of 163 

10 ml suspension; thus, approximately 1 mg E. coli cells were present in each test tube, 164 

corresponding to 4.0×109 cells and 0.024 m2 surface area that is available for the 165 

adsorption of hematite NPs.  With the quantification of hematite loss in the aqueous 166 

phase of the 10-ml test tube, we could determine the adsorbed mass of hematite divided 167 

by the total surface area (0.024 m2).  Apparently, as the hematite NP adsorbed on the 168 

cell surfaces, the average surface potential dropped significantly in a non-linear fashion.   169 

170 
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 173 
 174 
 175 
 176 
 177 
 178 
 179 
  180 
 181 
 182 
 183 
 184 
 185 
Figure S5. The accumulated mass of hematite NPs on the unit surface area of the cell 186 
versus the surface potentials of the E. coli cells at different exposure times. All data 187 
points are averages from the surface potential measurements on different positions of 15 188 
hematite-treated cells, and error bars represent standard deviation.   189 
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