1 (Supp	lemental	Material)
---------	----------	----------	---

2 Supplemental Material Figure legends

3

0	
4	Fig. S1. The relative fluorescence of the linker region-deletion mutants. The red
5	fluorescence of displayed mRFP1 was measured as described in the method. The deletion
6	mutant (missing $24 \sim 948$ region) showed only 33 % of the fluorescence of the other
7	mutants having predicted linker regions. This result showed that the $785 \sim 948$ region
8	plays an important role for efficient display of heterologous proteins.
9	
10	Fig. S2. The overview of construction of pATLIC vector (A). The passenger domain was
11	deleted by PCR using the primers containing TEV protease recognition and SmaI
12	restriction site sequences. Amplified PCR products were treated by T4 DNA polymerase
13	without dNTPs for annealing of single-stranded ends. A typical ligation independent
14	cloning (LIC) procedure for display of proteins of interest (POI) using pATLIC vector
15	was shown in (B).
16	
17	Fig. S3. The protease accessiblity test for surface-displayed or periplasmic mRFP1. For
18	periplamic mRFP1, we expressed mRFP1 in pATLIC having an identical signal sequence
19	but lacking the translocator domain by incorporating a stop codon followed by the
20	mRFP1 sequence (pATLIC*-mRFP1). We observed the change of relative fluorescence of
21	whole-cells after trypsin digestion as described in the method. The periplasmic mRFP1
22	was not susceptible to trypsin treatment but surface-displayed mRFP1 was degraded by

23 trypsin. The fluorescence of untreated (\Box) and treated (\blacksquare) cells are presented in the figure.

25	Fig. S4. (A) Optimal inducer concentration for the maximum surface display and its
26	effect on the cell growth. Effects of inducer (L-(+)-arabinose) concentration on surface
27	display of Aga16B. The amount of reducing sugars produced at the range of $0 \sim 0.2\%$ of
28	inducer. (B) Growth of host cells (E. coli BW25113) displaying various proteins was
29	measured by OD ₆₀₀ . E. coli BW25113 harboring pATLIC-aga50A (•), pATLIC-aga16B
30	(♦), pATLIC- <i>aga86C</i> (▲), pATLIC- <i>aga50D</i> (■) and pATLIC-aga86E (X) were grown
31	for 24 h at 16°C. An asterisk (*) indicates the inducing time point with L-(+)-arabinose.
32	
33	
34	Fig. S5. The neoagarobiose hydrolase (NABH) activity in the culture supernatant of
35	NABH displayed cells. Before NABH displayed cells were treated by TEV protease, the
36	culture supernatant of the cells was concentrated, incubated in the reaction mixture and
37	analyzed by TLC. Lane 1, L-(+)-arabinose (L-Ara); lane 2, D-galactose (D-Gal); lane 3,
38	3,6-anhydro-L-galactose (L-AHG); lane 4, neoagarobiose (DP2); lane 5, the culture
39	supernatant
40	
41	Fig. S6. The red fluorescence unit (RFU) curve of mRFP1. The correlation between the
42	red fluorescence unit and amount of mRFP1 was calculated from the curve.

pATLIC(deletion mutants)-mRFP1 system

(Fig. S1)

(Fig. S4B)

- 64 (Fig. S5)

(Fig. S6)

