Supplemental Tables 1 and 2 King et al.

Orientation of *Pseudomonas aeruginosa* ExsA monomers bound to promoter DNA and base-specific contacts with the P_{exoT} promoter

Table S1. Bacterial strains, reporters, and plasmids used in this study.

Bacterial strains	Relevant characteristics			Reference	
PA103	wt strain, burn wound isolate (3)				
PA1O3 <i>exsA</i> ::Ω	chromosomal interposon insertion	in exsA		(2)	
Reporter fusions	Integration Plasmid	Experiment	Primer Pair	Reference	
P _{exsD-lacZ}	mini-CTX-P _{exsD-lacz} (-152 to + 16)	Fig. 2A	NA	(4)	
P _{exoT-lacZ}	mini-CTX-P _{exoT-lacZ} (-179 to + 17)	Fig. 3-6, S2	NA	(1)	
EB127	mini-CTX-P _{exoT-lacZ} (C45A)	Fig. 3C, 4B, 5, 7, S2	NA	(1)	
EB134	mini-CTX-P _{exoT-lacZ} (G47A)	Fig. 3C, 4B, 5, 7, S2	NA	(1)	
EB150	mini-CTX-P _{exoT-lacZ} (A34C)	Fig. 3D, 4B, 5, 7, S2	50405766-43613960	This study	
EB126	mini-CTX-P _{exoT-lacZ} (C50G)	Fig. 4, 5, 7, S2	NA	(1)	
EB135	mini-CTX-P _{exoT-lacZ} (T38A)	Fig. 4, 5, 7, S2	NA	(1)	
EB136	mini-CTX-P _{exoT-lacZ} (G37C)	Fig. 4, 5, 7, S2	NA	(1)	
EB137	mini-CTX-P _{exoT-lacZ} (A34T)	Fig. 4, 5, 7, S2	NA	(1)	
JK121	mini-CTX-P _{exoT-lacZ} (C39A)	Fig. 4, 5, 7, S2	79346690-43613960	This study	
JK122	mini-CTX-P _{exoT-lacZ} (A36C)	Fig. 4, 5, 7, S2	79346689-43613960	This study	
JK123	mini-CTX-P _{exoT-lacZ} (T35G)	Fig. 4, 5, 7, S2	79346688-43613960	This study	
P _{exsC-lacZ}	mini-CTX- $P_{exsC-lacz}$ (-186 to + 17)	Fig. 4B, 6A-B	NA	(4)	

Expression Plasmids	Experiment	Primer or Primer Pair	Reference
pJN105	Fig. 2A, 3B-D, 4C, 6A-B	NA	(5)
pEB124 (wt exsA expression vector)	Fig. 2A	NA	(1)
pEB124 ∆cys	Fig. 2A	multiple	This study
pEB124 ∆cys E193C	Fig. 2A	38799024	This study
pEB124 ∆cys M196C	Fig. 2A	38799023	This study
pEB124 ∆cys G244C	Fig. 2A	38799022	This study
pEB124 ∆cys S246C	Fig. 2A	38799021	This study
pET16b exsA	Fig. 2B, 8	NA	(1)
pET16b <i>exsA</i> ∆cys M196C	Fig. 2B	NA	This study
pET16b <i>exsA</i> ∆cys S246C	Fig. 2B	NA	This study
pEB124 K202R	Fig. 3B	Isolated from screen	This study

Table S1 (continued)

Expression Plasmids	Experiment	Primer or Primer Pair	Reference
pEB124 T199S	Fig. 3C	47632614	This study
pEB124 T252S	Fig. 3D	51494557	This study
pEB124 K202A	Fig. 4C, 5	51222351-42148424	This study
pEB124 T199A	Fig. 4C, 5	51222353-42148424	This study
pEB124 T252A	Fig. 4C, 5	51494557-42148424	This study
pEB124 L198A	Fig. 6A, 7	51222354-42148424	This study
pEB124 T200A	Fig. 6A, S2	51222352-42148424	This study
pEB124 E203A	Fig. 6A	Isolated from screen	This study
pEB124 L204A	Fig. 6A, S2	51222350-42148424	This study
pEB124 G206A	Fig. 6A	51222349-42148424	This study
pEB124 S207A	Fig. 6A	51222348-42148424	This study
pEB124 V208A	Fig. 6A, S2	51222347-42148424	This study
pEB124 Q248A	Fig. 6B, 7	51222346-42148424	This study
pEB124 S249A	Fig. 6B, S2	43687091-42148424	This study
pEB124 Y250A	Fig. 6B, 7	51494559-42148424	This study
pEB124 Q253A	Fig. 6B	43687088-42148424	This study
pEB124 S254A	Fig. 6B	51222345-42148424	This study
pEB124 R256A	Fig. 6B, S2	51222344-42148424	This study
pEB124 R257A	Fig. 6B, 7	51222343-42148424	This study
pEB124 R258A	Fig. 6B, S2	51222342-42148424	This study
pET16b exsA L198A	Fig. 8, Table 1	42308574-80815243	This study
pET16b exsA T199A	Fig. 8, Table 1	42308574-80815243	This study
pET16b exsA K202A	Fig. 8, Table 1	42308574-80815243	This study
pET16b exsA Q248A	Fig. 8, Table 1	42308574-80815243	This study
pET16b exsA Y250A	Fig. 8, Table 1	42308574-80815243	This study
pET16b exsA T252A	Fig. 8, Table 1	42308574-80815243	This study
pET16b exsA R257A	Fig. 8, Table 1	42308574-80815243	This study

Table S2. Primers used in this study.

Primer ID	<u>Name</u>	Primer sequence
3242037	pD5'Hind10-15	5'-ACAGAAGCTTTTCCAGCCAGTCCTATTTCACC
22963127	P _{exsC} Hind for	5'-ACGCAAGCTTATGAAGGACGTCCTGCAGCTCATCC
28433493	UY133B	5'-TTTGAATTCGGTGTATTCGTTCATGTCGCCC
28433494	UY133A	5'-ATATAAGCTTCGGAGGCCACGCTCGATACGC
29590679	AinternalstartXba5'	5'-CTGCACTCTAGAGCGGGGCATTCAAGGTACGACGGGAAGTGTTGG
29690545	EB126	5'-CGATCTAAGCTTGATAAAAAAACGACGGCCAATCCTGATAGGCGGAGGGGGCGCCTCG
31216337	EB127	5'-AAAAAAACCACGGACAATCCTGATAGGCGGAGGGGC
31216338	P _{exoT} Hind for	5'-CGAGTAAGCTTGCCAATATCCCATCGGGTTCTCCGCCCCGG
31590566	EB137	5'-AAAAAAACCACGGCCAATCCTGATTGGCGGAGGGGC
31590567	EB136	5'-AAAAAAACCACGGCCAATCCTCATAGGCGGAGGGGC
31590568	EB135	5'-AAAAAAACCACGGCCAATCCAGATAGGCGGAGGGGC
31590569	EB134	5'-AAAAAAACCACAGCCAATCCTGATAGGCGGAGGGGC
42148424	exsA3'Sacl	5'-GTGCGAGCTCCTCGTCAGAGCCTGCAATTTGG
42308574	exsA5'Nde	5'-GTCACATATGCAAGGAGCCAATC
43613960	P _{exoT} EcoR1 rev	5'-CGACGAATTCGACGTCTCCTGATGTTTCCCCGCCAGTCTAGGAACG
49188918	pC3'EcoRI	5'-TGATGAATTCGCCTCCTAAAGCTCAGCGCATGC
49865141	pD3'Eco(2)	5'-CGACTCGAATTCTCTGCCTTGGCTTCCTCACTAC
50405765	MPpT(A26G)	5'-AAAAAAACCACGGCCAATCCTGATGGGCGGAGGGGC
79346688	minictxJK123	5'-AAAAAAACCACGGCCAATCCTGAGAGGCGGA
79346689	minictxJK122	5'-AAAAAAACCACGGCCAATCCTGCTAGGCGGA
79346690	minictxJK121	5'-AAAAAAACCACGGCCAATCATGATAGGCGGA
80815243	exsA3'BamIN	5'-GTGCGGATCCCTCGTCAGAGCCTGCAATTTG
Site-directed	mutagenesis of exsA	
36672411	ExsA (C15A)	5'-TGGCCGAAAGCAGATAACGTCT <u>GCT</u> CATTGGAACATTCCAA
36672410	ExsA (C50A)	5'-CAGGACATCGATTCCACTTTT <u>GCC</u> CTGGCGCCTG
36672409	ExsA (C102A)	5'-GTTGAGTGAAGTCGAGCGT <u>GCC</u> GACGAGCCCG
36672408	ExsA (C121A)	5'-CCTCTGCTGGCCGGT <u>GCC</u> GTCAAGGGGTTG
36672407	ExsA (C139A)	5'-CGCCGATGCTCGCC <u>GCC</u> TGAAGATCGAGG
36672406	ExsA (C261A)	5'-CCGCCGTTTCGGC <u>GCC</u> ACACCGAGCCGC
36672405	ExsA (C271A)	5'-GCGGCAGGGGAAGGACGAAGCCCGGGCTAAA

King et al

Table S2 (continued)

Primer ID	Name	Primer sequence
38799021	ExsA (S246C)	5'-ATGGAGGCGGGCTTT <u>TGC</u> AGCCAGTCCTATTTCACCC
38799022	ExsA (G244C)	5'-CGCCATGGAGGCG <u>TGC</u> TTTTCCAGCCAGTCC
38799023	ExsA (M196C)	5'-CCGCGAGTTCGGC <u>TGC</u> GGGCTGACCACC
38799024	ExsA (E193C)	5'-CGACTTCTCCCGC <u>TGC</u> TTCGGCATGGGGC
47632614	A-T199S-top	5'-CGGCATGGGGCTGAGCACCTTCAAGGAGC
51494557	ExsA_T252Stop	5'-CCAGCCAGTCCTATTTCAGCCAGAGCTATCGCCGCCGTTTCGGC

RH1 and RH2 directed mutagenesis

42128175	Mp_exsA_S254	5'-CCAGCCAGTCCTATTTCACCCAG <u>NNN</u> TATCGCCGCCGTTTCGGC
42128176	Mp_exsA_Q253	5'-CCAGCCAGTCCTATTTCACC <u>NNN</u> AGCTATCGCCGCCGTTTCGGC
42128177	Mp_exsA_T252	5'-CCAGCCAGTCCTATTTC <u>NNN</u> CAGAGCTATCGCCGCCG
42128178	Mp_exsA_Y250	5'-GGAGGCGGGCTTTTCCAGCCAGTCC <u>NNN</u> TTCACCCAGAGCTATCGCC
42128179	Mp_exsA_S249	5'-GGAGGCGGGCTTTTCCAGCCAG <u>NNN</u> TATTTCACCCAGAGC
42128180	Mp_exsA_Q248	5'-GGAGGCGGGCTTTTCCAGC <u>NNN</u> TCCTATTTCACCCAGAGC
42128181	Mp_exsA_L204	5'-CGGCATGGGGCTGACCACCTTCAAGGAG <u>NNN</u> TTCGGCAGTGTCTACGGGG
42128182	Mp_exsA_E203	5'-CGGCATGGGGCTGACCACCTTCAAG <u>NNN</u> CTGTTCGGCAGTGTCTACGGGG
42128183	Mp_exsA_K202	5'-CGGCATGGGGCTGACCACCTTC <u>NNN</u> GAGCTGTTCGGCAGTGTCTACGGGG
42128184	Mp_exsA_T200	5'-CGGCATGGGGCTGACC <u>NNN</u> TTCAAGGAGCTGTTCGGC
42128185	Mp_exsA_T199	5'-CCCGCGAGTTCGGCATGGGGCTG <u>NNN</u> ACCTTCAAGGAGCTGTTCGGC
42128186	Mp_exsA_L198	5'-CCCGCGAGTTCGGCATGGGG <u>NNN</u> ACCACCTTCAAGGAGCTGTTCGGC

Alanine scanning mutagenesis of RH1 and RH2

Mp_exsA_Q253	5'-CCAGCCAGTCCTATTTCACCGCCAGCTATCGCCGCCGTTTCGGC
Mp_exsA_T252	5'-CCAGCCAGTCCTATTTCGCCCAGAGCTATCGCCGCCG
Mp_exsA_Y250	5'-GGAGGCGGGCTTTTCCAGCCAGTCCGCCTTCACCCAGAGCTATCGCC
Mp_exsA_S249	5'-GGAGGCGGGCTTTTCCAGCCAGGCCTATTTCACCCAGAGC
Mp_exsA_Q248	5'-GGAGGCGGGCTTTTCCAGCGCCTCCTATTTCACCCAGAGC
Mp_exsA_V208	5'-CCACCTTCAAGGAGCTGTTCGGCAGTGCCTACGGGGTTTCGCCGCGCGCCTGG
Mp_exsA_S207	5'-CCACCTTCAAGGAGCTGTTCGGCGCCGTCTACGGGGTTTCGCCGCGCGCCTGG
Mp_exsA_G206	5'-CCACCTTCAAGGAGCTGTTCGCCAGTGTCTACGGGGTTTCGCCGCGCGCCTGG
Mp_exsA_L204	5'-CGGCATGGGGCTGACCACCTTCAAGGAGGCCTTCGGCAGTGTCTACGGGG
	Mp_exsA_Q253 Mp_exsA_T252 Mp_exsA_Y250 Mp_exsA_S249 Mp_exsA_Q248 Mp_exsA_V208 Mp_exsA_V208 Mp_exsA_S207 Mp_exsA_G206 Mp_exsA_L204

Table S2 (continued)

Primer ID	<u>Name</u>	Primer sequence
51222351	Mp_exsA_K202	5'-CGGCATGGGGCTGACCACCTTCGCCGAGCTGTTCGGCAGTGTCTACGGGG
51222352	Mp_exsA_T200	5'-CGGCATGGGGCTGACCGCCTTCAAGGAGCTGTTCGGC
51222353	Mp_exsA_T199	5'-CCCGCGAGTTCGGCATGGGGCTGGCCACCTTCAAGGAGCTGTTCGGC
51222354	Mp_exsA_L198	5'-CCCGCGAGTTCGGCATGGGGGCCACCACCTTCAAGGAGCTGTTCGGC
51222342	Mp_exsA_R258	5'-GCCAGTCCTATTTCACCCAGAGCTATCGCCGCGCCTTCGGCTGCACACCGAGCCGC
51222343	Mp_exsA_R257	5'-GCCAGTCCTATTTCACCCAGAGCTATCGCGCCCGTTTCGGCTGCACACCGAGCCGC
51222344	Mp_exsA_R256	5'-GCCAGTCCTATTTCACCCAGAGCTATGCCCGCCGTTTCGGCTGCACACCGAGCCGC
51222345	Mp_exsA_S254	5'-CCAGCCAGTCCTATTTCACCCAGGCCTATCGCCGCCGTTTCGGC

Supplemental Tables

King et al

	5	
ExsA	- Arabinose	+ Arabinose
None	25 ± 3	28 ± 4
wt	803 ± 52	37,849 ± 8,125
L198A	71 ± 11	8,524 ± 449
T199A	59 ± 3	5,215 ± 792
T200A	169 ± 38	9,835 ± 467
K202A	33 ± 2	877 ± 119
L204A	116 ± 9	5,194 ± 710
V208A	182 ± 10	12,477 ± 823
Q248A	35 ± 1	731 ± 14
S249A	124 ± 46	9,622 ± 717
Y250A	40 ± 2	743 ± 7
T252A	20 ± 1	83 ± 1
R256A	79 ± 3	8,263 ± 243
R257A	28 ± 3	123 ± 18
R258A	112 ± 4	8,070 ± 275

 Table S3. Activity of alanine substitution mutants

PA103 exsA:: Ω carrying the wt P_{exoT-lacZ} reporter and either a vector control (none) or vectors expressing wt ExsA or the indicated alaninesubstitution mutants were cultured in TSB with EGTA in the absence or presence of 0.1% arabinose. The reported values are β galactosidase activity in Miller units.

REFERENCES

- 1. **Brutinel, E. D., C. A. Vakulskas, K. M. Brady, and T. L. Yahr.** 2008. Characterization of ExsA and of ExsA-dependent promoters required for expression of the Pseudomonas aeruginosa type III secretion system. Mol Microbiol **68**:657-671.
- 2. **Frank, D. W., G. Nair, and H. P. Schweizer.** 1994. Construction and characterization of chromosomal insertional mutations of the Pseudomonas aeruginosa exoenzyme S trans-regulatory locus. Infect Immun **62:**554-563.
- 3. **Liu, P. V.** 1966. The roles of various fractions of Pseudomonas aeruginosa in its pathogenesis. 3. Identity of the lethal toxins produced in vitro and in vivo. The Journal of infectious diseases **116**:481-489.
- 4. **McCaw, M. L., G. L. Lykken, P. K. Singh, and T. L. Yahr.** 2002. ExsD is a negative regulator of the Pseudomonas aeruginosa type III secretion regulon. Mol Microbiol **46**:1123-1133.
- 5. **Newman, J. R., and C. Fuqua.** 1999. Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene **227:**197-203.

1 **Figure S1.** DNase I footprint of the P_{pcrG} promoter region. The P_{pcrG} promoter probe was end-labeled with ³²P on the reverse strand, incubated in the absence (-) or 2 3 presence of ExsA_{His}, and treated with DNase I as previously described (6). The 4 reactions were separated by denaturing polyacrylamide gel electrophoresis and 5 visualized by phosphorimaging. Maxam-Gilbert sequencing ladders (A+G) were 6 included for orientation and the positions of the GnC and TGnnA sequences in ExsA 7 binding site 1 are indicated. The promoter region protected by ExsA_{His} from DNase I 8 cleavage is indicated with a solid on the right side of the phophorimage. Nucleotides 9 demonstrating hypersensitivity to DNase I cleavage are indicated with an asterisk.

10

11Figure S2. Residues T200A, L204A, V208A, Q248A, S249A, R256A, and R258A show12no loss-of-contact phenotype. PA1O3 *exsA*::Ω expressing the indicated ExsA mutants13were assayed for reporter activity using the panel of mutant $P_{exoT-lacZ}$ reporter described14in Fig. 4A. The strains were cultured in the presence of EGTA and 0.1% arabinose, and15assayed for β-galactosidase activity. The reported values are the percent activity at the16mutant promoter compared to the activity at the wt $P_{exoT-lacZ}$ reporter.

17

18 **Figure S3.** Molecular modeling the interaction of ExsA with the P_{exoT} promoter.

19