
Text S1: Heuristic Search Strategy for the Optimal
Parameter Set θ∗

Supporting the manuscript Integrated Analysis of Residue Coevolution and Protein
Structure in ABC Transporters by Attila Gulyás-Kovács

As in the main text and Figure 2A, let {Xn} be the set of N coevolution detectors selected
for this study and {Ck} the set of K substitution rate classes of position pairs (n = 1, . . . , N and
k = 1, . . . ,K). For a given Xn and Ck let tXn

k be the adjustable threshold and sXn

k the number
of sequences remaining in the alignment after filtering. (Figure 2A shows a special case when
sk ≡ sX1

k = · · · = sXN

k .) As explained in the main text, the set of predicted pairs Pk, for some

Ck, is a function of (tX1

k , sX1

k , . . . , tXN

k , sXN

k ) in the general case when all N detectors are combined.
The present optimization problem concerns the parameter set θ given by the Cartesian product

θ =
∏
n,k

(tXn

k , sXn

k ), (S1)

where n and k take values independently from each other in {1, . . . , N} and {1, . . . ,K}, respectively.
In this study K = 10 and N = 11, so the parameter space Θ has a dimension dim Θ = 219 with

(and 220 without) the constraint (cf. eq. 13 of the main text) that

K∑
k=1

pk = γ|Ω|, (S2)

where pk ≡ |Pk| is the number of predicted pairs in class Ck, and γ and Ω have the same meaning
as in the main text.

The present heuristic strategy searches for the optimal θ∗ in multiple steps. In each step some
parameters are fixed in order to reduce dim Θ.

Before the optimization steps are discussed a few definitions and notational conventions need to
be introduced. Given class Ck, the set S of structural contact pairs and the set B of structurally
distant pairs, the following definitions are made:

bk(θ) = |B ∩ Pk(θ)| (S3)

ρFPk (θ) =
bk(θ)

|B ∩ Ck|
(S4)

ρTP
k (θ) =

|S ∩ Pk(θ)|
|S ∩ Ck|

(S5)

Ak(αk, θ) =

∫ αk

0

ρTPk (θ)dρFPk (θ). (S6)

(Like α in the main text, αk ∈ [0, 1].) Thus ρTP
k , ρFPk and Ak are the class-specific versions of

ρTP, ρTP and A (eq. 16-18 of the main text). As eq. S4-S6 show, these quantities are functions of
the parameter set θ. From this point on the notation Ak(αk, x) ≡ Ak(αk, θ) will express that only
some subset x ⊂ θ of the parameters are varied while all other parameters are fixed. ρTP(x) and
ρFP(x) have analogous meanings.
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Step I and II

In step I the optimal solution [sXn

k ]∗ for each Ck and Xn is obtained as

[sXn

k ]∗ = arg max
sXn
k

A(αk = 0.1, sXn

k ). (S7)

In all subsequent steps each sXn

k is held fixed at [sXn

k ]∗. This step reduces dim Θ to 109.
In step II all but the two best performing detectors are discarded, further reducing dim Θ to 19.

In the present study this operation is justified by the result that the two best performing detectors,
CoMap and MIp, in general greatly outperformed all other detectors (Figure S5-9). However in
this general discussion the two best performing detectors are denoted as X1 and X2 and their
combination as X1 ∧X2.

Step III

The remaining set of 20 parameters is {(tX1

k , tX2

k )} (k = 1, . . . ,K and n = 1, 2). This set corresponds

to 19 free parameters, since the constraint in eq. S2 still stands. Write tk ≡ (tX1

k , tX2

k ). For each

k fix bk and allow tk to vary. Note that it is possible not to alter bk if tX1

k and tX2

k shift in the
opposite direction (Figure 2A). For a given bk define the optimal solution t◦k as

t◦k = arg max
tk

ρTP
k (tk). (S8)

Note that t◦k is a function of bk. But bk = ρFPk |B ∩Ck| (eq. S4) and so t◦k can also be considered
as a function of the false positive rate ρFPk . This implies that eq. S8 can be reformulated as

t◦k(αk) = arg max
tk

Ak(αk, tk), (S9)

which is consistent with the definition of θ∗ by eq. 19 of the main text.
Also note that step II-III correspond to the notion of detector weighting, introduced in the main

text.

Step IV

Step III resulted in τ◦ ≡ (t◦1, . . . , t
◦
K), where k = 1, . . . ,K and K = 10. As mentioned above, each

t◦k is a function of bk and so τ◦ is also a function of the vector (b1, . . . , bk) (it might be of interest
that both functions are bijective). Therefore the constraint expressed by eq. S2 allows τ◦ to vary,
so τ◦ corresponds to a set of 9 free parameters. This is equivalent to class weighting, which was
introduced in the main text.

For each γ ∈ [0, 1] (eq. S2) the new framework defines the optimal parameter set τ∗ ≡ (t∗1, . . . , t
∗
K)

as
τ∗ = arg max

τ◦
A(α = φ(γ), τ◦), (S10)

where φ is a relation transforming γ to α (cf.eq. 19 of the main text).
Writing s∗ = ([sX1

1 ]∗, [sX2
1 ]∗, . . . , [sX1

K ]∗, [sX2

K ]∗) and θ∗ = (τ∗, s∗) completes the optimization
process.
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Implementation of Step IV

For steps I-III it is straight forward to find an efficient search algorithm for the global solutions (τ◦

and s∗) but for step IV a heuristic approach was taken since this step involves 9 free parameters.
Thus Eq. S10 was implemented as a slightly modified version of the differential evolution algorithm
described on page 149 of Feoktistov V (2006) Differential Evolution, volume 5 of Springer Opti-
mization and Its Applications. Springer US. Appendix A. This modified algorithm is presented
below. To simplify notation the following conventions are introduced: tik ≡ [t◦k]i and τ ≡ τ◦. These
conventions also apply to Figure S1, which illustrates some properties of the algorithm.
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Algorithm 1: Optimization with differential evolution

Input: γ, fraction of predicted pairs in |Ω| total pairs
// control input parameters

Input: u, population size
Input: d, diffusion constant
Input: g, number of generations

Data: U = {τ1, τ2, · · · , τu}, population of u individuals
Data: τ i = (ti1, . . . , t

i
K), each individual τ i is a parameter set containing K thresholds

tik ≡ [t◦k]i, where for each i the definition of [t◦k]i is given by eq. S8 and K is the
number of substitution rate classes.

Data: τ trial, depending on its fitness, the trial individual may change the population in each
generation.

Function: CreateRandomIndividual(Constraint), to initialize the population
Function: Fitness(τ i) = ρTP(τ i), where ρTP(τ i) is the true positive rate (eq. 16 of the

main text)
Function: CreateTrialIndividual(τ i, U, d), creates a trial individual from τ i, by a

mutation and a compensatory mutation, based on 3 other individuals of the
population. See Algorithm 2 for details.

Output: τ∗, fittest individual (optimized parameter set)

// initialize population

// the number of all predicted pairs |P | ≡
∑
k |Pk(tk)| is constrained (eq. S2)

1 Constraint: |Pk(tk)| = round(γ × |Ω|) ;
2 τ1 ←− CreateRandomIndividual(Constraint) ;
3 τ∗ ←− τ1 ;
4 for i = 2 to u do
5 τ i ←− CreateRandomIndividual(Constraint) ;
6 if Fitness(τ i) > Fitness(τ∗) then
7 τ∗ ←− τ i ;
8 end

9 end

// evolve population

10 for l = 1 to g do
11 for i = 1 to u do
12 τ trial ←− CreateTrialIndividual(U, τ i, d) ;

13 if Fitness(τ trial) > Fitness(τ i) then
14 τ i ←− τ trial ;

15 if Fitness(τ trial) > Fitness(τ∗) then
16 τ∗ ←− τ trial ;
17 end

18 end

19 end

20 end

21 return τ∗ ;
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Algorithm 2: CreateTrialIndividual(U, τ i, d)

Input: U , population
Input: τ i = (ti1, . . . , t

i
K), ith individual of population

Input: d, diffusion constant

Output: τ trial = (ttrial1 , . . . , ttrialK ), trial individual

// Mutation of τ i is based on randomly chosen individuals τa, τ b, τ c and

substitution rates p, q

1 randomly select τa, τ b, τ c ∈ U such that a 6= b 6= c 6= l ;
2 randomly select p, q such that 1 ≤ p, q ≤ K and p 6= q ;

// The mutation uniquely determines the compensatory mutation under the

constraint below

3 tmut
p ←− tap + d(tbp − tcp) ;

// Ensure that the mutation does not affect number of all predicted pairs

4 Constraint: |P trial
p (tip)|+ |P trial

q (tiq)| = |P trial
p (tmut

p )|+ |P trial
q (tmut

q )| ;

5 tmut
q ←− CompensatoryMutation(Constraint, tip, t

i
q, t

mut
p ) ;

// The trial individual is the mutated copy of τ i

6 τ trial ←− τ i ;

7 ttrialp ←− tmut
p ;

8 ttrialq ←− tmut
q ;

9 return τ trial ;
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