Text S1: Heuristic Search Strategy for the Optimal Parameter Set $θ^*$

Supporting the manuscript Integrated Analysis of Residue Coevolution and Protein Structure in ABC Transporters by Attila Gulyás-Kovács

As in the main text and Figure 2A, let $\{X_n\}$ be the set of N coevolution detectors selected for this study and $\{C_k\}$ the set of K substitution rate classes of position pairs $(n = 1, \ldots, N$ and $k = 1, \ldots, K$). For a given X_n and C_k let $t_k^{X_n}$ be the adjustable threshold and $s_k^{X_n}$ the number of sequences remaining in the alignment after filtering. (Figure 2A shows a special case when $s_k \equiv s_k^{X_1} = \cdots = s_{k}^{X_N}$.) As explained in the main text, the set of predicted pairs P_k , for some C_k , is a function of $(t_k^{X_1}, s_k^{X_1}, \ldots, t_k^{X_N}, s_k^{X_N})$ in the general case when all N detectors are combined. The present optimization problem concerns the parameter set θ given by the Cartesian product

$$
\theta = \prod_{n,k} (t_k^{X_n}, s_k^{X_n}),\tag{S1}
$$

where n and k take values independently from each other in $\{1, \ldots, N\}$ and $\{1, \ldots, K\}$, respectively.

In this study $K = 10$ and $N = 11$, so the parameter space Θ has a dimension dim $\Theta = 219$ with (and 220 without) the constraint (cf. eq. 13 of the main text) that

$$
\sum_{k=1}^{K} p_k = \gamma |\Omega|,\tag{S2}
$$

where $p_k \equiv |P_k|$ is the number of predicted pairs in class C_k , and γ and Ω have the same meaning as in the main text.

The present heuristic strategy searches for the optimal θ^* in multiple steps. In each step some parameters are fixed in order to reduce dim Θ.

Before the optimization steps are discussed a few definitions and notational conventions need to be introduced. Given class C_k , the set S of structural contact pairs and the set B of structurally distant pairs, the following definitions are made:

$$
b_k(\theta) = |B \cap P_k(\theta)| \tag{S3}
$$

$$
\rho_k^{\rm FP}(\theta) = \frac{b_k(\theta)}{|B \cap C_k|} \tag{S4}
$$

$$
\rho_k^{\rm TP}(\theta) = \frac{|S \cap P_k(\theta)|}{|S \cap C_k|} \tag{S5}
$$

$$
A_k(\alpha_k, \theta) = \int_0^{\alpha_k} \rho_k^{TP}(\theta) \mathrm{d} \rho_k^{FP}(\theta). \tag{S6}
$$

(Like α in the main text, $\alpha_k \in [0,1]$.) Thus $\rho_k^{\text{TP}}, \rho_k^{\text{FP}}$ and A_k are the class-specific versions of $\rho^{\text{TP}}, \rho^{\text{TP}}$ and A (eq. 16-18 of the main text). As eq. S4-S6 show, these quantities are functions of the parameter set θ . From this point on the notation $A_k(\alpha_k, x) \equiv A_k(\alpha_k, \theta)$ will express that only some subset $x \in \theta$ of the parameters are varied while all other parameters are fixed. $\rho^{\text{TP}}(x)$ and $\rho^{\text{FP}}(x)$ have analogous meanings.

Step I and II

In step I the optimal solution $[s_k^{X_n}]^*$ for each C_k and X_n is obtained as

$$
[s_k^{X_n}]^* = \arg\max_{s_k^{X_n}} A(\alpha_k = 0.1, s_k^{X_n}).
$$
\n(S7)

In all subsequent steps each $s_k^{X_n}$ is held fixed at $[s_k^{X_n}]^*$. This step reduces dim Θ to 109.

In step II all but the two best performing detectors are discarded, further reducing dim Θ to 19. In the present study this operation is justified by the result that the two best performing detectors, CoMap and MIp, in general greatly outperformed all other detectors (Figure S5-9). However in this general discussion the two best performing detectors are denoted as X_1 and X_2 and their combination as $X_1 \wedge X_2$.

Step III

The remaining set of 20 parameters is $\{(t_k^{X_1}, t_k^{X_2})\}$ $(k = 1, ..., K$ and $n = 1, 2)$. This set corresponds The remaining set of 20 parameters is $\chi(k_k, k_k) f(k-1, ..., K)$ and $h-1, 2$. This set corresponds to 19 free parameters, since the constraint in eq. S2 still stands. Write $\mathbf{t}_k \equiv (t_k^{X_1}, t_k^{X_2})$. For each k fix b_k and allow \mathbf{t}_k to vary. Note that it is possible not to alter b_k if $t_k^{X_1}$ and $t_k^{X_2}$ shift in the opposite direction (Figure 2A). For a given b_k define the optimal solution \mathbf{t}_k° as

$$
\mathbf{t}_k^{\circ} = \arg \max_{\mathbf{t}_k} \rho_k^{\mathrm{TP}}(\mathbf{t}_k). \tag{S8}
$$

Note that \mathbf{t}_k° is a function of b_k . But $b_k = \rho_k^{\text{FP}} |B \cap C_k|$ (eq. S4) and so \mathbf{t}_k° can also be considered as a function of the false positive rate ρ_k^{FP} . This implies that eq. S8 can be reformulated as

$$
\mathbf{t}_k^{\circ}(\alpha_k) = \arg \max_{\mathbf{t}_k} A_k(\alpha_k, \mathbf{t}_k), \tag{S9}
$$

which is consistent with the definition of θ^* by eq. 19 of the main text.

Also note that step II-III correspond to the notion of detector weighting, introduced in the main text.

Step IV

Step III resulted in $\tau^{\circ} \equiv (\mathbf{t}_1^{\circ}, \ldots, \mathbf{t}_K^{\circ})$, where $k = 1, \ldots, K$ and $K = 10$. As mentioned above, each \mathbf{t}_k° is a function of b_k and so τ° is also a function of the vector (b_1,\ldots,b_k) (it might be of interest that both functions are bijective). Therefore the constraint expressed by eq. S2 allows τ° to vary, so τ° corresponds to a set of 9 free parameters. This is equivalent to *class weighting*, which was introduced in the main text.

For each $\gamma \in [0,1]$ (eq. S2) the new framework defines the optimal parameter set $\tau^* \equiv (\mathbf{t}_1^*, \ldots, \mathbf{t}_K^*)$ as

$$
\tau^* = \arg\max_{\tau^{\circ}} A(\alpha = \phi(\gamma), \tau^{\circ}), \tag{S10}
$$

where ϕ is a relation transforming γ to α (cf.eq. 19 of the main text).

Writing $\mathbf{s}^* = ([s_1^{X_1}]^*, [s_1^{X_2}]^*, \ldots, [s_K^{X_1}]^*, [s_K^{X_2}]^*)$ and $\theta^* = (\tau^*, \mathbf{s}^*)$ completes the optimization process.

Implementation of Step IV

For steps I-III it is straight forward to find an efficient search algorithm for the global solutions (τ° and s^*) but for step IV a heuristic approach was taken since this step involves 9 free parameters. Thus Eq. S10 was implemented as a slightly modified version of the differential evolution algorithm described on page 149 of Feoktistov V (2006) Differential Evolution, volume 5 of Springer Optimization and Its Applications. Springer US. Appendix A. This modified algorithm is presented below. To simplify notation the following conventions are introduced: $\mathbf{t}_k^i \equiv [\mathbf{t}_k^{\circ}]^i$ and $\tau \equiv \tau^{\circ}$. These conventions also apply to Figure S1, which illustrates some properties of the algorithm.

Algorithm 1: Optimization with differential evolution

- **Input:** γ , fraction of predicted pairs in $|\Omega|$ total pairs
- // control input parameters
- **Input:** u , population size
- Input: d, diffusion constant
- Input: g, number of generations

Data: $U = \{\tau^1, \tau^2, \cdots, \tau^u\}$, population of u individuals

- **Data:** $\tau^i = (\mathbf{t}^i_1, \dots, \mathbf{t}^i_K)$, each individual τ^i is a parameter set containing K thresholds $\mathbf{t}_k^i \equiv [\mathbf{t}_k^{\circ}]^i$, where for each i the definition of $[\mathbf{t}_k^{\circ}]^i$ is given by eq. S8 and K is the number of substitution rate classes.
- Data: τ^{trial} , depending on its fitness, the trial individual may change the population in each generation.
- Function: CreateRandomIndividual(Constraint), to initialize the population

Function: Fitness(τ^i) = $\rho^{\text{TP}}(\tau^i)$, where $\rho^{\text{TP}}(\tau^i)$ is the true positive rate (eq. 16 of the main text)

Function: CreateTrialIndividual(τ^i, U, d), creates a trial individual from τ^i , by a mutation and a compensatory mutation, based on 3 other individuals of the population. See Algorithm 2 for details.

Output: τ^* , fittest individual (optimized parameter set)

```
// initialize population
```

```
// the number of all predicted pairs |P|\equiv\sum_k |P_k({\bf t}_k)| is constrained (eq. S2)
  1 Constraint: |P_k(\mathbf{t}_k)| = \text{round}(\gamma \times |\Omega|);
   \mathbf{2} \tau^1 \longleftarrow \texttt{CreateRandomIndividual}(\texttt{Constraint}) ;
   \mathbf{3} \tau^* \longleftarrow \tau^1 ;
  4 for i = 2 to u do
   \begin{aligned} \texttt{5} \quad | \quad \tau^i \longleftarrow \texttt{CreateRandomIndividual}(\texttt{Constraint}) \; ; \end{aligned}\mathfrak{g} \quad \Big| \quad \text{if} \quad \text{Fitness}(\tau^i) > \text{Fitness}(\tau^*) \text{ then}\tau \vert \quad \vert \tau^* \longleftarrow \tau^i ;
  8 end
  9 end
      // evolve population
10 for l = 1 to g do
11 for i = 1 to u do
\begin{array}{c|c} \texttt{12} & \end{array} \begin{array}{c} \texttt{+} & \tau^\text{trial} \longleftarrow \texttt{CreateTrialIndividual}(U, \tau^i, d) \end{array};\texttt{13} \quad | \quad \text{if} \quad \texttt{Fitness}(\tau^\textit{trial}) > \texttt{Fitness}(\tau^\textit{i}) \text{ then}14
                               i \leftarrow \tau^{\text{trial}};\begin{array}{|c|c|} \hline \text{15} & \text{if} \end{array} \text{Fitness}(\tau^{\text{trial}})>\text{Fitness}(\tau^{\text{*}}) \text{ then}\begin{array}{|c|c|c|c|c|}\hline \textbf{16} & & \end{array} \begin{array}{|c|c|c|c|}\hline \begin{array}{ccc} & & \tau^* \leftarrow & \tau^{\rm trial} \end{array} \end{array} ; \ \end{array}17 \parallel \parallel end
18 end
19 end
20 end
21 return \tau^* ;
```
Algorithm 2: CreateTrialIndividual (U, τ^i, d)

Input: U, population **Input**: $\tau^i = (\mathbf{t}^i_1, \dots, \mathbf{t}^i_K)$, *i*th individual of population Input: d, diffusion constant **Output:** $\tau^{\text{trial}} = (\mathbf{t}^{\text{trial}}_1, \dots, \mathbf{t}^{\text{trial}}_K)$, trial individual // Mutation of τ^i is based on randomly chosen individuals τ^a, τ^b, τ^c and substitution rates p, q 1 randomly select $\tau^a, \tau^b, \tau^c \in U$ such that $a \neq b \neq c \neq l$; 2 randomly select p, q such that $1 \leq p, q \leq K$ and $p \neq q$; // The mutation uniquely determines the compensatory mutation under the constraint below $\mathbf{3} \; \; \mathbf{t}_{p}^{\text{mut}} \longleftarrow \mathbf{t}_{p}^{a} + d(\mathbf{t}_{p}^{b} - \mathbf{t}_{p}^{c}) \; ;$ // Ensure that the mutation does not affect number of all predicted pairs 4 Constraint: $|P_p^{\text{trial}}(\mathbf{t}_p^i)| + |P_q^{\text{trial}}(\mathbf{t}_q^i)| = |P_p^{\text{trial}}(\mathbf{t}_p^{\text{mut}})| + |P_q^{\text{trial}}(\mathbf{t}_q^{\text{mut}})|$; $\mathbf{t}_q^\text{mut} \longleftarrow \textsf{Comparison}(\text{Construction}, \mathbf{t}_p^i, \mathbf{t}_q^i, \mathbf{t}_p^\text{mut}):$ // The trial individual is the mutated copy of τ^i 6 $\tau^{\rm trial} \longleftarrow \tau^i$; τ $\mathbf{t}_p^\text{trial} \longleftarrow \mathbf{t}_p^\text{mut}$; $\mathbf{s} \;\; \mathbf{t}_q^{\mathrm{trial}} \longleftarrow \mathbf{t}_q^{\mathrm{mut}} \;;$ ${\mathfrak s}\,$ return $\tau^{\rm trial} \; ;$