Text S1: Heuristic Search Strategy for the Optimal
Parameter Set 0*

Supporting the manuscript Integrated Analysis of Residue Coevolution and Protein
Structure in ABC' Transporters by Attila Gulyds-Kovacs

As in the main text and Figure 2A, let {X,,} be the set of N coevolution detectors selected
for this study and {Cj} the set of K substitution rate classes of position pairs (n = 1,..., N and
k=1,...,K). For a given X,, and Cf let t?” be the adjustable threshold and st" the number
of sequences remaining in the alignment after filtering. (Figure 2A shows a special case when

SE = s?l == stN.) As explained in the main text, the set of predicted pairs Py, for some
C}, is a function of (ti(1 , stl, e 7thN, si{N) in the general case when all N detectors are combined.

The present optimization problem concerns the parameter set 6 given by the Cartesian product

0 =[x sim), (S1)

n,k

where n and & take values independently from each other in {1,..., N} and {1, ..., K}, respectively.
In this study K = 10 and N = 11, so the parameter space © has a dimension dim © = 219 with
(and 220 without) the constraint (cf. eq. 13 of the main text) that

K
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where py = | P| is the number of predicted pairs in class Cf, and v and 2 have the same meaning
as in the main text.

The present heuristic strategy searches for the optimal * in multiple steps. In each step some
parameters are fixed in order to reduce dim ©.

Before the optimization steps are discussed a few definitions and notational conventions need to
be introduced. Given class Cy, the set S of structural contact pairs and the set B of structurally
distant pairs, the following definitions are made:

b(®) = 1B0RO) (53)
A = pae (51
i) = g (55)

Ap(an, 0) = /Oakpgp(a)dpfp(e). (S6)

(Like o in the main text, oy € [0,1].) Thus pi¥, pEP and Ay are the class-specific versions of
pTP. pTF and A (eq. 16-18 of the main text). As eq. S4-S6 show, these quantities are functions of
the parameter set . From this point on the notation Ag(ay,x) = Ag(ayk, ) will express that only
some subset x C @ of the parameters are varied while all other parameters are fixed. p™F(z) and
pY (x) have analogous meanings.



Step I and 11

In step I the optimal solution [5?”]* for each C}, and X, is obtained as
(s3] = arg max Ay =0.1,5."). (S7)
Sk n

In all subsequent steps each s, " is held fixed at [s; "]*. This step reduces dim © to 109.

In step II all but the two best performing detectors are discarded, further reducing dim © to 19.
In the present study this operation is justified by the result that the two best performing detectors,
CoMap and Mlp, in general greatly outperformed all other detectors (Figure S5-9). However in
this general discussion the two best performing detectors are denoted as X; and X and their
combination as X1 A Xs.

Step 111

The remaining set of 20 parameters is {(th1 , tfz)} (k=1,...,Kand n = 1,2). This set corresponds
to 19 free parameters, since the constraint in eq. S2 still stands. Write t = (tfl,tfz). For each
k fix by and allow ty to vary. Note that it is possible not to alter by if tfl and th2 shift in the
opposite direction (Figure 2A). For a given by define the optimal solution tj, as

£ = argmax pi" (t). (S8)
k

Note that t{ is a function of by. But by, = pET|BNCy| (eq. S4) and so t{ can also be considered
as a function of the false positive rate pgp. This implies that eq. S8 can be reformulated as

th(ay) = arg rr}:aXAk(abtk), (S9)
k

which is consistent with the definition of 8* by eq. 19 of the main text.
Also note that step II-I11 correspond to the notion of detector weighting, introduced in the main
text.

Step IV

Step III resulted in 7° = (t,...,t%), where k =1,..., K and K = 10. As mentioned above, each
t§, is a function of by, and so 7° is also a function of the vector (b1, ...,bs) (it might be of interest
that both functions are bijective). Therefore the constraint expressed by eq. S2 allows 7° to vary,
so 7° corresponds to a set of 9 free parameters. This is equivalent to class weighting, which was
introduced in the main text.

For each v € [0, 1] (eq. S2) the new framework defines the optimal parameter set 7% = (t5, ..., t%)
as
7" = argmax A(a = ¢(7),7°), (S10)
TO
where ¢ is a relation transforming v to « (cf.eq. 19 of the main text).
Writing s* = ([s7']%, [s72]%, ..., [sx']", [sx2]*) and 6* = (7*,s*) completes the optimization
process.



Implementation of Step IV

For steps I-11II it is straight forward to find an efficient search algorithm for the global solutions (7°
and s*) but for step IV a heuristic approach was taken since this step involves 9 free parameters.
Thus Eq. S10 was implemented as a slightly modified version of the differential evolution algorithm
described on page 149 of Feoktistov V (2006) Differential Evolution, volume 5 of Springer Opti-
mization and Its Applications. Springer US. Appendix A. This modified algorithm is presented
below. To simplify notation the following conventions are introduced: t};, = [‘LZ]z and 7 = 7°. These
conventions also apply to Figure S1, which illustrates some properties of the algorithm.



Algorithm 1: Optimization with differential evolution
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Input: v, fraction of predicted pairs in || total pairs
// control input parameters

Input: u, population size

Input: d, diffusion constant

Input: g, number of generations

Data: U = {7}, 72,.-- 7%}, population of u individuals
Data: 7% = (ti,...,t%), each individual 7% is a parameter set containing K thresholds
¢ = [t3]%, where for each i the definition of [t}]? is given by eq. S8 and K is the
number of substitution rate classes.
Data: 7%l depending on its fitness, the trial individual may change the population in each
generation.

Function: CreateRandomIndividual(Constraint), to initialize the population

Function: Fitness(r?) = pTP(7%), where p™F(7%) is the true positive rate (eq. 16 of the
main text)

Function: CreateTriallndividual(7?,U,d), creates a trial individual from 7¢, by a
mutation and a compensatory mutation, based on 3 other individuals of the
population. See Algorithm 2 for details.

Output: 7*, fittest individual (optimized parameter set)

// initialize population
// the number of all predicted pairs |P|=)_, |Py(ty)| is constrained (eq. S2)

Constraint: |Pg(tx)| = round(y x ||) ;
71 +— CreateRandomIndividual(Constraint) ;
T ¢— 7h;
for i =2toudo
7¢ +— CreateRandomIndividual(Constraint) ;
if Fitness(r') > Fitness(7*) then
‘ T — 1t
end
end

// evolve population
for [=1to gdo
for i=1toudo
rtrial o CreateTriallndividual(U, 7%, d) ;
if Fitness(7'"%) > Fitness(7’) then
Ti — 7_trial :
if Fitness(7%) > Fitness(7*) then
‘ e 7,trial :
end

end
end

end

return 7 ;




Algorithm 2: CreateTriallndividual(U, 7%, d)

Input: U, population
Input: 7" = (ti,...,t%), ith individual of population
Input: d, diffusion constant

Output: 7rial = (girial | gtrial) “4ria] individual

// Mutation of 7' is based on randomly chosen individuals 7¢,7°

substitution rates p,q

,7¢ and

1 randomly select 7%, 7%, 7¢ € U such that a # b # c #1 ;

w

© 0 N O

randomly select p, ¢ such that 1 <p,q < K and p # ¢ ;

// The mutation uniquely determines the compensatory mutation under the
constraint below
mut a b cy .
) —t, +—d(tp ——tp),
// Ensure that the mutation does not affect number of all predicted pairs
int- ial (44 ial (44 )] — ial ial .
Constraint: [Pal(t1)| + [Pirial(])] = | Perial (gmut)] 4 | perial (gmut))|

t® +— CompensatoryMutation(Constraint, t/,, ti, t7™) ;

// The trial individual is the mutated copy of 7!
,rtrial « ,ri :

trial mut .
:{)rial : zfnut ’
q q
return 78!




