Text S1: Heuristic Search Strategy for the Optimal Parameter Set θ^*

Supporting the manuscript Integrated Analysis of Residue Coevolution and Protein Structure in ABC Transporters by Attila Gulyás-Kovács

As in the main text and Figure 2A, let $\{X_n\}$ be the set of N coevolution detectors selected for this study and $\{C_k\}$ the set of K substitution rate classes of position pairs $(n = 1, \ldots, N)$ and $k = 1, \ldots, K$. For a given X_n and C_k let $t_k^{X_n}$ be the adjustable threshold and $s_k^{X_n}$ the number of sequences remaining in the alignment after filtering. (Figure 2A shows a special case when $s_k \equiv s_k^{X_1} = \cdots = s_k^{X_N}$.) As explained in the main text, the set of predicted pairs P_k , for some C_k , is a function of $(t_k^{X_1}, s_k^{X_1}, \ldots, t_k^{X_N}, s_k^{X_N})$ in the general case when all N detectors are combined. The present optimization problem concerns the parameter set θ given by the Cartesian product

$$\theta = \prod_{n,k} (t_k^{X_n}, s_k^{X_n}), \tag{S1}$$

where n and k take values independently from each other in $\{1, \ldots, N\}$ and $\{1, \ldots, K\}$, respectively.

In this study K = 10 and N = 11, so the parameter space Θ has a dimension dim $\Theta = 219$ with (and 220 without) the constraint (cf. eq. 13 of the main text) that

$$\sum_{k=1}^{K} p_k = \gamma |\Omega|, \tag{S2}$$

where $p_k \equiv |P_k|$ is the number of predicted pairs in class C_k , and γ and Ω have the same meaning as in the main text.

The present heuristic strategy searches for the optimal θ^* in multiple steps. In each step some parameters are fixed in order to reduce dim Θ .

Before the optimization steps are discussed a few definitions and notational conventions need to be introduced. Given class C_k , the set S of structural contact pairs and the set B of structurally distant pairs, the following definitions are made:

$$b_k(\theta) = |B \cap P_k(\theta)| \tag{S3}$$

$$\rho_k^{\rm FP}(\theta) = \frac{b_k(\theta)}{|B \cap C_k|} \tag{S4}$$

$$\rho_k^{\rm TP}(\theta) = \frac{|S \cap P_k(\theta)|}{|S \cap C_k|} \tag{S5}$$

$$A_k(\alpha_k, \theta) = \int_0^{\alpha_k} \rho_k^{TP}(\theta) \mathrm{d}\rho_k^{FP}(\theta).$$
 (S6)

(Like α in the main text, $\alpha_k \in [0, 1]$.) Thus $\rho_k^{\text{TP}}, \rho_k^{\text{FP}}$ and A_k are the class-specific versions of $\rho^{\text{TP}}, \rho^{\text{TP}}$ and A (eq. 16-18 of the main text). As eq. S4-S6 show, these quantities are functions of the parameter set θ . From this point on the notation $A_k(\alpha_k, x) \equiv A_k(\alpha_k, \theta)$ will express that only some subset $x \subset \theta$ of the parameters are varied while all other parameters are fixed. $\rho^{\text{TP}}(x)$ and $\rho^{\text{FP}}(x)$ have analogous meanings.

Step I and II

In step I the optimal solution $[s_k^{X_n}]^*$ for each C_k and X_n is obtained as

$$[s_k^{X_n}]^* = \arg\max_{\substack{s_k^{X_n}\\s_k^{X_n}}} A(\alpha_k = 0.1, s_k^{X_n}).$$
(S7)

In all subsequent steps each $s_k^{X_n}$ is held fixed at $[s_k^{X_n}]^*$. This step reduces dim Θ to 109.

In step II all but the two best performing detectors are discarded, further reducing dim Θ to 19. In the present study this operation is justified by the result that the two best performing detectors, CoMap and MIp, in general greatly outperformed all other detectors (Figure S5-9). However in this general discussion the two best performing detectors are denoted as X_1 and X_2 and their combination as $X_1 \wedge X_2$.

Step III

The remaining set of 20 parameters is $\{(t_k^{X_1}, t_k^{X_2})\}$ $(k = 1, \dots, K \text{ and } n = 1, 2)$. This set corresponds to 19 free parameters, since the constraint in eq. S2 still stands. Write $\mathbf{t}_k \equiv (t_k^{X_1}, t_k^{X_2})$. For each k fix b_k and allow \mathbf{t}_k to vary. Note that it is possible not to alter b_k if $t_k^{X_1}$ and $t_k^{X_2}$ shift in the opposite direction (Figure 2A). For a given b_k define the optimal solution \mathbf{t}_k° as

$$\mathbf{t}_{k}^{\circ} = \arg\max_{\mathbf{t}_{k}} \rho_{k}^{\mathrm{TP}}(\mathbf{t}_{k}).$$
(S8)

Note that \mathbf{t}_k° is a function of b_k . But $b_k = \rho_k^{\text{FP}} |B \cap C_k|$ (eq. S4) and so \mathbf{t}_k° can also be considered as a function of the false positive rate ρ_k^{FP} . This implies that eq. S8 can be reformulated as

$$\mathbf{t}_{k}^{\circ}(\alpha_{k}) = \arg\max_{\mathbf{t}_{k}} A_{k}(\alpha_{k}, \mathbf{t}_{k}), \tag{S9}$$

which is consistent with the definition of θ^* by eq. 19 of the main text.

Also note that step II-III correspond to the notion of *detector weighting*, introduced in the main text.

Step IV

Step III resulted in $\tau^{\circ} \equiv (\mathbf{t}_{1}^{\circ}, \dots, \mathbf{t}_{K}^{\circ})$, where $k = 1, \dots, K$ and K = 10. As mentioned above, each \mathbf{t}_{k}° is a function of b_{k} and so τ° is also a function of the vector (b_{1},\ldots,b_{k}) (it might be of interest that both functions are bijective). Therefore the constraint expressed by eq. S2 allows τ° to vary, so τ° corresponds to a set of 9 free parameters. This is equivalent to class weighting, which was introduced in the main text.

For each $\gamma \in [0, 1]$ (eq. S2) the new framework defines the optimal parameter set $\tau^* \equiv (\mathbf{t}_1^*, \dots, \mathbf{t}_K^*)$ as

$$\tau^* = \arg\max_{\tau^\circ} A(\alpha = \phi(\gamma), \tau^\circ), \tag{S10}$$

where ϕ is a relation transforming γ to α (cf.eq. 19 of the main text). Writing $\mathbf{s}^* = ([s_1^{X_1}]^*, [s_1^{X_2}]^*, \dots, [s_K^{X_1}]^*, [s_K^{X_2}]^*)$ and $\theta^* = (\tau^*, \mathbf{s}^*)$ completes the optimization process.

Implementation of Step IV

For steps I-III it is straight forward to find an efficient search algorithm for the global solutions (τ° and \mathbf{s}^{*}) but for step IV a heuristic approach was taken since this step involves 9 free parameters. Thus Eq. S10 was implemented as a slightly modified version of the differential evolution algorithm described on page 149 of Feoktistov V (2006) Differential Evolution, volume 5 of Springer Optimization and Its Applications. Springer US. Appendix A. This modified algorithm is presented below. To simplify notation the following conventions are introduced: $\mathbf{t}_{k}^{i} \equiv [\mathbf{t}_{k}^{\circ}]^{i}$ and $\tau \equiv \tau^{\circ}$. These conventions also apply to Figure S1, which illustrates some properties of the algorithm.

Algorithm 1: Optimization with differential evolution

```
Input: \gamma, fraction of predicted pairs in |\Omega| total pairs
```

- // control input parameters
- **Input**: u, population size
- **Input**: *d*, diffusion constant
- **Input**: g, number of generations

Data: $U = \{\tau^1, \tau^2, \cdots, \tau^u\}$, population of *u* individuals

- **Data**: $\tau^i = (\mathbf{t}_1^i, \dots, \mathbf{t}_K^i)$, each individual τ^i is a parameter set containing K thresholds $\mathbf{t}_k^i \equiv [\mathbf{t}_k^o]^i$, where for each *i* the definition of $[\mathbf{t}_k^o]^i$ is given by eq. S8 and K is the number of substitution rate classes.
- **Data**: τ^{trial} , depending on its fitness, the trial individual may change the population in each generation.
- Function: CreateRandomIndividual(Constraint), to initialize the population

Function: Fitness $(\tau^i) = \rho^{\text{TP}}(\tau^i)$, where $\rho^{\text{TP}}(\tau^i)$ is the true positive rate (eq. 16 of the main text)

Function: CreateTrialIndividual(τ^i, U, d), creates a trial individual from τ^i , by a mutation and a compensatory mutation, based on 3 other individuals of the population. See Algorithm 2 for details.

Output: τ^* , fittest individual (optimized parameter set)

```
// initialize population
```

```
// the number of all predicted pairs |P| \equiv \sum_k |P_k(\mathbf{t}_k)| is constrained (eq. S2)
 1 Constraint: |P_k(\mathbf{t}_k)| = \operatorname{round}(\gamma \times |\Omega|);
 2 \tau^1 \leftarrow \text{CreateRandomIndividual(Constraint)};
 \mathbf{3} \ \tau^* \longleftarrow \tau^1;
 4 for i = 2 to u do
        \tau^i \leftarrow \texttt{CreateRandomIndividual}(\texttt{Constraint});
 5
         if Fitness(\tau^i) > Fitness(\tau^*) then
 6
          \tau^* \leftarrow \tau^i;
 \mathbf{7}
 8
         end
 9 end
    // evolve population
10 for l = 1 to g do
         for i = 1 to u do
11
              \tau^{\text{trial}} \leftarrow \texttt{CreateTrialIndividual}(U, \tau^i, d);
\mathbf{12}
              if Fitness(\tau^{trial}) > Fitness(\tau^i) then
13
                   \tau^{i} \leftarrow \tau^{trial};
\mathbf{14}
                   if Fitness(\tau^{trial}) > Fitness(\tau^*) then
\mathbf{15}
                    \tau^* \leftarrow \tau^{\text{trial}};
16
                   end
17
18
              end
         end
19
20 end
21 return \tau^*;
```

Algorithm 2: CreateTrialIndividual (U, τ^i, d)

Input: U, population **Input**: $\tau^i = (\mathbf{t}_1^i, \dots, \mathbf{t}_K^i)$, *i*th individual of population Input: d, diffusion constant **Output**: $\tau^{\text{trial}} = (\mathbf{t}_1^{\text{trial}}, \dots, \mathbf{t}_K^{\text{trial}})$, trial individual // Mutation of au^i is based on randomly chosen individuals au^a, au^b, au^c and substitution rates p, q1 randomly select $\tau^a, \tau^b, \tau^c \in U$ such that $a \neq b \neq c \neq l$; **2** randomly select p, q such that $1 \le p, q \le K$ and $p \ne q$; // The mutation uniquely determines the compensatory mutation under the constraint below $\begin{array}{l} \mathbf{s} \ \mathbf{t}_p^{\mathrm{mut}} \longleftarrow \mathbf{t}_p^a + d(\mathbf{t}_p^b - \mathbf{t}_p^c) \ ; \\ // \ \text{Ensure that the mutation does not affect number of all predicted pairs} \end{array}$ $\begin{array}{l} \textbf{4 Constraint:} \ |P_p^{\mathrm{trial}}(\mathbf{t}_p^i)| + |P_q^{\mathrm{trial}}(\mathbf{t}_q^i)| = |P_p^{\mathrm{trial}}(\mathbf{t}_p^{\mathrm{mut}})| + |P_q^{\mathrm{trial}}(\mathbf{t}_q^{\mathrm{mut}})| ; \\ \textbf{5 } \mathbf{t}_q^{\mathrm{mut}} \longleftarrow \texttt{CompensatoryMutation}(\texttt{Constraint}, \mathbf{t}_p^i, \mathbf{t}_q^i, \mathbf{t}_p^{\mathrm{mut}}) ; \end{array}$ // The trial individual is the mutated copy of au^i 6 $\tau^{\text{trial}} \leftarrow \tau^i$; $\begin{array}{c} \mathbf{7} \ \mathbf{t}_p^{\mathrm{trial}} \longleftarrow \mathbf{t}_p^{\mathrm{mut}} ; \\ \mathbf{8} \ \mathbf{t}_q^{\mathrm{trial}} \longleftarrow \mathbf{t}_q^{\mathrm{mut}} ; \end{array}$ 9 return τ^{trial} ;