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Fables

S1.1 Boasting Traveller

Once upon a time, a world traveller boasted of performing superhuman feats in the places he had visited.

The more he boasted, the more people gathered around to hear his stories. Once a small group of listeners

had gathered, he told them, “While in Caracas, in front of a group of people like you, I leaped farther

than any man in history. I bet no one can match my jump.” Doubtful of the traveller’s claims, one of

the bystanders interrupted him, saying,“If your feat is true, you don’t need any witnesses, just leap for

us.”

S1.2 Crane and Peacock

Once upon a time, a peacock was admiring his gorgeous tail. Preening, he marvelled at how the colors

flashed in the sunlight. Seeing a crane, he made fun of the drabness of the crane’s coloring. “I am colored

like the robes of kings in gold and purple and all the colors of the rainbow. You do not have any color, so
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you are no where near as beautiful or good as I am.” “True, I may not be beautiful,” replied the crane,

“but I can fly among the heavens, while you are limited to the ground.”

S1.3 Farmer and Sons

A farmer found out that he was dying. He wanted his children to treat his farm with the same care

that he did. He loved his farm and wanted it to thrive. He called his sons to his bedside and said,

“My children, you must know that there is a treasure hidden in my vineyards.” After the man died, the

children dug the ground trying to find this great wealth. They found no treasure, but amazingly enough,

the vineyards produced a wonderful amount of fruit.

S1.4 Father and Sticks

A father once had sons who always argued with each other. Frustrated with their fighting, he pleaded

with the boys to stop. When his pleading did not work, he was determined to show his sons the value

of his advice. One day, the father asked his sons to bring him a bundle of sticks. Once they brought the

bundle to him, the father asked his sons to break it. One by one, each son tried to break it, but even

using all their strength, no one could. After the sons had failed, the father opened the bundle of sticks

and gave one stick to each boy. With only one each, the sons had no trouble breaking the sticks.

S1.5 Fox and Goat

Once upon a time, a fox was walking through a field and slipped into a well. Frightened, the fox tried

to climb out but the sides of the well were too steep. Later that day, a goat wandered by looking for

some water to drink. Finding the fox, the goat asked if he knew where there was some water. With a sly

thought, the fox told the goat of the magical properties of the well’s water. The fox told the goat to jump

into the well in order to get his drink. Believing the fox, the goat jumped in. As the goat was enjoying

his drink, the fox told of his difficulty getting out of the well. Panicked, the goat cried in frustration at

being stuck in the well. The fox said, “Do not worry, I have a plan. If you lean against the wall, I will

run up your back to escape. And don’t worry, I will help you get out after me.” Reassured, the goat

placed his front hooves against the wall. The fox quickly ran up his back, however, instead of helping the

goat he kept on running.
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S1.6 Lion and Mouse

Once upon a time, a mouse ran across a sleeping lion’s face. Startled, the lion woke up and in his anger

intended to kill the mouse. The mouse begged the lion not to harm him and said, “If you do not hurt me,

I am sure I can find a way to return your favor.” The lion laughed because he did not believe the mouse

could ever help him, but he was intrigued and let the mouse go. Sometime later, a group of hunters

caught the lion and tied him up with ropes. The lion roared and roared, but no one responded to his

cries. When the mouse finally heard the lion’s roar, he came to see what was the trouble. Seeing the lion

tied up, the mouse chewed through the ropes.

S1.7 The Miser

Once upon a time, a man sold everything that he had and bought a lump of gold. Not wanting to lose

his treasure, he buried the gold beside an old wall. He visited the spot every day to make sure that his

gold was safe. One day, one of his workmen noticed the man’s many visits to the same spot. Curious,

the workman went to see what his employer was looking at. Discovering the man’s secret, the workman

dug up his employer’s treasure. Not long after, the man discovered that his gold was gone.

S1.8 Old Woman and Physician

Once upon a time, an old woman became blind and she asked a doctor to restore her vision. They agreed

that the doctor would only be paid if the woman regained her sight. Every day, the doctor came and

applied an ointment to her eyes. On every visit, the doctor took some of the woman’s valuables with

him. After many treatments with the ointment, the doctor gave the woman a different medicine that

restored her sight. When the woman opened her eyes, she could not see any of her valuable belongings,

so she refused to pay. The doctor took the woman to court where she told the judge, “I did promise to

pay the doctor when my sight was restored. He claims that I am healed, but I say I am still blind. When

I lost my sight, I could see my valuables. Now, although he swears he has cured me, I am not able to see

a single thing.”
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S1.9 Shepherd Boy

Once upon a time there was a young shepherd who was watching a flock of sheep near a village. Being

young, he got bored easily so, several times the boy cried, “Wolf! Wolf!” The villagers came running to

his aid. When they arrived, the boy would laugh because there was no real wolf and he called them just

to pass the time. One day, a wolf attacked. The shepherd boy cried, “Wolf! Wolf! A wolf is eating my

sheep!” but none of the villagers came to help him.

S1.10 Sick Lion

Once upon a time, an old lion discovered he could not catch his food by hunting anymore. In order to

not go hungry, he decided to get his food by trickery. He pretended that he was very sick. The other

animals, feeling terrible for the old lion, went to his cave in order to help him in his recovery. The old

lion, hungry, quickly ate his visitors and waited for the next one to come so that he could have another

meal. The fox, noticing that many animals were missing, went to visit the lion. She saw all the footprints

going into the cave, but saw none coming out. Suspicious, the fox called out to the lion and asked how he

was doing. “I am not well,” responded the lion, “please come in so I can talk to you.” “No, thank-you,”

said the fox, “I see many footprints going into your cave, but I do not see any coming out.”

S1.11 Turtle and Rabbit

Once upon a time, a rabbit made fun of a turtle’s short legs and slow pace. In good humor, the turtle

teased, “These short legs will beat you in a race any day.” Thinking that he was unbeatable, the rabbit

accepted the challenge. Together the rabbit and the turtle decided that the fox should design the course.

Once the course was ready, the rabbit and the turtle started the race at the same time. The rabbit put

on a quick burst of speed, leaving the turtle behind. Not seeing the turtle behind him, the rabbit decided

to take a nap. Meanwhile, the turtle pushed ahead with his persistent slow pace. After some time, the

rabbit woke up and realized how late it was, so he nervously decided to use his full speed in order to win

the race. Just as he was about to cross the finish line, he noticed that the turtle had already crossed the

line and was ready to greet the rabbit.
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S1.12 Two Roosters

Once upon a time there were two roosters who always fought over the command of the roost. One day,

they had a really big fight and one of the roosters finally beat the other into submission. The rooster who

lost hid in a quiet corner of the roost. The winner went to the top of a fence and started crowing and

flapping his wings in order to boast of his victory. All of a sudden, an eagle swooped down and snatched

away the winner. Later, the other rooster came out from his corner. Now, being the only rooster, he

ruled the roost.

DICA: Formal Presentation

The goal of discriminant correspondence analysis (dica) is to predict group membership of observations

which are described by nominal variables (or by variables which represent the amount of some quantity).

Dica is shown schematically in Figure S1.

S1.13 Notations

We have I observations each described by J variables. The values of the variables for the observations are

stored in an I by J data matrix denoted X. The observations of X are partitioned into N a-priori groups

of interest with In being the number of observations of the nth group (and so

N∑
n

In = I). The elements

of X are assumed to be positive or zeros and we assume that there are no empty rows or columns (i.e.,

rows or columns with only zero values).

S1.13.1 Notations for the Groups (Rows)

We denote by Y the I by N design matrix for the groups describing the rows of X: yi,n = 1 if row i

belongs to group n, yi,n = 0 otherwise.

S1.14 Step 1: Compute the group × variable matrix

The first step of dica is to compute the N by J matrix of the total of each group. This matrix is called

S and it is computed as

S = YTX . (1)
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The grand total of S is denoted s++ (i.e., s++ = 1TS1). From matrix S we compute a matrix of

barycentric row profiles denoted R∗ and computed as

R∗ = diag{S1}−1
S (2)

where the diag operator transforms a vector into a diagonal matrix when applied to a vector and extract

the vector of the diagonal elements when applied to a matrix. A row of R∗ is a profile because it is made

of non-negative numbers whose sum is equal to one. When transformed into profiles, two rows can be

compared independently of their overall level. The masses of the barycenters are proportional to the sum

of the corresponding groups. Specifically, the N by 1 group mass vector denoted b is computed as

b = S1× s−1
++ (3)

The diagonal barycenter mass matrix is obtained from the barycenter mass vector as

B = diag{b} . (4)

The “grand barycenter,” denoted c, is the overall barycenter of matrix R∗, it is computed as

c = ST1× s−1
++ . (5)

The weights of the columns are inversely proportional to their frequency. The weights are stored in a J

by 1 vector denoted w and the corresponding J by J diagonal matrix is denoted W. Specifically, W and

w are computed as:

W = diag{c}−1
and w = diag{W} . (6)

S1.15 Step 2: Correspondence Analysis of the R∗ Barycenter Matrix

The R∗ matrix is then analyzed using ca. Specifically, the first step of the analysis is to center R∗ in

order to create a matrix of centered profiles. This matrix, denoted R, is computed as

R = R∗ − 1c , (7)
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(with 1 being a N by 1 vector of 1s). Then, the matrix R is analyzed with a generalized singular value

decomposition under the constraints provided by the matrices B (masses for the N groups) and W

(weights for the columns) as [1–4]:

R = P∆QT with PTBP = QTWQ = I , (8)

where ∆ is the L by L diagonal matrix of the singular values (with L being the number of non-zero

singular values), and P (respectively Q) being the N by L (respectively J by L) matrix of the left

(respectively right) generalized singular vectors of R (the singular vectors are also called eigenvectors

and the the squared singular values are also called eigenvalues; see for details, [5]).

S1.15.1 Row Factor Scores

The N by L matrix of factor scores for the groups is obtained as

F = P∆ = RWQ . (9)

The variance of the columns of F is given by the square of the corresponding singular values (i.e., the

“eigen-value” denoted λ, these are stored in the diagonal matrix Λ). This can be shown by combining

Equations 8 and 9 to give:

FTBF = ∆PTBP∆ = ∆2 = Λ . (10)

S1.15.2 Column Factor Scores (Loadings)

In correspondence analysis, the roles of the row and the columns are symmetrical: They can be represented

in the same map because they have the same variance. Therefore, the columns are described by factor

scores which can also be interpreted as loadings. Column factor scores are used to identify the variables

important for the separation between the groups. In dica, the column factor scores are computed as (cf.

Equations 8 and and 10):

G = WQ∆ . (11)
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S1.16 Projection of the Observations in the Discriminant Space

The I rows of matrix X can be projected (as “supplementary” or “illustrative” elements) onto the space

defined by the factor scores of the barycenters. The first step is to transform X into a matrix of centered

row profiles called L and computed as:

L =
(
diag{X1}−1

X
)
− 1c, (12)

(with 1 being an I by 1 vector of 1s). Then from Equations 8 and 9, we find that matrix WQ is

a projection matrix. Therefore, the I by L matrix H of the factor scores for the rows of X can be

computed as

H = LWQ = LG∆−1. (13)

These projections are barycentric, because the weighted average of the factor scores of the rows of a group

gives the factor scores of the group. Specifically, if we define M as the mass matrix for the observations

as

M = diag{m} = diag
{
X1× s−1

++

}
. (14)

Note that the factor scores of the barycenters are the barycenter of the factor scores of the projections

of the observations. This is shown by first computing the barycenters of the row factor scores as (cf.

Equation 2) as

H = diag{YM1}−1
YMH , (15)

then plugging in Equation 13 and developing. Taking this into account, Equation 9 gives

H = diag{YM1}−1
YMXWQ = RWQ = F . (16)

S1.17 Quality of the Prediction

The performance, or quality, of the prediction of a discriminant analysis is assessed by predicting the group

membership of the observations and by comparing the predicted with the actual group membership. The

pattern of correct and incorrect classifications can be stored in a confusion matrix in which the columns

represent the actual groups and the row the predicted groups. At the intersection of a row and a column
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is the number of observations from the column group assigned to the row group.

The performance of the model can be assessed for the observations used to compute the groups: this is

the fixed effect model. In addition, the performance of the model can be estimated for new observations

(i.e., observations not used to compute the model): this is the random effect model).

S1.17.1 Fixed Effect: Old Observations

The fixed effect model predicts the group assignment for the observations used to compute the barycenters

of the groups. In order to assign an observation to a group, the first step is to compute the distance

between this observation and all N groups. Then, the observation is assigned to the closest group. Several

possible distances can be chosen, but a natural choice is the Euclidean distance computed in the factor

space [6]. If we denote by hi the vector of factor scores for the ith observation, and by fn the vector of

factor scores for the nth group, then the squared Euclidean distance (in the factor space) between the

ith observation and the nth group is computed as

d2 (hi, fn) = (hi − fn)
T

(hi − fn) . (17)

(Note that the Euclidean distance in the factor space is equivalent to the so called “chi-squared” distance

in the original space). Obviously, other distances are possible (e.g., Mahalanobis distance, see for more

details [6]), but the Euclidean distance has the advantage of being “directly read” on the map.

S1.17.1.1 Tolerance intervals The quality of the group assignment of the actual observations can

be displayed using tolerance intervals. A tolerance interval encompasses a given proportion of a sample

or a population. When displayed in two dimensions, these intervals have the shape of an ellipse and

are called tolerance ellipsoids. For dica, a group tolerance ellipsoid is plotted on the group factor score

map. This ellipsoid is obtained by fitting an ellipse which includes a given percentage (e.g., 95%) of the

observations. Tolerance ellipsoids are centered on their groups and the overlap of the tolerance ellipsoids

of two groups reflects the proportion of misclassifications between these two groups.

S1.17.2 Random Effect: New Observations

The random effect model evaluates the quality of the assignment of new observations to groups. This

estimation is obtained, in general, by using cross validation techniques that partition the data into a
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learning set (used to create the model) and a testing set (used to evaluate the model). For dica we use

a variation of this approach called the jackknife (a.k.a. “leave one out”) approach: Each observation is

taken out from the data set, in turn, and then is projected onto the barycenter factor space computed

from the remaining observations. This projection is then used to predict its group membership from

the distances between the projected observation and the barycenters. In dica the only pre-processing

needed to project an observation consists into the transformation of this observation into a profile. This

transformation does not require estimating parameters from the learning set, and this guarantees that

the prediction of the left-out observation is random.

The assignment of an observation to a group follows the same procedure as for a fixed effect model:

the observation is projected onto the group factor scores, and the observation is assigned to the closest

group. Specifically, we denote `i the profile vector for the ith observation, and the following matrices

obtained without the ith observation are denoted (1) X−i, (2) R−i, (3) B−i and (4) W−i and refer to

(1) the I − 1 by J data matrix (2) the N by J barycenter matrix, (3) the N by N mass matrix, and (4)

the J by J weight matrix. All these matrices are obtained using I − 1 instead of I observations. Then

the generalized eigendecomposition of R−i is obtained as (cf. Equation 8):

R−i = P−i∆−iQ
T
−i with PT

−iW−iP−i = QT
−iB−iQ−i = I (18)

The matrices of row and column factor scores denoted F−i and G−i are obtained as (cf. Equations 9

and 18)

F−i = P−i∆−i = R−iW−iQ−i and G−i = W−iQ−i∆−i . (19)

The jackknifed projection of the ith observation, denoted h̃i is obtained (cf. Equation 13) as

h̃i = `iW−iQ−i = `iG−i∆
−1
−i . (20)

Distances between the ith observation and the N groups can be computed (cf. Equation 17) with the

factor scores. The observation is then assigned to the closest group. Note that the jackknife procedure

assumes that there are no columns with only one non-zero entry. If there is such a column, we would

create a “division by zero error” when the non-zero observation is jackknifed.
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S1.17.2.1 Prediction intervals In order to display the quality of the prediction for new obser-

vations, we use prediction intervals. In order to compute these intervals, the first step is to project

the jackknifed observations onto the original complete factor space. There are several ways to project

a jackknifed observation onto the factor score space. Here we proposed a two-step procedure. First,

the observation is projected onto the jackknifed space and is reconstructed from its projections. Then,

the reconstituted observation is projected onto the full factor score solution. Specifically, a jackknifed

observation is reconstituted from its factor scores as (cf. Equations 8 and 20):

˜̀
i = h̃iQ

T
−i . (21)

The projection of the jackknifed observation is denoted ĥi and is obtained by projecting ˜̀i as a supple-

mentary element in the original solution. Specifically, ĥi is computed as:

ĥi = ˜̀iWQ (cf. Equation 9)

= h̃iQ
T
−iWQ (cf. Equation 21)

= `iW−iQ−iQ
T
−iWQ (cf. Equation 20) . (22)

Note that ĥi can also be computed from the column factor scores as

ĥi = `iG−i∆
−2
−iG

T
−iW−iG∆−1 . (23)

The quality of the predicted group assignment of the observations as a random model can be displayed

using prediction intervals. A prediction interval encompasses a given proportion of the predicted elements

of a sample or a population. When displayed in two dimensions, these intervals have the shape of an

ellipse and are called prediction ellipsoids. For dica, a group prediction ellipsoid is plotted on the group

factor score map. This ellipsoid is obtained by fitting an ellipse which includes a given percentage (e.g.,

95%) of the predicted observations. Prediction ellipsoids are not necessarily centered on their groups, in

fact the distance between the center of the ellipse and the group represents the estimation bias. Overlap of

two predictions intervals directly reflects the proportion of misclassifications for the “new” observations.
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S1.18 Quality of the Group Separation

S1.18.1 R2 and Permutation Test

In order to evaluate the quality of the discriminant model, we use a coefficient inspired by the coefficient

of correlation. Because dica is a barycentric technique, the total variance (i.e., the inertia) of the

observations to the grand barycenter (i.e., the barycenter of all groups) can be decomposed into two

additive quantities: (1) the inertia of the observations relative to the barycenter of their own category,

and (2) the inertia of the group barycenters to the grand barycenter.

Specifically, if we denote by f the vector of the coordinates of the grand barycenter (i.e., each compo-

nent of this vector is the average of the corresponding components of the barycenters), the total inertia,

denoted ITotal, is computed as the sum of the squared distances of the observations to the grand barycenter

(cf. Equation 17):

ITotal =

I∑
i

mid
2
(
hi, f

)
=

I∑
i

mi

(
hi − f

)T (
hi − f

)
. (24)

In ca, the grand barycenter is the center of the space, and therefore f = 0 and Equation 24 reduces to

ITotal =

I∑
i

mih
T
i hi . (25)

The inertia of the observations relative to the barycenter of their own category is abbreviated as the

“inertia within.” It is denoted IWithin and computed as

IWithin =

N∑
n

∑
i in group n

mid
2 (hi, fn) =

I∑
n

∑
i in group n

mi (hi − fn)
T

(hi − fn) . (26)

The inertia of the barycenters to the grand barycenter is abbreviated as the “inertia between.” It is

denoted IBetween and computed as

IBetween =

I∑
i

bn × d2
(
fn, f

)
=

N∑
n

bn × d2
(
fn, f

)
=

N∑
n

bn ×
(
fn − f

)T (
fn − f

)
=

N∑
n

bn × fTn fn . (27)

So the additive decomposition of the inertia can be expressed as

ITotal = IWithin + IBetween . (28)
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This decomposition is similar to the familiar decomposition of the sum of squares in the analysis of

variance. This suggest that the intensity of the discriminant model can be tested by the ratio of between

inertia by the total inertia, as is done in analysis of variance and regression. This ratio is denoted R2

and it is computed as:

R2 =
IBetween
ITotal

=
IBetween

IBetween + IWithin
. (29)

The R2 ratio takes values between 0 and 1, the closer to one the better the model. The significance of R2

can be assessed by permutation tests, and confidence intervals can be computed using cross-validation

techniques such as the jackknife (see [7]) or the bootstrap (see [8]).

S1.18.2 Confidence Intervals

The stability of the position of the groups can be displayed using confidence intervals. A confidence

interval reflects the variability of a population parameter or its estimate. In two dimensions, this interval

becomes a confidence ellipsoid. The problem of estimating the variability of the position of the groups

cannot, in general, be solved analytically and cross-validation techniques need to be used. Specifically, the

variability of the position of the groups is estimated by generating bootstraped samples from the sample

of observations. A bootstraped sample is obtained by sampling with replacement from the observations

(recall that when sampling with replacement some observations may be absent and some other maybe

repeated). The “bootstraped barycenters” obtained from these samples are then projected onto the

discriminant factor space and, finally, an ellipse is plotted such that it comprises a given percentage (e.g.,

95%) of these bootstraped barycenters. When the confidence intervals of two groups do not overlap,

these two groups are “significantly different” at the corresponding alpha level (e.g., α = .05). In dica,

the bootstrap can be performed directly in the factor space by sampling the elements of matrix H and

projecting their weighted means onto the factor space.

S1.19 Where to find more information about DICA

More detailed information about dica and related methods can be downloaded from the third author’s

website at www.utdallas.edu/∼herve.
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S2 Figure Captions
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Figure S1. Schematic diagram of discriminant correspondence analysis (dica)


