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1. Extended Experimental Procedures 

A. Fluid dynamics of the waves on Reissner’s membrane 

We consider Reissner’s membrane within an x,y,z coordinate system (Figure 1B) and describe 

the hydrodynamics in the plane y = 0 that lies perpendicular to the membrane and along its 

midline. For small displacements and incompressible fluids, the pressures p1 and p2, respectively 

above and below the membrane, satisfy the Laplace equations 

 



p1  0, 



p2  0 . (S1) 

We consider a high angular stimulation frequency  for which the height of the scalae exceeds 

the wavelength. The pressures must therefore vanish far from the boundaries, which is fulfilled 

in the ansatz 

 



p1   ˜ p e itikxkz  c.c.,

p2  ˜ p e itikxkz  c.c.,
 (S2) 

in which c.c. represents the complex conjugate. The pressures satisfy the Laplace relations 

(Equations S1) and decay exponentially with distance from the membrane with a length scale 

proportional to the wavelength  = 2π/k. 

Reissner’s membrane imposes a boundary condition (Equation 2). Because 



t

2XRM  z p1 z0
 z p2 z0

, we obtain the dispersion relation (Equation 4). 

B. Wave propagation on the parallel Reissner’s membrane and basilar membrane 

To solve the Laplace relations (Equation 6) together with the boundary conditions (Equations 7 

and 8), we employ the ansatz 

 



p1  ˜ p 1(x)cosh xb(x)(z  3h) e it ib(x ) xb(x )h  c.c.,

p2  ˜ p 2
u(x)cosh xb(x)(z  2h)   ˜ p 2

d (x)cosh xb(x)(z  h) e it ib(x ) x b(x )h  c.c.,

p3  ˜ p 3(x)cosh xb(x)z e it ib(x ) x b(x )h  c.c..

 (S3) 
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Because the local wave vector k(x) is related to the phase b(x) by 



k(x) xb(x), the phase may 

be expressed through the wave vector, 



b(x)  dx'k(x') /
0

x

 . 

The pressures yield the velocities of Reissner’s membrane and the basilar membrane, 

 



tVRM z p1 z2h
z p2 z2h

,

tVBM z p2 zh
z p3 zh

.
 (S4) 

Applying the WKB approximation, we consider an expansion in powers of the angular frequency 

 (Steele & Taber, 1979; Lighthill, 1996; Reichenbach & Hudspeth, 2010b). A high frequency 

implies a small wavelength (x), a length scale over which the basilar-membrane impedance 

ZBM(x) varies little. The spatial variation of the pressure amplitudes, ∂xpn (n = 1,2,3), then results 

predominantly from the derivative of the phase, ∂xb(x): the corresponding terms are of order  

whereas terms that involve 



x
˜ p 1, 



x
˜ p 2

u, 



x
˜ p 2

d , 



x
˜ p 3  and 



x

2b(x) are of the smaller order 1. To 

leading order 



 2 we hence find 



x

2pn  [xb(x)]
2 pn  (n = 1,2,3). Because 



z

2pn  [xb(x)]
2 pn , the 

pressures satisfy the Laplace relations (Equations 6). 

To leading order 



 2 the boundary conditions yield 

 



˜ p 2
d (x)   ˜ p 1,

˜ p 2
u(x)   ˜ p 3,

 (S5) 

as well as 

 



˜ p 3
˜ p 1


ik(x)ZRM


sinh k(x)h  2cosh k(x)h ,

˜ p 1
˜ p 3


ik(x)ZBM(x)


sinh k(x)h  2cosh k(x)h .

 (S6) 

The last two equations for the ratio of the pressure amplitudes 



˜ p 1 and 



˜ p 3 must agree, which gives 

the dispersion relation (Equation 10). 

Because the basilar-membrane mode exhibits a large wavelength, 



| k(x) | h 1, we can 

approximate 



sinh[k(x)h] k(x)h  and 



cosh[k(x)h]1 to obtain 

 



k1/ 2
2 (x) 



hZRMZBM(x)
i[ZRM  ZBM(x)] i ZRM

2  ZRMZBM(x) ZBM
2 (x) . (S7) 
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When the impedance of Reissner’s membrane is much below that of the basilar membrane, 



ZRM ZBM(x) , we find that 

 



k2(x)  
3i

2hZBM(x)
 (S8) 

and the wave vector k(x) depends on only the basilar membrane's impedance. Because the 

wavelength of this mode is much greater than the height of the channels, the system can be 

regarded as one-dimensional and the WKB approximation yields an amplitude of basilar-

membrane vibration that varies in proportion to 



k(x)  (Steele and Taber, 1979; Lighthill, 1996; 

Reichenbach and Hudspeth, 2010b). 

The impedances of Reissner's membrane and the basilar membrane are comparable near 

the cochlear apex. Because stimulation at frequencies below 1 kHz elicits large wavelengths for 

both modes, the respective wave vectors follow from Equation S7. The impedance of Reissner’s 

membrane is dominated by the membrane’s transverse flexion, 



ZRM  8iT /(w2), and the 

wavelength of the corresponding wave mode is thus inversely proportional to the frequency, 



 ~ f 1. 

C. Green’s functions 

The Green’s functions, the pressures 



p1
(G;x0 , ), 



p2
(G;x0 , ), and 



p3
(G;x0 , ), fulfill the Laplace relations 

(Equations 6) together with the boundary conditions (Equations 7 and 8), but the boundary 

condition at the basilar membrane is given by Equation 13. The WKB approximation again 

facilitates the solution. As shown above, a wave’s local wave vector follows from the local 

impedance alone, irrespective of putative impedance changes. We therefore start by considering 

a uniform basilar-membrane impedance ZBM and make the ansatz 
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

p1
(G;x0 , )  dk





 G1(k)cosh k(z  3h) e it ik(xx0 )kh  c.c.,

p2
(G;x0 , )  dk





 G2

u(k)cosh k(z  2h) G2

d (k)cosh k(z  h)  e it ik(xx0 )kh  c.c.,

p3
(G;x0 , )  dk





 G3(k)cosh kz e it ik(xx0 )kh  c.c..

 (S9) 

From the boundary conditions 



z p1
(G;x0 , )

z2h
z p2

(G;x0 , )

z2h
 and 



z p2
(G;x0 , )

zh
z p3

(G;x0 , )

zh
, we 

obtain 



G2

d (k)  G1(k)  and 



G2

u(k)  G3(k). Because the Dirac 

represented as 

 



(x  x0) 
1

2
dke ik(xx0 )





 , (S10) 

we compute 

 



G1(k) 
pFekh

2L(k)
,

G3(k) 
ikZRM


sinh(kh)  2cosh(kh)











pFekh

2L(k)
,

 (S11) 

in which L(k) is defined as 

 



L(k) 
ikZRM


sinh(kh) 2cosh(kh)











ikZBM


sinh(kh) 2cosh(kh)









1. (S12) 

With this notation the dispersion relation (Equation 10) reads 



L(k)  0. 

In considering the propagation of distortion products, we are interested in waves far from 

their generation site x0. The integrals in Equations S9 can then be calculated by closing the 

contour of integration in the complex plane (Figure S1). Complex analysis informs us that only 

the poles of the integrand contribute to an integral along such a closed path. Poles occur at those 

values k for which L(k) vanishes, and hence at the values ±ka and ±kb with 



ka, kb  0 that 

describe the two wave modes in the cochlea. If the impedances ZBM and ZRM involve friction, the 

solutions ±ka and ±kb possess small imaginary parts and are located in the second and fourth 

quadrants of the complex plane (Figure S1). For 



x  x0 we can close the integration contour in 

the upper half plane, and obtain contributions from –ka and –kb that describe retrograde waves. In 
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the opposite case, when 



x  x0, the contour can be closed in the lower half plane to yield 

contributions from ka and kb and forward-traveling waves. 

Because we are interested in the retrograde waves that reach the stapes, we consider 



x  x0. Denote as 



pn

(G,a;x0 , ) (n = 1,2,3) the contribution to the pressure 



pn

(G;x0 , )from the pole at –

ka and denote as 



pn

(G,b;x0 , ) (n = 1,2,3) the contribution from the pole at –kb. The pressures 



pn

(G,a;x0 , ) therefore represent the pressures of the Reissner’s membrane mode and the pressures 



pn

(G,b;x0 , ) those of the basilar-membrane mode. We find 



pn

(G;x0 , )  pn

(G,a;x0 , )  pn

(G,b;x0 , ) with 

 



p1
(G,a;x0 , )  2i k G1

1(k)
kka







1

cosh ka (z  3h) e it ika (xx0 )ka h  c.c.,

p2
(G,a;x0 , )  2i k G3

1(k)
kka







1

cosh ka (z  2h) 




 k G1

1(k)
kka







1

cosh ka (z  h) 



e it ika (xx0 )ka h  c.c.,

p3
(G,a;x0 , )  2i k G3

1(k)
kka







1

cosh kaz e it ika (xx0 )ka h  c.c.,

 (S13) 

and the pressures



pn

(G,b;x0 , ) follow analogously.

 

In the actual cochlea the basilar-membrane impedance ZBM(x) varies with the longitudinal 

position x. As elaborated above, the local wave vectors ka and kb also depend on the position x. In 

the WKB approximation the pressure amplitudes vary as 



1/ k(x)  (Steele and Taber, 1979; 

Lighthill, 1996; Reichenbach and Hudspeth, 2010b). Because in the WKB approximation, and to 

leading order, only the local wave vector k(x) contributes to the derivatives of the pressures, one 

verifies that adjusting the pressures in Equation S13 in proportion to 



1/ k(x)  solves the Laplace 

relations (Equation 6) with the stated boundary conditions (Equations 7, 8, and 13). For the 

retrograde waves at 



x  x0we find 
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

p1
(G,a;x0 , )  2i

ka (x0)

ka (x)
k G1

1(k)
kka (x0 )







1

cosh ka (x)(z  3h) e
it i dx'ka (x' )

x

x0

 ka (x )h

 c.c.,

p2
(G,a;x0 , )  2i

ka (x0)

ka (x)
k G3

1(k)
kka (x0 )







1

cosh ka (x)(z 2h) 




 k G1

1(k)
kka (x0 )







1

cosh ka (x)(z  h) 



e

it i dx'ka (x' )

x

x0

 ka (x )h

 c.c.,

p3
(G,a;x0 , )  2i

ka (x0)

ka (x)
k G3

1(k)
kka (x0 )







1

cosh ka (x)z e
it i dx'ka (x' )

x

x0

 ka (x )h

 c.c..

 (S14) 

The pressures 



pn

(G,b;x0 , ) as well as the case 



x  x0follow analogously. 

D. Distortion products 

The pressure waves produced by nonlinear distortion can be computed through Equation 14 from 

the Green’s functions (Equations S14). This equation contains the Fourier component 



VBM
3 x0,  

from which 



VBM
3 x0,t follows as 

 



VBM
3 x0,t  d

0



 VBM
3 x0, eit  c.c.. (S15) 

The Fourier component 



VBM
3 x0, can be expressed through the Fourier component 



˜ V BM x0,  

of 



VBM x0,t : 

 



VBM
3 x0,  ˜ V BM(x0)

˜ V BM(x0)
˜ V BM(x0) ()  (S16) 

in which 



 denotes the convolution defined by 

 



( f g)()  d ' f ( ')g(  ')




  d ' f ( ')g(  ') f ( ')g(  ') 
0



 . (S17) 

The last equality holds when 



f ()  f () , as is the case when f() represents the Fourier 

component of a real-valued function. 

To compute the retrograde waves at the cubic distortion frequencies 



2 f1  f2 and 



2 f2  f1, we consider stimulation of the cochlea at the two primary frequencies f1 and f2. In the 

linear, passive cochlea the basilar-membrane response then contains only those two frequencies: 

 



˜ V BM(x0,) VBM
(1) (x0)( 1)VBM

(2) (x0)( 2). (S18) 
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Upon inserting Equation S18 into Equation S16 we find that the basilar-membrane inputs at f1 

and f2 produce responses at linear combinations, specifically at frequencies 



f  I  for which the 

set I is 



I  f   f i  f j  fk  with 



i, j,k 1,2  and 



f  0: 

 



VBM
3 x0,  S( ' )(x0)(  ')

 '2f
f I

 . (S19) 

The amplitudes at the distortion frequencies 



2 f1  f2 and 



2 f2  f1 are 

 



S(21  2 )(x0)  3 VBM
(1) (x0) 

2

VBM
(2) (x0) 



,

S(2 2  1 )(x0)  3 VBM
(2) (x0) 

2

VBM
(1) (x0) 



.

 (S20) 

This distortion elicited by the linear, passive basilar-membrane velocity represents the Born 

approximation to the full, nonlinear Equation 14. 

E. Parameter values 

We model a cochlea 35 mm in length with a maximal best frequency of fmax = 30 kHz at its base 

and a minimal best frequency of fmin = 50 Hz at its apex. The longitudinal position x is measured 

in units of the cochlear length such that x = 0 denotes the base and x = 1 the apex. The maximal 

and minimal frequencies define an exponential map f0(x) of best frequencies in the cochlea in 

which f0(x) matches fmax at the base and fmin at the apex. 

The specific acoustic impedance ZBM(x) of the basilar membrane follows from the 

stiffness, viscosity, and mass. We consider a strip of the basilar membrane with a width of 8 m, 

the width of one hair cell. This strip has an area of ABM(x) = wBM(x)·8 m, in which wBM(x) 

denotes the membrane’s width as a function of the longitudinal position x. The impedance 

follows as 

 



ZBM  ABM
-1 (x) iK(x) / (x) im(x) , (S21) 

in which K(x) is the stiffness, (x) the drag coefficient, and m(x) the mass of the basilar-

membrane strip. 
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At each longitudinal position in the cochlea, the mass and stiffness define a resonant 

frequency 



fres(x)  (2)
1 K(x) /m(x) . We assume that, in the basal region of the cochlea, this 

resonant frequency equals the best frequency f0(x) and hence consider a stiffness K(x) 

proportional to f0(x) and a mass m(x) inversely proportional to f0(x). We choose a maximal 

stiffness K(x=0) = 1 N·m
-1

 at the base and a mass according to fres(x) = f0(x). To represent 

viscous damping we assume that the drag coefficient (x) is proportional to the membrane’s 

width wBM(x) with a proportionality coefficient of 0.015 N·s·m
-2

. 

The nonlinearity that produces distortion results from an active process that counteracts 

viscous damping. We assume that the active process produces a force that is proportional to the 

basilar-membrane displacement. The coefficient A in Equation 12 is thus inversely proportional 

to 3
 as well as to ABM(x):



A  5 1011 3  ABM
-1  kg·m

-2
·s

-2
. 

The remaining parameter values are summarized in Table S1. 
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2. Supplemental Figure Titles and Legends 

Figure S1. Computation of the Green’s functions, related to Figure 4. The functions



p1
(G;x0 , ), 



p2
(G;x0 , ), and 



p3
(G;x0 , ) can be evalulated through integration of Equations S9 in the complex plane. 

When 



x  x0 the integration contour can be closed in the upper half plane and yields 

contributions from –ka and –kb that describe retrograde waves. In the opposite case, when 



x  x0, 

the contour can be closed in the lower half plane to provide contributions from ka and kb and 

hence forward-traveling waves. 

3. Supplemental Movie Titles and Legends 

Movie S1. Interferometric recordings of waves propagating on Reissner’s membrane, 

related to Figure 2. The images portray the movement along the midline of a segment about 

1.5 mm in length near the apex of the guinea pig’s cochlea. As quantified in Figure 2, the 

wavelength decreases with increasing stimulus frequency. 

4. Supplemental Tables 



Supplemental Figure S1
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