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1 GPU synchronization routines

In order to make it as simple as possible for users to add new features to the code we created a

series of GPU synchronization routines which provide an abstract way to copy relevant data such

as atomic velocities, GB radii, coordinates, masses and forces to and from the GPU memory. These

include for uploads:

gpu_upload_vel(atm_vel)

gpu_upload_rborn(atm_gb_radii)

gpu_upload_fs(atm_gb_fs)

gpu_upload_crd(atm_crd)

gpu_upload_charges(atm_qterm)

gpu_upload_masses(atm_mass)

gpu_upload_frc(atm_frc)

gpu_upload_last_vel(atm_last_vel)

and for downloads

gpu_download_frc(frc)

gpu_download_vel(vel)

gpu_download_crd(crd)

For performance we have implemented the entire MD algorithm on the GPU which means uploads

(to GPU memory) are only needed at the beginning of a run and downloads (to CPU memory)

are only needed when I/O is required, for example downloading the coordinates to write to the

trajectory file. It remains nevertheless simple to add new features to the code. For example,

suppose one wanted to replace the Anderson thermostat in the code with a new thermostat. The

code at present is as follows:

#ifdef CUDA

call gpu_vrand_reset_velocities(temp0 * factt, half_dtx)
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#else

call vrand_set_velocities(atm_cnt, vel, &

atm_mass_inv, temp0 * factt)

#endif

If you were to replace the function vrand_set_velocities with a new routine called

my_thermostat for which the GPU version of the code had not yet been written it would be

necessary to first download the velocities (required by the CPU thermostat routine) from the GPU,

modify them on the CPU and then upload them to the GPU again once the function is complete,

for example

#ifdef CUDA

call gpu_download_vel(vel)

#endif

call my_thermostat(vel,...)

#ifdef CUDA

call gpu_upload_vel(vel)

#endif

This implementation will then work for both the CPU and GPU versions of the code. Of course for

the GPU version this comes with the price of transferring an array with dimension three times the

number of atoms between the GPU and CPU every time this function is called. If this occurs on

every MD step, it would likely limit the performance of the GPU code. However, it does provide

a mechanism by which new features can be easily added and tested. Once the new thermostat

is tested one could then write a gpu_my_thermostat kernel for the GPU and remove the

download and upload calls.
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2 Performance measurement input files

AMBER input files used for the performance tests of the PMEMD GPU implementation (TR-

PCage, ubiquitin, myoglobin and nucleosome) are contained in subdirectory “Performance Mea-

surement Inputs”. For each simulation this includes the AMBER MD input file “mdin”, the pa-

rameter and topology file “prmtop” and the starting coordinate file “inpcrd”. For convenience, the

starting geometries are also included as pdb file “inpcrd.pdb”.

3 Validation: Single point forces input files

AMBER input files used for the tests of the precision of the single point forces of the PMEMD

GPU implementation (TRPCage, ubiquitin, apo-myoglobin and nucleosome) are contained in sub-

directory “Validation Single Point Forces Inputs”. For each simulation this includes the AMBER

MD input file “mdin”, the parameter and topology file “prmtop” and the starting coordinate file

“inpcrd”. For convenience, the starting geometries are also included as pdb file “inpcrd.pdb”.

4 Validation: Energy conservation input files

AMBER input files used for the energy conservation tests of the PMEMD GPU implementation

(TRPCage, ubiquitin and apo-myoglobin) are contained in subdirectory “Validation Energy Con-

servation Inputs”. For each simulation this includes the AMBER MD input files “mdin”, the

parameter and topology file “prmtop” and the starting coordinate file “inpcrd”. For convenience,

the starting geometries are also included as pdb file “inpcrd.pdb”. We are including “mdin” files

for all time steps (0.5 fs and 1.0 fs without constraints and 2.0 fs using SHAKE constraints for

bonds to hydrogen atoms). In all cases, first an equilibration was performed (equil) followed by

removal of the center of mass motion (removeCOM) before running the constant energy validation

simulations (NVE).
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5 Validation: Energy conservation plots

Plots showing the total energy for the trajectories of TRPCage, ubiquitin and apo-myoglobin for

the different precision models and time steps dt = 0.5 fs, dt = 1.0 fs and dt = 2.0 fs, are shown in

Figure 1 to Figure 3.

6 Validation: Structural Properties input files

AMBER input files used for the analysis of structural properties of ubiquitin are contained in subdi-

rectory “Validation Structural Properties Inputs”. This includes the AMBER MD input file “mdin”,

the parameter and topology file “prmtop”, and 50 restart files “inpcrd” in subdirectories “prod1”

to “prod50”. These 50 restart files were obtained by extracting coordinates at time intervals of 4 ns

from a trajectory of 200 ns length followed by assignment of random velocities and short heating.

For convenience, the geometries are also included as pdb file “inpcrd.pdb”. The “mdin” file is for

a simulation with a time step of 2.0 fs using SHAKE constraints for bonds to hydrogen atoms at

300 K using the Berendsen thermostat with a time constant τT = 10ps for the heat bath coupling.

7 Validation: Structural Properties: Radius of gyration plots

Plots showing the radius of gyration Rg of ubiquitin for the 50 trajectories obtained with the CPU

implementation and the different precision models (DPDP, SPDP and SPSP) of the PMEMD GPU

implementation are shown in Figure 4.
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TRPCage, dt = 0.5 fs
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TRPCage, dt = 1.0 fs
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TRPCage, dt = 2.0 fs
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Figure 1: Total energy (kcal/mol) for different precision models along constant energy trajectories
for TRPCage. Shown are results for a time step of 0.5 fs without constraints (top), a time step of
1.0 fs without constraints (middle) and a time step of 2.0 fs with constraints for bonds to hydrogen
using the SHAKE algorithm (bottom). The left column shows the first nanosecond of each run
while the right column shows the complete trajectory.
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Ubiquitin, dt = 0.5 fs
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Ubiquitin, dt = 1.0 fs
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Figure 2: Total energy (kcal/mol) for different precision models along constant energy trajectories
for ubiquitin. Shown are results for a time step of 0.5 fs without constraints (top), a time step of
1.0 fs without constraints (middle) and a time step of 2.0 fs with constraints for bonds to hydrogen
using the SHAKE algorithm (bottom). The left column shows the first nanosecond of each run
while the right column shows the complete trajectory.
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Apo-myoglobin, dt = 0.5 fs
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Apo-myoglobin, dt = 1.0 fs
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Apo-myoglobin, dt = 2.0 fs
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Figure 3: Total energy (kcal/mol) for different precision models along constant energy trajectories
for apo-Myoglobin. Shown are results for a time step of 0.5 fs without constraints (top), a time
step of 1.0 fs without constraints (middle) and a time step of 2.0 fs with constraints for bonds to
hydrogen using the SHAKE algorithm (bottom). The left column shows the first nanosecond of
each run while the right column shows the complete trajectory.
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Figure 4: Radius of gyration Rg of ubiquitin for 50 independent trajectories of 100 ns length as
obtained with the CPU implementation and the GPU implementation of PMEMD using different
precision models.
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