SUPPORTING INFORMATION

2	Evaluating the Effects of Bioremediation on
3	Genotoxicity of Polycyclic Aromatic
4	Hydrocarbon-Contaminated Soil Using Genetically
5	Engineered, Higher Eukaryotic cell Lines

Jing Hu, Jun Nakamura * , Stephen D. Richardson 1 , and Michael D. Aitken *

7 Department of Environmental Sciences and Engineering, Gillings School of Global Public

8 Health, University of North Carolina, Chapel Hill, NC 27599-7431, U.S.A.

9

6

1

- 10 Number of pages: 6
- 11 Number of figures: 1
- 12 Number of tables: 3

^{*} Corresponding authors:

Jun Nakamura (T: 1-919-966-6140; F: 1-919-966-6123; Email: ynakamur@email.unc.edu); Michael D. Aitken (T: 1-919-966-1024; F: 1-919-966-7911; Email: mike_aitken@unc.edu).

¹ Current address: Solutions-IES, Raleigh, NC

 BFS^{a} BTS^{a} (at Day 7) CPS^{a} CTR^{*a*} (at Port A) BIO^{*a*} (at Port A) Compound NAP 22.3±2.5 16.5 ± 0.1 12.2±0.2 6.4 ± 0.1 10.4 ± 0.9 ACE 22.2±2.2 1.8±0.2 11.3 ± 2.5 2.5 ± 0.4 2.8 ± 0.4 FLU 15.2±1.7 2.5±0.2 6.3±1.6 2.1±0.7 1.7±0.2 PHN 226±17 50.1±14.4 129±45 41.7 ± 5.8 27.2±0.3 ANT 9.1±1.0 2.0 ± 0.3 11.9 ± 1.2 4.3±1.2 2.3±0.5 FLA 55.8±6.9 11.5±1.9 42.9±0.5 17.6 ± 3.8 9.1±2.3 PYR 80.9±5.2 25.4±4.6 63.4±7.1 24.7 ± 5.9 17.1±3.8 BaA 36.4±4.3 12.1±0.3 18.6 ± 2.8 12.4 ± 4.2 5.8±1.3 CHR 34.6±3.8 17.8±2.3 27.4 ± 2.8 18.2 ± 3.9 7.2 ± 0.2 BbF 13.4±0.7 8.3±0.8 11.8±0.3 7.4 ± 2.4 4.8 ± 0.8 BkF 10.8±1.4 6.8±0.8 8.7±1.1 5.4±1.4 3.2±0.6 13.7±1.3 8.4±1.5 BaP 13.8±1.6 11.4 ± 3.2 7.2±1.6 1.9±0.1 DBA 1.3±0.1 0.78±0.02 0±0 0 ± 0 BgP 23.1±2.8 13.5±0.9 10.6 ± 0.8 7.2 ± 2.9 6.4±1.4 Total PAHs 566±50 178 ± 20 369±54 161±38 105±12

Table S1 Concentrations of individual PAHs in the soil before and after two bioremediation

14 processes (ng/mg dry soil) (n = 3).

13

15 ^a BFS: untreated bioreactor feed soil; BTS: bioreactor treated soil; CPS: untreated column

16 packing soil; CTR: control-column treated soil; BIO: biostimulated-column treated soil.

	LD ₅₀ (DT40)	$LD_{50}(Rad54^{-/-})$
BPDE	49.6±8.5	27.0±2.7
MMS	$7.1 \times 10^3 \pm 1.5 \times 10^3$	$1.7 \times 10^3 \pm 1.7 \times 10^3$
H_2O_2	61.2±8.5	34.7±3.4

Table S2 Table of LD₅₀ for BPDE, MMS and H₂O₂ as positive control (μ g/L) (n = 3).

19 **Table S3** Partial correlation coefficients and corresponding *p*-values among LD₅₀, $1/C_{tPAHs}$ and

²⁰ $1/C_{residue}$.

	LD ₅₀ (DT40)	LD ₅₀ (<i>Rad54</i> -/-)
$1/C_{tPAHs}$ (Control Variable: $1/C_{residue}$)	0.464 (<i>p</i> =0.08)	0.482 (<i>p</i> =0.07)
$1/C_{residue}$ (Control Variable: $1/C_{tPAHs}$)	0.789 ^{<i>a</i>} (<i>p</i> =7×10 ⁻⁴)	0.836 ^{<i>a</i>} (<i>p</i> =1×10 ⁻⁴)

21 ^{*a*} Partial correlation is significant at p < 0.05.

22 LD₅₀ calculation method

 LD_{50} is calculated based on the dose-response relation as follows:

24
$$\ln(R_{survival}) = a + b \cdot C_{exposure-residue}$$
 (Eq.1)

25 where, $C_{exposure-residue}$ is the exposure concentration of residue (µg/mL); $R_{survival}$ is the cell survival

26 relative to vehicle control (%); *a* and *b* are fitting parameters.

For each residue sample, cells were exposed to 6 concentrations, thus generating 6 survival percentage values. The exposure concentration and the obtained cell survival percentage data were used to fit Eq. 1 to obtain the values of fitting parameters *a* and *b*. After *a* and *b* values were obtained, *LD*_{50-residue} was calculated as follows:

31
$$LD_{50-residue} = (\ln 0.5 - a)/b$$
 (Eq. 2)

32 LD_{50-residue} obtained from Eq. 2 is in terms of residue dose (µg residue/mL). It was converted to
33 LD_{50-soil} in terms of soil dose (mg soil/mL) as follows:

$$LD_{50-soil} = LD_{50-residue} / C_{residue/soil}$$

35 where, *C_{residue/soil}* is the residue mass produced per unit soil (µg residue/mg soil).

36 Test of benzo[*a*]pyrene metabolic activation by DT40 cell lines

The DT40 system has not been tested previously for its ability to activate compounds that require metabolic activation before exerting a genotoxic effect. Therefore, we evaluated the potential for metabolic activation by exposing DT40 parental cell line and its mutant $Rev3^{-/-}$ to benzo[*a*]pyrene (BaP). According to unpublished data from Dr. Nakamura's lab, $Rev3^{-/-}$ is sensitive to benzo[a]pyrene diolepoxide (BPDE), BaP's ultimate carcinogenic metabolite.

The DT40 and $Rev3^{-/-}$ were exposed to BaP using the method as described in Ridpath et al. (2011). The results are shown in Figure S1. A paired-sample t-test was applied to determine the significant differences of cell survival rate between the DT40 and $Rev3^{-/-}$. The survival rate of $Rev3^{-/-}$ was significantly lower (p<0.05) than that of the DT40 parental cell line. Therefore, BaP could cause DNA damage response in $Rev3^{-/-}$, which indicates that DT40 cells may have metabolic activation capacity for PAHs.

48

49 **Figure S1.** Cell survival of DT40 parental cells and three mutants (*Rad54^{-/-}*, *Rev3^{-/-}* and *XPA^{-/-}*)

50 exposed to benzo[*a*]pyrene.

51 Ridpath, J. R.; Takeda, S.; Swenberg, J. A.; Nakamura, J. Convenient, multi-well plate-based DNA damage 52 response analysis using DT40 mutants is applicable to a high-throughput genotoxicity assay with 53 characterization of modes of action. *Environ. Mol. Mutagen.* **2011**, *52* (2), 153-160