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Figure S1: 2D maps of the DMMP–silica PMFs (top row) along with the surface density maps of adsorbed
DMMP in MD (middle raw) and BD (bottom row) simulations. The resolution of each map is 0.42×0.42 Å2.
Note the logarithmic scale of the surface density maps. The results for the BD simulations represent the
average of 25 unique trajectories starting from the same initial conditions as the one MD simulation.

All-atom models of silica surfaces and nanochannels. To produce atomic-scale models of silica
membranes, we built a 2.5× 2.5× 3.5 nm3 block of crystalline silica containing 500 silicon and 1000 oxygen
atoms by replicating a unit cell of SiO2

1. The resulting system was annealed through NVT (constant
number of particles N, volume V and temperature T) simulations for 20 ps at 7000 K, 20 ps at 5000 K,
50 ps at 2000 K, 100 ps at 1000 K, and 50 ps at 300 K. The annealing simulations, performed using the
BKS potential2,3 and a 2.5× 2.5× 5.5 nm3 periodic cell, produced an amorphous silica membrane with two
relaxed surfaces. As in Vollmayer et al.3, the form of the BKS potential was modified at small distances to
prevent spurious behavior at high temperature. The Coulomb portion of the BKS potential was computed
using the PME method4, while the Lennard-Jones portion was smoothly shifted to zero at an interatom
distance of 0.55 nm. During the annealing procedure, external forces were applied to prevent the atoms
from evaporating into the vacuum region5,6. The temperature was controlled by Langevin dynamics with a
damping constant of 5 ps−1.

Using the results of the annealing simulations, we created four SiO2 surfaces, each having different
surface properties. Surfaces A and B were produced by removing atoms within 0.42 nm of either side of
the membrane using the atomic coordinates obtained at the end of the annealing process. This produced
thereby two different surfaces (surface A and B, Figure 3 a,b) having a structure similar to a cross section
of amorphous silica. The resulting membrane, having surface A at the bottom and surface B at the top,
was used to make nanochannel system AB through use of periodic boundary conditions. Nanochannel

S1



system A was created by splitting the AB membrane horizontally in half, retaining only the bottom part of
the membrane (containing only surface A). This part of the membrane became the top wall of nanochannel
system A. The bottom wall of the nanochannel system A was created by replicating and rigidly transforming
its top wall, producing a channel that had two identical surfaces (surface A) at the bottom and top.

The same replication and transformation procedure was used to produce nanochannel system C using
the bottom half of the SiO2 membrane with the atomic coordinates obtained at the end of the first annealing
procedure (20-ps simulation at 7000 K). This system had similar properties to the system used in Carr et
al.7. Nanochannel system D was made in the same way as nanochannel system C except that it was made
using the atomic coordinates from the very end of the last annealing simulation (50-ps simulation at 300 K).
Thus, surface D can be thought to have a more relaxed structure than surface C as it was annealed more
thoroughly.

We used the BKS force field in the annealing simulations to produce different but plausible atomic
structures of the SiO2 surfaces. In the subsequent all-atom simulations of the nanochannel systems, the
SiO2 atoms were restrained to the positions generated by the annealing simulations5,8,9. The strength of
the restraints and of the oxygen–silica bonds were chosen to give the membrane a dielectric constant of ∼ 5.
The restraint force was given by ~F (~ri) = −2K(~ri − ~Ri), where ~ri and ~Ri are the current and initial positions
of atom i and K = 13, 900 pN/nm. Bonds were established between all silicon and oxygen atoms separated
by less than 0.22 nm; the bond spring constant Kbond = 695 pN/nm. The interaction of the SiO2 atoms
with water and DMMP were calculated using the CHARMM compatible force field of Cruz-Chu et al.8.

MD simulation setup All MD simulations of DMMP adsorption and transport were performed using
atomic-scale models of silica nanochannels that contained DMMP solution enclosed between two surfaces (see
Figure 1). As described above, nanochannel systems A, AB, C and D were created using silica membranes
A, AB, C, and D, respectively, tiled in a four-by-four grid into larger membranes, each consisting of sixteen
identical patches and measuring 10 × 10 nm2 in total area. To make nanochannel AB, membrane AB was
placed in a periodic box of the same width and breadth but of greater height than the membrane, which
created a system that was effectively infinitely long and wide, with a gap of about 5.6 nm separating surface
A and B (see Figure 1). Similar approach was used to build nanochannel systems A, C, and D that had
identical top and bottom surfaces and thus 32 identical patches per system. The volume between the surfaces
was then filled with a solution of DMMP. We used CHARMM-compatible parameters for DMMP previously
described in Carr et al.10.

Following a 2000-step minimization using a conjugate gradients method, each system was equilibrated
for 1.5 ns in the NPAT ensemble (constant number of particles N, pressure P, area in the x-y plane A and
temperature T). The membrane was oriented normal to the z axis of our coordinate system. During the
NPAT simulation, some DMMP molecules may have adsorbed to the surfaces. To remove this effect, all
DMMP molecules were moved back to their initial coordinates, and constrained to those coordinates for a
0.5 ns simulation in the NVT ensemble, removing any steric clashes between DMMP and water molecules.
Each system was then simulated in the NVT ensemble with a pressure gradient induced in the x-direction,
resulting in a pressure-driven flow of DMMP solution through the system. To induce a pressure gradient,
a constant force in the x-direction Fx was applied to all N water molecules, creating a pressure difference
∆Px across the system of

∆Px = N · Fx/A, (1)

where A is the area of the chamber in the y–z plane7. Temperature was maintained by applying the Langevin
thermostat to all silica atoms, which was sufficient to keep the temperature of the entire system within 1.2%
of the target temperature7. To investigate whether the pressure-driven flow affected the amount of solute
bound, we performed simulations of system A with and without the applied pressure difference, which showed
that the pressure-driven flow had no measurable effect on adsorption10.

Analysis of the BD and MD simulations To calculate the solute adsorption on the nanochannel
surfaces, a DMMP molecule was considered adsorbed in an MD (BD) simulation if its phosphorus atom
(center of mass), was within 0.5 nm of the surface. The surface of each silica membrane was defined as
the x-y plane with the z coordinate determined as the average z coordinate of the isosurface defined by the
five-to-one ratio of silica and water atoms in the MD simulation. To make the 2D surface density plots of
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adsorbed solutes, such as shown in Fig. S1, each surface was partitioned into a grid with a 0.42 × 0.42 Å2

grid size. The number of DMMP bound to each grid point was computed by analyzing the steady-state
parts of the respective trajectories, averaging over all identical patches of the surfaces.

Umbrella sampling simulations. To characterize the interaction between a single DMMP solute and
the membrane surfaces, we created four small systems consisting of a single silica membrane, water, and one
DMMP molecule. The potential of mean force (PMF) of a DMMP molecule as a function of its position
relative to the membrane surface was determined from a set of umbrella sampling simulations11, which were
analyzed using the weighted histogram analysis method (WHAM)12 generalized to three dimensions (see
below). Prior to the umbrella sampling simulations, each of the four systems underwent 2000 steps of energy
minimization, 2 ps of equilibration at fixed volume during which the temperature was raised from 0 to 295 K
by velocity rescaling, and 200 ps of NPT simulation.

The umbrella sampling simulations were performed by restraining the phosphorus atom of the DMMP
molecule to points in (x, y, z) (where z is perpendicular to the surface) using the potential energy function
wi(x, y, z) = 1

2kx(x−xi)2 + 1
2ky(y− yi)2 + 1

2kz(z− zi)2, where (xi, yi, zi) was the center of sampling window
i and kx, ky and kz were the spring constants along each axis. Because the gradient of the PMF was much
larger along the z axis than in the xy plane, a stiffer spring constant of kz =1390 pN/nm was used along
the z axis than perpendicular to it, for which kx = ky =70 pN/nm. Furthermore, the sampling windows
(xi, yi, zi) were more closely spaced along the z axis. The sampling windows formed a three-dimensional
grid with 4, 4, and 9 points along the x, y, and z directions, respectively. Results were first obtained using
the 144 sampling windows centered at these points, but to increase the resolution of our PMF distributions,
we added another 300 sampling windows. For these simulations, we used a grid of 5, 5, and 12 points with
spring constants kx = ky = 560 and kz = 2780 pN/nm. To ensure that the calculated PMF extended into
bulk water, 19 sampling windows with the same spring constant as the previous set were added to the (x,y)
center of the membrane for an additional nanometer in z. Each simulation represented more than 2.2 ns.
The first 0.2 ns of each simulation was excluded from the WHAM PMF calculation.

To calculate the PMF between two DMMP molecules, we created a simulation system containing two
DMMP molecules and 3,426 water molecules, measuring 4.6× 4.6× 4.6 nm3. After a brief 1000-step energy
minimization using a conjugate gradients method, the system was equilibrated for 0.2 ns in the NPT ensemble
at 295 K. Umbrella sampling simulations were performed by restraining the distance between the phosphorus
atoms with a potential energy function wi(~r1, ~r2) = 1

2kr (|~r1 − ~r2| − bw)2. 40 sampling windows were used,
varying the P–P distance bw from 0.36 to 1.96 nm in 0.04-nm increments. The force constant of the harmonic
restraints was kr = 5092 pN/nm. Each sampling simulation lasted 6 ns. The first 0.2 ns of each simulation
was excluded from the WHAM PMF analysis.

Potential of mean force calculation. The potential of mean force (PMF) was computed by the weighted
histogram analysis method (WHAM) described by Roux12, generalized to three dimensions. For our sys-
tem, each of the three spatial dimensions is a reaction coordinate. We estimate the unbiased probability
distribution by

〈ρ(x, y, z)〉 =

(
Nw∑
i=1

ni 〈ρi(x, y, z)〉

) Nw∑
j=1

nj exp
[
−wj(x, y, z) − Fj

kBT

]−1

, (2)

where ρ(x, y, z) is the unbiased probability distribution, Nw is the number of biased simulations, ρi(x, y, z)
is the biased probability distribution derived from the results of biased simulation i, ni and wi(x, y, z) are
the number of independent data points and the biasing potential, respectively, for biased simulation i, and
{Fi} is a set of constants.

The set of constants {Fi} are initially unknown; thus, we make an initial guess for their values. After
estimating 〈ρ(x, y, z)〉 by Equation 2, we can obtain improved estimates of these constants by solving

exp
[
− Fi

kBT

]
=
∫

dx

∫
dy

∫
dz exp

[
−wi(x, y, z)

kBT

]
〈ρ(x, y, z)〉 . (3)
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Figure S2: Radial pair distribution functions of DMMP simulated with all-atom (black line) and implicit-
solvent (blue line) MD.

To obtain self-consistency, the equations are iterated, feeding the newest estimate of {Fi} into Equa-
tion 2 and then the newest estimate of 〈ρ(x, y, z)〉 into Equation 3. Iteration ceases at iteration j when∣∣(Fi+1 − Fi)(j) − (Fi+1 − Fi)(j−1)

∣∣ < 0.0001 kBT for all windows i ∈ {1, 2, ..., Nw − 1}. The PMF is then
computed by −kBT log(〈ρ(x, y, z)〉).

Implicit solvent MD simulations To compare our atomic-resolution BD method with implicit-solvent
MD, we created a simulation system by removing all water molecules from the all-atom model of the
nanochannel system A. Our implicit solvent simulations were performed using the Onufriev, Bashford,
and Case (OBC) implicit solvent model13. The generalized Born radius for each atom14 was taken to be half
the distance at which the Lennard-Jones potential is zero15 (one half the Lennard-Jones σ), and the HCT
scaling factors were taken from Hawkins, Cramer and Truhlar (HCT)16 and Tinker17. As no ready-to-use
HCT scaling factors were available for silicon, several HCT factors were tested, including a low HCT scaling
factor of 0.72 (same as HCT of carbon) and a high HCT scaling factor of 0.96 (same as HCT of sulfur).

All implicit-solvent simulations were performed using GROMACS 4 18, a timestep of 2 fs with all bonds
constrained by the P-LINCS algorithm19, periodic boundaries, and an electrostatic and van der Waals cut-off
of 2.5 nm. The implicit-solvent MD simulations only modeled the diffusion of solutes in the nanochannels,
as no flow was induced. As discussed in Carr et al.10, the presence of a flow does not affect the amount of
solute adsorbed on the nanochannel surfaces for the range of flow velocities studied.

In our implicit-solvent MD simulations, the DMMP molecules were observed to aggregate in solution.
Fig. S2 illustrates this behavior by comparing the radial pair distribution functions of DMMP in bulk solution
simulated using all-atom and implicit-solvent MD methods. Thus, our implicit model of DMMP does not
properly capture properties of a DMMP solution, which makes quantitative comparison of the results of
DMMP adsorption simulations impossible. We note, however, that the overall amount of DMMP adsorbed
at the silica surface strongly depends on the HCT scaling factor used to describe silicon, producing a finite
concentration of adsorbed DMMP for an HCT scaling factor of 0.72 and no DMMP adsorption for 0.96.

While unable to quantitatively compare implicit solvent MD to all-atom MD in their ability to predict
DMMP adsorption on silica with atomic-scale precision, we were able estimate the gain in performance
from switching to the implicit solvent representation. In our simulations, the performance gain was rather
moderate, as the entire silica surface was described in atomic details. Specifically, implicit solvent simulations
produced ∼28 ns/day on 240 processors, which was only double the performance of all-atom MD with explicit
water, ∼14 ns/day on 288 processors. Eliminating the all-atom description of silica would surely speed up
implicit solvent simulations. It is, however, not clear if such a model could preserve atomic-scale information
about the arrangement of surface atom, which is critical for proper description of the surface’s local affinity
to water. The latter was found to be the dominant factor governing DMMP adsorption in all-atom MD
simulations10.
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Smoluchowski model. To compare the results of our BD simulations with a simple continuum model,
we used the Smoluchowski equation to predict the density of solute bound to the nanochannel surfaces. The
Smoluchowski equation,

∂tc (z, t) = ∂z

(
D ∂z −

F (z)
γ

)
c (z, t) , (4)

describes the time evolution of solution concentration c under an external force F , where D is the diffusivity
of the particles, γ is the coefficient of friction in the solution, and c (z, t) describes the probability of finding
a particle at position z at time t. The Smoluchowski model describes the dynamics of the solute as diffusive
motion in an external potential and ignores solute–solute interactions. Instead of solving the full 3D Smolu-
chowski equation, here we consider a quasi 1D system, where WPS is simply a function of the distance from
the surface. The effective one-dimensional PMF is be computed from the 3D PMF by integrating out the
unused degrees of freedom:

WPS (z) =
1

LxLy

∫ Lx

0

dx

∫ Ly

0

dy e−WPS(x,y,z). (5)

To solve the Smoluchowski equation, we wrote custom routines in MATLAB20. For the external force,
F (z), we took the numerical derivative of the 1D surface–solute PMF, and interpolated the solution for the
given z. We used reflective boundary conditions to conserve probability,

D
(

∂z −
F (z)
kBT

)
c (z, t) = 0, at z = 0, h nm (6)

where h is the length of the channel, and an initial probability distribution,

c(z = 0, t = 0) = 1/h, at 1.25 nm < z < (h − 1.25) nm (7)

corresponding to the initial conditions of our all-atom MD simulations. The density of adsorbed DMMP
molecules predicted with the Smoluchowski model is shown in Figure 5. Due to the lack of inter-particle
interactions, the Smoluchowski equation predicts a constant fraction of solutes adsorbing to the surface in
each simulation. While this is valid for low concentrations, the model overestimates the amount of adsorbed
solute at even moderate concentrations.
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