Supplemental Table 1. Equations used to calculate designated quantities.

1. Number of repeated visits (*k*) needed to obtain a specified level of correlation coefficient between the observed and true mean

$$k = \frac{\sigma_w^2}{\sigma_b^2} \times \frac{r^2}{1 - r^2}$$

 σ_w^2 = within - household variance σ_b^2 = between - household variance

- r = correlation coefficient between the observed and the true mean
- 2. Number of repeated visits (*k*) needed to estimate a household's food/pantry amount with a specified degree of error:

$$k = \left(Z_{\alpha/2} C V_w / D_0 \right)^2$$

 CV_w = within-household coefficient of variation

 D_0 = the specified limit (as a percentage of deviation from the true intake)

- 3. Number of households needed for k (fixed) repeated visits: $n = \frac{2\sigma^2}{\delta^2} \left[\frac{1+(k-1)\rho}{k} \right] (z_{\alpha/2} + z_{\beta})^2 = 2p_{sd}^2 \left[\frac{1+(k-1)\rho}{k} \right] (z_{\alpha/2} + z_{\beta})^2$
 - ρ = intraclass correlation coefficient (ICC)
 - δ = effect size
 - σ^2 = total variance, sum of within and between varinaces

 p_{sd} = inverse of % of standard deviation. E.g. if δ =0.5 SD then p_{sd} =2.